Lockheed Martin Corporation 6801 Rockledge Drive MP: CCT-246 Bethesda, MD 20817 Telephone 301-548-2209

October 27, 2022

VIA EMAIL AND PRIVATE CARRIER

Anuradha Mohanty Land and Materials Administration Maryland Department of the Environment 1800 Washington Boulevard, Suite: 625 Baltimore, Maryland 21230

Subject: Transmittal of the 2022 Groundwater Monitoring Report

Martin State Airport, 701 Wilson Point Road

Middle River, Maryland

Dear Ms. Mohanty,

For your review, please find enclosed two hard copies of the above-referenced document. This annual report details the 2022 Dump Road Area and Main Terminal groundwater sampling and synoptic groundwater level measurements collected from wells at the Dump Road Area and Main Terminal within Martin State Airport in Middle River, Maryland.

If possible, we respectfully request to receive MDE's document review comments by December 12, 2022.

If you have any questions or require any additional information please contact me by phone at 301-964-2482, or via e-mail at anthony.c.apanavage@lmco.com.

Sincerely,

Anthony Apanavage

Project Lead

Environmental Remediation Principal Lockheed Martin Corporation

cc: (via email without enclosure) Christine Kline, Lockheed Martin Mary Morningstar, Lockheed Michael Martin, Tetra Tech Peter Shilland, CDM Smith Brian Dietz, MDE

cc: (via mail with CD enclosure) Pete Lekas, EA Environmental

cc: (via shipping courier; with enclosures) Mark Williams, MAA Al Pollard, Martin State Airport

Page 1 of 1

2022 GROUNDWATER MONITORING REPORT MARTIN STATE AIRPORT 701 WILSON POINT ROAD MIDDLE RIVER, MARYLAND

Prepared for: Lockheed Martin Corporation		
Prepared by: Tetra Tech, Inc.		
October 2022		
Approved by: Lockheed Martin, Inc.		
Revision: 0		
Michael Mart		
Michael Martin, P.G. Regional Manager		
get Julia		
Joshua Mullis Project Manager		

TABLE OF CONTENTS

<u>Section</u>	<u>on</u>		<u>Page</u>
Table	of Co	ontents	i
List o	f FIG	JRES	iii
List o	f TAB	LES	iv
Appe	ndice	s	iv
Acror	nyms	and Abbreviations	v
Section	on 1 lı	ntroduction	1-1
Section	on 2 S	Site Background	2-1
2.1	Dun	np Road Area	2-1
2.2	Mai	n Terminal	2-4
2.3	Wel	l Abandonment	2-5
Section	on 3 l	nvestigation Approach and Methodology	3-1
3.1	Syn	optic Groundwater Level Measurements	3-1
3.2	Gro	undwater Sampling	3-1
3.3	Lab	oratory Analyses	3-3
3.4	Doc	umentation	3-4
3.5	Equ	ipment Decontamination	3-5
3.6	Was	ste Management	3-5
3.7	Ger	eral Sampling Procedures, Nomenclature, and Handling	3-6
3.8	Data	a Validation	3-6
Section	on 4 F	Results	4-1
4.1	Gro	undwater Level Data	4-2
4.2	Gro	undwater-Chemical Data	4-3
4	1.2.1	Volatile Organic Compounds	4-3
4	1.2.2	1,4-Dioxane	4-9
4	1.2.3	Metals	4-10
	1.2.4	Petroleum Hydrocarbons	
4	1.2.5	Radium-228 and Total Alpha Radium	4-12

Section 5 Summary	5-1
Section 6 References	6-1

9062 Tetra Tech ● Lockheed Martin, Martin State Airport 2022 Groundwater Monitoring Report

October 2022 Page ii

TABLE OF CONTENTS (CONTINUED)

LIST OF FIGURES

Figure 1-1	Martin State Airport Site Location Map
Figure 2-1	Martin State Airport and Surrounding Features
Figure 2-2	Site Features and Areas of Concern—Dump Road Area
Figure 2-3	Recognized Environmental Conditions—Main Terminal Area
Figure 3-1	Groundwater Monitoring Well Locations, 2022—Dump Road Area
Figure 4-1	Groundwater Elevation Contour Map, April 2022—Upper Surficial Aquifer,
J	Dump Road Area
Figure 4-2	Groundwater Elevation Contour Map, April 2022—Intermediate Surficial
3	Aquifer, Dump Road Area
Figure 4-3	Groundwater Elevation Contour Map, April 2022—Lower Surficial Aquifer,
Ü	Dump Road Area
Figure 4-4	Concentrations of Trichloroethene, <i>cis</i> -1,2-Dichloroethene and Vinyl
J	Chloride Exceeding Groundwater Standards, 2022—Upper Surficial
	Aquifer, Dump Road Area
Figure 4-5	Concentrations of Trichloroethene, cis-1,2-Dichloroethene and Vinyl
_	Chloride Exceeding Groundwater Standards, 2022—Intermediate Surficial
	Aquifer, Dump Road Area
Figure 4-6	Concentrations of Trichloroethene, cis-1,2-Dichloroethene and Vinyl
	Chloride Exceeding Groundwater Standards, 2022—Lower Surficial and
	Deep Confined Aquifers, Dump Road Area
Figure 4-7	Concentrations of Benzene Exceeding the Groundwater Standard, 2022—
	Dump Road Area
Figure 4-8	Concentrations of 1,4-Dioxane Exceeding the Groundwater Standard,
	2022—Dump Road Area
Figure 4-9	Concentrations of Total Metals Exceeding Groundwater Standards,
	2022—Upper Surficial Aquifer, Dump Road Area
Figure 4-10	Concentrations of Dissolved Metals Exceeding Groundwater Standards,
	2022—Upper Surficial Aquifer, Dump Road Area
Figure 4-11	Concentrations of Total Metals Exceeding Groundwater Standards,
	2022—Intermediate Surficial Aquifer, Dump Road Area
Figure 4-12	Concentrations of Dissolved Metals Exceeding Groundwater Standards,
	2022—Intermediate Surficial Aquifer, Dump Road Area
Figure 4-13	Concentrations of Total and Dissolved Metals Exceeding Groundwater
	Standards, 2022—Lower Surficial and Deep Confined Aquifers, Dump
-	Road Area
Figure 4-14	Concentrations of Petroleum Hydrocarbons Exceeding Groundwater
	Standards, 2022—Upper Surficial Aquifer, Dump Road Area

TABLE OF CONTENTS (CONTINUED)

LIST OF TABLES

Table 3-1	Chemical Analyses and Laboratory Analytical Methods for Wells Sampled
	in 2022
Table 4-1	Groundwater Levels and Elevations—April 20-21, 2022
Table 4-2	Statistical Summary of Dump Road Area Groundwater Sampling
	Results—2022
Table 4-3	Detected Analytes and Screening-Criteria Exceedances for
	Groundwater Samples—2022, Dump Road Area

APPENDICES

Appendix B—Monitoring Well Purging and Sampling Records

Appendix C—Waste Disposal Documentation

Appendix D—Analytical Data Tables

Appendix E—Data-Validation Reports with Chain-of-Custody Forms

Appendix F—Full Laboratory Analytical Reports

ACRONYMS AND ABBREVIATIONS

BTEX benzene, toluene, ethylbenzene, and xylenes

CD compact disc

cis-1,2-DCE *cis*-1,2-dichloroethene

cVOCs chlorinated volatile organic compounds

DA Drum Area

DCE dichloroethene

DO dissolved oxygen

DRA Dump Road Area

DRO diesel-range organics

GRO gasoline-range organics

HAA haloacetic acid

IDW investigation-derived waste

Lockheed Martin Lockheed Martin Corporation

MAA Maryland Aviation Administration

MDANG Maryland Air National Guard

MDE Maryland Department of the Environment

μg/L microgram(s) per liter
 mL/min milliliter(s) per minute
 MSA Martin State Airport

MT Main Terminal area

NAA natural-attenuation assessment

NAVD88 North American Vertical Datum of 1988

NTU nephelometric turbidity unit
ORP oxidation-reduction potential

PCE tetrachloroethene

pCi/L picocurie(s) per liter

PHA Petroleum Hydrocarbon Area

PPE personal protective equipment

QA/QC quality assurance/quality control

REC recognized environmental condition

SVOC semivolatile organic compound

Tetra Tech, Inc.

TB trip blank

TCE trichloroethene

TDS total dissolved solids

TIC tentatively identified compound

TPH total petroleum hydrocarbon

TT Area East Taxiway Tango Area East

TT Median Area Taxiway Tango Median Area

USDOT United States Department of Transportation

USEPA United State Environmental Protection Agency

UST underground storage tank
VAS vertical aquifer sampling

VC vinyl chloride

VOC volatile organic compound

October 2022 Page vi

SECTION 1 INTRODUCTION

On behalf of Lockheed Martin Corporation (Lockheed Martin), Tetra Tech, Inc. (Tetra Tech) has prepared this annual (2022) report detailing Dump Road Area (DRA) and Main Terminal (MT) groundwater sampling and synoptic groundwater level measurements collected from wells at the Dump Road Area and Main Terminal within Martin State Airport (MSA) in Middle River, Maryland (Figure 1-1). This report summarizes groundwater sampling procedures and chemical analytical results for groundwater samples collected from May through early June 2022. The objectives of this investigation, conducted in accordance with the 2022 groundwater monitoring work plan (Tetra Tech, Inc. [Tetra Tech], 2022a), were to:

- provide a current round of groundwater data for selected monitoring wells
- better understand the nature and extent of contamination in groundwater including the effects of operating the groundwater treatment system
- evaluate time-based trends of onsite groundwater plumes
- evaluate the interaction between shallow groundwater and Frog Mortar Creek
- provide information that can be used to update the modeling of shallow groundwater flow patterns and discharge to Frog Mortar Creek
- better understand the groundwater plumes in sufficient detail to update the site conceptual model
- repair monitoring wells to preserve well integrity

These data, in conjunction with previously collected site data, support numerical modeling of shallow-groundwater flow-patterns, including those imparted by the groundwater interim remedial action (IRA) and direct groundwater discharge to Frog Mortar Creek. These data also support review of the ongoing Dump Road Area groundwater extraction and treatment system that has been operating since November 2017.

All groundwater samples were chemically analyzed for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) including 1,4-dioxane, total metals, and dissolved metals. Some groundwater samples were also analyzed for total petroleum hydrocarbons (TPH)-diesel-range organics (DRO) and gasoline-range organics (GRO), hexavalent chromium, and radium (228 and total alpha radium). This report is organized as follows:

<u>Section 2—Site Background</u>: Briefly summarizes the site background and references recent reports containing detailed background information related to the project.

<u>Section 3—Investigation Approach and Methodology</u>: Presents the technical approach for groundwater monitoring and describes the field methodology employed for the investigation.

<u>Section 4—Results</u>: Presents the investigation results.

Section 5—Summary: Summarizes the investigation findings.

<u>Section 6—References</u>: Cites references used to compile this report.

October 2022 Page 1-2

SECTION 2 SITE BACKGROUND

Page 2-1

Martin State Airport (MSA) is at 701 Wilson Point Road in Middle River, Maryland. It is bounded by Frog Mortar Creek to the east and Stansbury Creek to the west (Figure 2-1). These creeks conjoin at the southern boundary of the site and continue south to feed Middle River and Chesapeake Bay. The Dump Road Area (DRA), in the southeastern portion of MSA, is bounded by Frog Mortar Creek to the east and the main airport runway to the west. The Main Terminal (MT) area comprises approximately 280 acres in the northwestern portion of MSA, just east of Wilson Point Road and Dark Head Cove. The MT area consists of the main terminal building, aircraft hangars and fueling stations, several taxiways, and the northern portion of the runway. Figure 2-1 shows the locations of MSA, the DRA, and the MT area.

Lockheed Martin Corporation (Lockheed Martin) has conducted detailed investigations at the DRA and at the MT since 1999 and 2010, respectively. Lockheed Martin has also conducted additional investigations at Strawberry Point, Greater Strawberry Point, and Frog Mortar Creek (Figure 2-1). Investigations of these latter areas are not discussed in this report because they are being addressed under separate investigation programs.

2.1 DUMP ROAD AREA

Environmental investigations of MSA began in the mid-1980s, when the Maryland Department of the Environment (MDE) conducted site inspections related to stored drums and a reported chemical dump. In 1989, MDE conducted a preliminary assessment of MSA that identified fill areas and ponds, the latter of which were reportedly used from the 1930s through the 1960s to dispose of spent battery acid, acid-type strippers, and other acidic solutions (MDE, 1989). Detailed investigations of the DRA began after July 1991, when the Maryland Aviation Administration (MAA) encountered four buried drums adjacent to Taxiway Tango during trenching to install an electrical cable (Figure 2-2). Discovery of these drums led to investigation of the surrounding area

for possible soil and groundwater contamination, as MDE required in its letters of January 6, 1992, and January 14, 1997, to MAA (MDE, 1992; 1997).

MAA conducted several investigations of the DRA between 1991 and 1998. These studies identified four areas where subsequent environmental sampling investigations were focused: The Taxiway Tango Median Area, the Petroleum Hydrocarbon Area (PHA), Pond 1, and the Drum Area. These early investigation areas are shown in Figure 2-2.

From 1999–2010, Lockheed Martin conducted a remedial investigation (Tetra Tech, Inc., 2012c) and supplemental fieldwork to further delineate the extent of soil, groundwater, and pond-sediment chemical contamination that had been indicated by earlier DRA studies. Through geophysical surveys, membrane-interface probes, test pits, soil borings, and chemical analyses of soil and pond-sediment samples, the remedial investigation identified large areas of buried fill and debris and surface and subsurface soil contamination, in and around buried fill material and in pond sediment. The extent of buried fill and debris at the DRA was estimated to be approximately 25 acres (see Figure 2-2).

A 2012 review of historical aerial photographs (Tetra Tech, 2013b) identified and mapped what appear to be open burning areas, open pits or ponds, soil or debris piles, possible ammunition bunkers, ground scars, and fill areas (see shaded areas on Figure 2-2). Several of these historical features coincide with areas of elevated contaminant concentrations in soil and/or groundwater; these areas were later identified as possible contaminant-source areas and were subsequently investigated in 2012–2016 (Tetra Tech, 2013a, 2014a-b, 2014d, 2016, 2017, 2018, 2019b). Groundwater sampling of DRA groundwater monitoring wells has been conducted annually from 2006-2021.

Trichloroethene (TCE) (a metal degreaser) and TCE-degradation daughter-products have been detected in groundwater throughout the DRA investigation area, with the highest concentrations appearing in the upper and intermediate regions of the surficial aquifer. TCE has been detected in DRA groundwater at concentrations ranging from 0.5–490,000 micrograms per liter (μ g/L) and is therefore a primary contaminant of concern in DRA groundwater. The MDE groundwater standard for TCE is 5 μ g/L. 1,4-Dioxane, benzene, toluene, xylenes, and several metals (typically

October 2022 Page 2-2

co-located with chlorinated solvents like TCE) are also considered groundwater chemicals of concern. TCE-degradation daughter-products (e.g., dichloroethene [DCE], vinyl chloride [VC], etc.) are typically co-located with TCE at MSA and are considered primary contaminants of concern in DRA groundwater.

An interim groundwater extraction and treatment system was constructed to address groundwater impacts in 2017 and is currently operational at the DRA site. This system consists of 16 groundwater extraction wells, underground piping, and a building that houses components that capture and treat groundwater containing volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals. The wells and underground piping pump groundwater from the surficial aquifer to the aboveground treatment building, creating a "hydraulic barrier" that captures groundwater and prevents contaminants from migrating offsite. The treatment building is 60 feet wide and 170 feet long (10,200 square feet) and is near Frog Mortar Creek in the east central portion of the DRA (Figure 2-2). Treated groundwater is tested routinely and is subsequently discharged to Frog Mortar Creek via an MDE permitted outfall. Surface water data collected to date shows a significant reduction in the magnitude and extent of VOCs detected in surface water.

In 2022, one identified area of elevated concentrations of VOCs, designated Source Area 5, was the focus of a pilot study to determine the effectiveness of *in situ* bioremediation (Tetra Tech, 2022b). Field injections were completed in April-May 2022 are currently being monitored per the approved workplan (Tetra Tech, 2022c).

Additional details regarding DRA background and history, including details of previous environmental investigations and discussions of contaminant-source areas at the DRA, are in the *Dump Road Area Characterization of Possible Source Areas Report* (Tetra Tech, 2013a) and Taxiway Tango Soil Characterization Report (Tetra Tech, 2014c), and therefore are not repeated herein. A detailed chronological discussion of investigations at the DRA from 1985–2012 is provided as Appendix A of the *Dump Road Source-Areas Investigation Work Plan* (Tetra Tech, 2012a). Recent DRA groundwater sampling results are provided in annual groundwater monitoring reports (Tetra Tech, 2015, 2016b, 2017, 2019a, 2019b, and 2020a, 2021).

9062 Tetra Tech ◆ Lockheed Martin, Martin State Airport
2022 Groundwater Monitoring Report
October 2022

2.2 MAIN TERMINAL

Previous investigations directly related to the MT area include the *Environmental Evaluation Report for Martin State Airport Main Terminal* (Tetra Tech, 2010b) and its addendum (Tetra Tech, 2010a). These evaluations concentrated on environmental impacts resulting from practices carried out between 1929–1975, when the Glenn L. Martin Company and Martin Marietta owned and operated on the property. Possible areas of environmental concern in the MT area were identified through local and federal library documents, historical aerial photographs, facility records, museum records, regulatory data, environmental database reviews, interviews with former employees, and environmental reports and data.

The environmental evaluation identified nine recognized environmental conditions (RECs)¹ (RECs #1–9) in the MT area (Tetra Tech, 2010b), along with five potential RECs (RECs #10–14). The addendum report (Tetra Tech, 2010a) identified eight additional RECs (RECs #15–22) and provided supplemental details on 10 of 14 initial/possible RECs. Additional information obtained during development of the addendum report led to upgrading potential REC #14 to a full REC, because an underground storage tank (UST) had once been located there. MT area RECs (exclusive of potential RECs #10–13) are shown in Figure 2-3.

A Phase II environmental site assessment for the MT area was conducted in 2010–2012 (Tetra Tech, 2012b and 2013c). Soil and groundwater samples were collected and analyzed for possible organic and inorganic constituents. Twelve shallow-aquifer wells (MT-MW-01S through MT-MW-12S) were installed around the perimeter of the airport hangars and the airport terminal building near the identified MT area RECs. Benzene (a petroleum-related VOC) was detected in groundwater samples collected from well MT-MW02S in 2011 (50.5 micrograms per liter [μ g/L]) and 2012 (87 μ g/L); both concentrations exceed the MDE groundwater standard (5 μ g/L) for benzene.

Seven other VOCs (acetone, carbon disulfide, carbon tetrachloride, chloroform, chloromethane, naphthalene, and toluene) were detected in groundwater samples collected in 2012, but

October 2022 Page 2-4

¹Recognized environmental conditions (RECs) are based on the presence or likely presence of hazardous substances and/or petroleum products under conditions that could indicate a historical, existing, or potential release to the property's structures, soil, groundwater, or surface water.

concentrations of those analytes were below MDE groundwater standards. However, concentrations of total petroleum hydrocarbons (TPH)-gasoline-range organics (GRO), TPH-diesel-range organics (DRO), beryllium, nickel, and vanadium exceeded MDE groundwater standards in several samples. Detected concentrations of semivolatile organic compounds (SVOCs), including 1,4-dioxane, did not exceed MDE groundwater standards in the 2010–2012 samples.

Groundwater sampling of MT area monitoring wells was conducted annually from 2013-2018. Sampling is continuing every other year on even years, restricted to monitoring wells MT-MW01S and MT-MW02S, for DRO/GRO analysis only. Benzene concentrations between $10 \,\mu\text{g/L}$ and $20 \,\mu\text{g/L}$ have been detected at MT-MW02S between 2013 and 2018, but benzene has not been detected above $2 \,\mu\text{g/L}$ in any other MT well during the same time period. Monitoring wells MT-03S through MT-12S were abandoned by a Maryland licensed driller in 2020 (Tetra Tech, 2020b).

Additional details regarding the background and history of the MT area, including details of environmental investigations, REC discussions, and results of groundwater sampling, are available in several previous documents (Tetra Tech, 2010a-b, 2012b, 2013c-d, 2015, 2016b, 2017, 2018, 2019, and 2020a), and therefore are not repeated herein. Main terminal wells MT-01S and MT-02S were not sampled in 2021 but were sampled during the 2022 program.

2.3 WELL ABANDONMENT

The Maryland Department of the Environment (MDE) approved the formal abandonment of 37 monitoring wells in 2020, including 27 wells in the Dump Road Area (DRA) and 10 wells in the MT area, with work being completed late summer of 2020. Thirty-six wells were formally abandoned, as well MSA-DMW-04S. This latter well was initially proposed and approved for abandonment, but Lockheed Martin determined that this well should remain active for future groundwater monitoring, and it was therefore not abandoned. The 2020 Monitoring Well Abandonment Report, Martin State Airport (Tetra Tech, 2020b), documents field activities and submittals required for well abandonment.

October 2022 Page 2-5

SECTION 3 INVESTIGATION APPROACH AND METHODOLOGY

This section summarizes the 2022 groundwater sampling program for the Dump Road Area (DRA) and Main Terminal (MT) of Martin State Airport (MSA), performed in accordance with the approved work plan (Tetra Tech, 2022a). The 2022 investigation also included synoptic groundwater level measurements at the DRA/MT wells, and laboratory analysis of groundwater samples collected. The data collected during this investigation augments previous data obtained from the DRA and MT (between 2003 and 2021).

3.1 SYNOPTIC GROUNDWATER LEVEL MEASUREMENTS

A round of synoptic groundwater level measurements was conducted by a team of two field scientists on April 20-21, 2022. Static water levels were measured using an electronic, graduated, water-level meter. The static water level was determined by lowering the meter probe into the well until an audible tone indicated that the air/water interface had been reached. The water level relative to the top of the well casing was recorded to the nearest 0.01 foot. Groundwater level measurement sheets are provided in Appendix A.

3.2 GROUNDWATER SAMPLING

Data collected between 2017 and 2020 were evaluated in the 2021 groundwater monitoring work plan (Tetra Tech, 2021) to determine if reductions in sampled locations or analytes, while still meeting the project objectives, was appropriate. Reduction rationale included comparison of analytical data over the past four years, coupled with any detections of contaminants of concern in nearby monitoring wells, to evaluate whether previously sampled monitoring points were required. This evaluation resulted in a reduction from 95 wells in 2020, to 93 wells in 2021, and to 92 wells in 2022. Therefore, the total number of DRA wells sampled in 2022 was 92, along with the two wells sampled at MT, bringing the total number of MSA wells sampled to 94.

Groundwater samples were collected from 92 DRA wells on May 13–June 16, 2022, as part of the annual monitoring program, while the two MT wells were sampled June 10, 2022 (Figure 3-1). The four deep wells (MW-27D, MW-29D, MW-30D, and MW-31D) installed in permeable zones below the surficial aquifer of concern were also sampled as part of this investigation. Table 3-1 summarizes the groundwater sampling program. The following sections describe procedures for well purging and groundwater sampling, and describe the chemical analyses performed on the samples collected.

Well purging—Monitoring wells were purged using United States Environmental Protection Agency (USEPA) low-flow purging techniques before sample collection. Groundwater was purged using a peristaltic pump fitted with dedicated, disposable high-density polyethylene tubing, or by using a submersible pump positioned in the center of the well's saturated screen. The pumping rate during purging ranged between 100–300 milliliters per minute (mL/min) and was frequently measured using a graduated cylinder. The purge rate was adjusted to minimize groundwater drawdown from the initial static water level but was maintained at or below 300 mL/minute.

During groundwater purging, water-level drawdown, and groundwater parameters (including pH [a measure of acidity and alkalinity], temperature, specific conductance, dissolved oxygen [DO], oxidation-reduction potential [ORP], and turbidity) were measured and recorded every five to 10 minutes until purging was complete. Data were recorded in the appropriate site-specific logbook and on low-flow-purge data sheets. Water-quality parameters were measured using an inline water-quality meter. Turbidity readings were collected using a separate turbidity meter.

Purging was considered complete when one of several scenarios were encountered in the field. Depending on which condition was encountered first, purging was deemed complete either when the monitored water-quality parameters stabilized, when three saturated well-casing volumes had been removed, or when the well had been purged dry. Parameter stabilization was achieved when three consecutive readings (taken at five-minute intervals) were within ± 0.1 standard units for pH, $\pm 3\%$ for specific conductance and temperature, $\pm 10\%$ for DO and ORP, and less than 10 nephelometric turbidity units (NTUs) for turbidity. If the parameters did not stabilize after three well volumes had been removed, the condition was noted on the sampling log and the well was

sampled. If the monitoring well was purged dry, the water level in the well was allowed to recover a minimum of 80% of its initial static water level before groundwater was sampled. Most wells stabilized within one hour of purge time; well-specific purging and sampling details are recorded on the well-purging and sample-record sheets provided in Appendix B.

All purged water from DRA wells was collected in five-gallon buckets and dumped into the sump inside the MSA treatment plant building at the end of each workday. The water in that sump is periodically drained into equalization tanks connected to the groundwater treatment system, along with water obtained from the extraction wells feeding the plant. Purged water from the two MT wells were collected in five-gallon buckets and placed in one 55-gallon steel drum located on the approved secondary containment area located at Greater Strawberry Point. Waste documentation is in Appendix C.

Sample collection—Monitoring wells were sampled after purging using the same dedicated tubing or submersible pump that had been used during purging. Groundwater samples were collected using low-flow sampling protocols at the same pumping rate that had been used during well purging. Groundwater was pumped directly into the appropriate sample containers (for all VOC samples), or into a certified-clean disposable container supplied by the laboratory that was then used to pour the collected water directly into the appropriate sample containers. Samples for dissolved metals and hexavalent chromium analyses were filtered with a 0.45-micron filter and collected into the appropriate sample containers.

3.3 LABORATORY ANALYSES

Groundwater samples were collected and analyzed by an off-site laboratory using the following methods (see Table 3-1 for details):

- VOCs plus tentatively identified compounds (TICs), Freon 22 (dichlorodifluoromethane), and Freon 113 (1,1,2-trichlorotrifluoroethane) by USEPA Method 8260C— (84 wells)
- 1,4-dioxane by USEPA Method 8270C SIM— (84 wells)
- hexavalent chromium by USEPA Method 218.6— (33 wells)
- total and dissolved priority pollutant metals by USEPA Method 6020B— (86 wells)

- mercury by SW846 Method 7470A— (86 wells)
- total petroleum hydrocarbons (TPH)

 gasoline-range organics (GROs) and diesel-range organics (DROs) by SW846 Method 8015B

 (35 shallow wells screened in the upper surficial-aquifer)
- radium-228 and total alpha radium by USEPA 900-series methods— (7 wells in the upper, intermediate, and lower surficial-aquifers)

Wells selected for sampling and chemical analyses were based on current data needs for the treatment system monitoring, past sampling results, and optimization of data collection. Radium-228 and total alpha radium were sampled at seven locations across all aquifer levels to determine site concentrations of these "emerging contaminants" in groundwater. Radium samples were collected from 7 groundwater-monitoring wells in the DRA. Samples for TPH-GRO and TPH-DRO analyses were only collected from wells in the upper surficial-aquifer (except for intermediate well MW-34I, which was collected in error), because petroleum-related constituents are less dense than water and are typically found at or near the water table.

Hexavalent chromium was analyzed using USEPA Method 218.6 (ion chromatography), with a specified detection limit of 0.005 μ g/L, a value lower than the method's published detection limit (0.10 μ g/L).

One trip blank per cooler of VOC samples was collected per day for quality assurance/quality control (QA/QC) purposes. Matrix-spike and matrix-spike-duplicate samples were collected on a 1:20 basis. Chemical results for this sampling event are discussed in Section 4. A table listing chemical results for all samples is in Appendix D.

3.4 DOCUMENTATION

A master site logbook was maintained by the field sampling team as an overall record of field activities. Sample documentation consisted of completed chain-of-custody reports and matrix-specific sample-log sheets. The chain-of-custody report is an individual laboratory-supplied standardized form summarizing and documenting pertinent sample information, such as sample

October 2022 Page 3-4

²Emerging contaminants are chemicals not commonly monitored by regulatory agencies, but which have recently been identified by USEPA or MDE as contaminants that pose possible environmental or public health risk if present in drinking water supplies or groundwater.

identification and type, matrix, date and time of collection, preservation, and requested analyses. Sample custody procedures document sample acquisition and integrity. Chain-of-custody reports are with the data-validation reports in Appendix E, and full laboratory analytical reports are in Appendix F.

3.5 **EQUIPMENT DECONTAMINATION**

Reusable equipment (e.g., water-level meter) was decontaminated before and after each use. Small, reusable equipment was decontaminated as follows:

- Liquinox[®] and potable-water wash
- potable-water rinse
- distilled-water rinse
- air drying
- collecting decontamination solutions for disposal

Decontamination rinsate was first containerized in a five-gallon bucket and then transferred to the sump inside the MSA groundwater treatment plant. Decontamination water from the Main Terminal wells was collected and placed with the purge water generated from the MT wells. Dedicated and/or disposable equipment used for groundwater purging and sampling did not require decontamination.

3.6 WASTE MANAGEMENT

Investigation-derived waste (IDW) consisting of decontamination-rinsate water, monitoring well purge water, disposable sampling equipment, and personal protective equipment (PPE) was generated during groundwater sampling. PPE was brushed off, placed in trash bags, and disposed of in a designated facility trash receptacle. Disposable equipment was also rinsed off and disposed of in a facility-approved trash receptacle. Well purge-water and decontamination fluids from the DRA wells were collected in five-gallon buckets with secondary containment and transferred to the MSA groundwater treatment plant sump at the end of each workday; 296 gallons of purge water were generated and dumped into the plant sump over the duration of the investigation. Purge water from the Main Terminal wells was containerized in one 55-gallon steel drum, characterized

per the most current waste management plan (Tetra Tech, 2022d), profiled as nonhazardous, and removed from the site via Clean Harbors to a Lockheed Martin approved disposal facility. The one drum of MT water was removed from the site on August 19, 2022, to be disposed of at the El Dorado, AR Clean Harbors facility. Waste documentation is included in Appendix C. At the writing of this report, the final manifest and certificate of destruction are not yet available.

3.7 GENERAL SAMPLING PROCEDURES, NOMENCLATURE, AND HANDLING

Each sample received a unique sample identification consisting of the site location, well number, and six-digit sampling date. For example, a groundwater sample collected on June 6, 2022, from monitoring well MSA-MW-06 was labeled MSA-MW-06-060322. Trip blanks were labeled with a "TB" prefix, followed by the blank's six-digit submittal date (e.g., TB-060322). Field-related sample-handling considerations include selection of sample containers, preservatives, allowable holding times, and requested analyses.

Proper chain-of-custody procedures were followed throughout all phases of sample collection and handling. Empty sample containers were released under signature from the laboratory and accepted under signature by the sampler or other individual responsible for maintaining custody until the sample containers were transferred to the sampling team. Groundwater samples were collected in these containers, released under signature from the sampling team, and then accepted under signature by the laboratory. Transport containers returning to the laboratory were sealed with strapping tape and a tamper-resistant custody seal. The custody seal shows the signature of the individual releasing the transport container, along with the date and time.

3.8 DATA VALIDATION

Data validation involves having an independent (non-laboratory) party review data provided by the laboratory to ensure that specific criteria have been met. These criteria concern specifications that are not sample dependent; they specify performance requirements that should be fully under a laboratory's control. For data analyses of organic chemicals, specific validation areas include blanks, performance-evaluation standard materials, and instrument performance checks. For data analyses involving inorganic chemicals like metals, specific validation areas include blanks,

October 2022 Page 3-6

calibration standards, calibration verification standards, laboratory control standards, and interference check standards. The analytical laboratory supplies the chemical data as hard-copy reports and electronic databases.

Once the investigation was complete, chemical data were validated by Tetra Tech, Inc. (Tetra Tech) in accordance with established USEPA protocols to assess the reliability and accuracy of the data. This review was based on the USEPA *National Functional Guidelines for Organic Superfund Methods Data Review* (USEPA, 2017a), the *National Functional Guidelines for Inorganic Superfund Methods Data Review* (USEPA, 2017b), and the specifics of the analytical method used. Data validation reports are in Appendix E.

Validation of these data concluded that they are acceptable for their intended uses (i.e., risk screening and risk assessment), except for data qualified as unreliable (UR flags). The data qualifiers (i.e., flags) applied to the chemical results during data validation are listed below:

- J The analyte is considered present in the sample, but the value is estimated and may not meet highest accuracy or precision standards. In this program, samples were also qualified with "J" because quantitation was above the method detection limit but below the laboratory reporting-limit.
- *J* The result is an estimated quantity, but the result may be biased low.
- NJ The analyte has been tentatively identified. This qualifier indicates presumptive evidence of a compound. Special methods may be required to confirm its presence or absence in future sampling efforts.
- U Not detected; the analyte was not detected at the reported value.
- UJ The analyte was not detected. However, the quantitation or detection limit may be inaccurate or imprecise.
- UR The non-detect result is considered qualitatively or quantitatively unreliable.

All data qualifiers are noted in Appendices D, E, and F.

October 2022 Page 3-7

SECTION 4 RESULTS

This section presents groundwater-elevation data and chemical analysis results for wells in the Dump Road Area (DRA) and Main Terminal (MT) of Martin State Airport (MSA) between May and June 2022. These groundwater results are compared against current Maryland Department of the Environment (MDE) groundwater standards (MDE, 2018) and other pertinent federal/state standards/criteria (if MDE has not established standards for an analyzed chemical).

At present, MDE has not established an advisory level or standard for 1,4-dioxane in drinking water or groundwater. Several states (e.g., California, Colorado, Connecticut, Florida, Maine, Massachusetts, Michigan, and North Carolina) have established drinking water standards or action levels for 1,4-dioxane. These values range from the Massachusetts Office of Research and Standards guideline of 0.3 micrograms per liter (μg/L) to Michigan's residential drinking water criterion of 7.2 μg/L (Massachusetts Department of Environmental Protection, 2015, and Michigan Administrative Code R299.44 [Table 1-Groundwater: Residential and Nonresidential], 2017, respectively). USEPA has published a preliminary remedial goal of 6.1 μg/L for 1,4-dioxane in tap water (USEPA, 2006) and a risk-based regional screening-level of 0.46 μg/L for tap water (USEPA, 2017c); the latter risk-based value (0.46 μg/L) is used as the comparison criterion to evaluate 1,4-dioxane groundwater concentrations in this report.

Groundwater samples were collected for chemical analyses from 92 DRA monitoring wells and two MT wells over a period of six weeks (May 13–June 16, 2022). Groundwater levels were measured on April 20-21, 2022.

Note that since all groundwater well designations at the DRA contain the same "MSA" prefix, this prefix is omitted in the following discussions to increase readability. In addition, qualifying flags (e.g., *J*) associated with analyte concentrations are omitted to increase readability. However, these data validation flags are shown on applicable Section 4 tables and figures.

October 2022 Page 4-1

4.1 GROUNDWATER LEVEL DATA

Table 4-1 lists the April 2022 static groundwater depth measurements (feet below ground surface) and groundwater elevations (feet relative to mean sea level) for sampled MSA wells. Figures 4-1 through 4-3 illustrate the groundwater-elevation contours for the upper, intermediate, and lower surficial aquifer zones (respectively) at the DRA. Overall, the airport runway and taxiway appear to form a groundwater divide across the site that is likely a result of their higher ground surface elevation. East of the taxiway, groundwater generally flows to the south and southeast, towards Frog Mortar Creek. Localized groundwater patterns are altered and influenced by zones of enhanced groundwater recharge (the ponds) and enhanced groundwater discharge (the extraction wells). The groundwater extraction wells are included on the contour figures, but their water elevations were not used for the contour interpretations because of the likely loss of hydraulic head within these wells that is typically associated with well efficiency.

The groundwater contours and interpreted groundwater flow patterns for the upper surficial aquifer are illustrated on Figure 4-1. A groundwater high is located near Pond 1 and Pond 2, where the lithology consists of clay-rich and less-permeable sediments near the ground surface that result in lower rates of subsurface infiltration and the creation of a groundwater mound with local radial flow away from the mound. The groundwater mound becomes an elongated ridge (or local groundwater divide) downgradient of the ponds to the south and southeast. This mounding also exists in the intermediate (Figure 4-2) and lower (Figure 4-3) surficial aquifers, suggesting that all three zones are in hydraulic communication and function as a common aquifer.

The effects of groundwater extraction from the upper surficial aquifer are evident along the shoreline of Frog Mortar Creek and are also illustrated by the formation of two generalized cones of depression that lower the groundwater to an elevation below mean sea level. East of the elongated groundwater ridge caused by the ponds, most groundwater eventually flows into these cones of depression and is captured by the extraction wells. The drawdown cone east of Pond 2 is created by extraction wells EW-01S, EW-03S, and EW-05S, and is well defined and marked by a steep hydraulic gradient.

As stated above, groundwater contours and interpreted groundwater flow patterns for the intermediate and lower surficial aquifer are illustrated on Figures 4-2 and 4-3, respectively. The

9062 Tetra Tech • Lockheed Martin, Martin State Airport

flow patterns within these intervals are generally similar to that of the upper surficial aquifer, including the formation of the groundwater ridge caused by the ponds and the cones of depression caused by the extraction wells. Overall, the hydraulic gradients appear lower in the intermediate and lower surficial aquifers, which may be related to the higher hydraulic conductivity of sediments in these zones.

4.2 **GROUNDWATER-CHEMICAL DATA**

Groundwater samples were collected from the DRA wells to evaluate and confirm the horizontal and vertical extent of groundwater contamination at the DRA and to evaluate any changes in groundwater conditions in the groundwater treatment system flow field. Validated groundwaterchemical data were used to generate a statistical summary table (Table 4-2) and a data summary table (Table 4-3) that list only detected analytes.

Table 4-3 lists positive detections (or "hits") generated from these data. Gray shading in Table 4-3 indicates results that exceed analyte-specific screening criteria (MDE groundwater standards or the Massachusetts advisory level for 1,4-dioxane). Table D-1 in Appendix D summarizes results for both detects and nondetects but does not list screening criteria. Data-validation reports and chain-of-custody forms are in Appendix E, and full analytical reports are in Appendix F. Results of the groundwater-chemical analyses for the DRA are below.

4.2.1 **Volatile Organic Compounds**

Several volatile organic compounds (VOCs) were detected in groundwater (Table 4-2) during this sampling event. cis-1,2-Dichloroethene (cis-1,2-DCE), trichloroethene (TCE), and vinyl chloride (VC) are the most frequently detected constituents. These chlorinated VOCs (cVOCs) were detected in approximately 76%, 67%, and 64% of the samples collected, respectively (Table 4-2). The maximum detected concentrations of TCE (20,000 µg/L at MW-54I), cis-1,2-DCE (23,000 µg/L at MW-54S), and VC (6,800 µg/L at DMW-11S;) are several orders of magnitude (i.e., powers of 10) greater than their groundwater standards (5 µg/L, 70 µg/L, and 2 µg/L, respectively).

Petroleum-related VOCs (e.g., benzene, toluene, ethylbenzene, and xylenes [BTEX]) were detected less frequently, ranging from 5% of samples for ethylbenzene to 20% of samples for benzene. In general, the maximum BTEX concentrations are lower as compared to concentrations of the three most frequently detected cVOCs, e.g., the maximum BTEX concentration was for toluene (6,900 μ g/L in MW-54S).

Chlorinated VOCs exceeding groundwater standards in the upper, intermediate, and lower surficial-aquifer zones are shown in Figures 4-4, 4-5, and 4-6, respectively. The results for the current round are similar to those of previous groundwater sampling rounds. The lateral and vertical distributions of cVOCs in groundwater confirm that several source areas contribute to groundwater contamination at the site (Figures 4-4 through 4-6). These areas include the Taxiway Tango Median Area (TT Median Area; Source Area 5), the Petroleum Hydrocarbon Area (PHA; Source Area 2), Taxiway Tango Area East (TT Area East; Source Area 7), former Pond 3 (Source Area 6), the Drum Area (DA; Source Area 8), and the area east of Pond 1; see Figure 2-2 for the locations of these areas.

Taxiway Tango Median Area—The TT Median Area is in the western portion of the DRA near wells MW-54S/I and DMW-11S (Figures 4-4 through 4-6; Tables 4-2 and 4-3). Historically, DMW-11S had contained the highest concentrations of cVOCs in this area (up to 52,000 µg/L for TCE, and up to 53,000 µg/L for cis-1,2-DCE in 2004). Wells MW-54S/I were installed northeast of wells DMW-11S/I, in an area where elevated cVOC concentrations had been detected in the upper and intermediate surficial-aquifer zones during vertical aquifer-sampling (VAS) in 2013, and recent sampling has indicated that these wells (MW-54S/I) now have the highest concentrations in the TT Median Area. Injections for in situ bioremediation of groundwater in the Taxiway Tango Median Area (Source Area 5) were completed in April-May 2022 per the *Dump* Road Area - Source Area 5 In Situ Bioremediation Remedial Action Work Plan (Tetra Tech, 2022b). Source Area 5 comprises approximately 8,800 square feet, and the depth interval of contaminated groundwater is generally between 10 to 30 feet below ground surface. The goal is to reduce the TCE concentration in Source Area 5 to less than 50,000 µg/L cleanup level. A baseline sampling event was conducted in March 2022. DMW-11S/I and MW-54S/I were also sampled during the annual sampling event (in June 2022). The wells included in the Dump Road Area -Source Area 5 In Situ Bioremediation Sampling Plan (Tetra Tech, 2022c) include semi-annual and annual monitoring for five years after the injections. The first semiannual event post-injection is slated for October 2022. Annual groundwater results are summarized below.

The TCE concentration in groundwater samples collected from MW-54S in 2022 (12,000 µg/L) is much less than that detected in the same well last year (50,000 µg/L in 2021), but at deeper well MW-54I, in which TCE was detected at 20,000 µg/L in 2022, TCE had increased slightly from its 2021 value of 19,000 μg/L. Higher TCE concentrations were detected in the upper aquifer at wells DMW-11S and DMW-11I (1,400 µg/L and 61 µg/L, respectively) in 2022. Note that the TCE concentrations detected in 2022 are lower than previous maximum concentrations for TCE in this area (referenced above for 2004). The MDE groundwater standard for TCE is 5 μg/L.

In monitoring wells MW-54S and MW-54I, concentrations of carbon tetrachloride (950 µg/L and $7,200 \mu g/L$), chloroform (1,300 $\mu g/L$ and 1,700 $\mu g/L$), toluene (6,900 $\mu g/L$ and 1,700 $\mu g/L$), cis-1,2-DCE (23,000 μ g/L and 5,200 μ g/L), and VC (6,400 μ g/L [with a nondetect in the intermediate well in 2022]) also exceed their respective MDE groundwater standards. Tetrachloroethene (PCE) and trans-1,2-DCE were both nondetect in wells MW-54I and MW-54S. Exceedances were also observed at DMW-11S and DMW-11I (respectively) for cis-1,2-DCE (7,200 μg/L and 340 μg/L) and VC (6,800 μg/L and 110 μg/L). Carbon tetrachloride, chloroform, toluene, cis-1,2-DCE, and VC have MDE groundwater standards of 5 μg/L, 80 μg/L, 1,000 μg/L, 70 μ g/L, and 2 μ g/L, respectively.

From 2004–2010, TCE concentrations at DMW-11S ranged from 29,000 µg/L to 52,000 µg/L, but concentrations had declined sharply since 2011, to a low of 1,500 µg/L in 2019. However, the TCE concentration (58,000 µg/L) detected at DMW-11S in 2020 is the maximum in this area thus far. Recent data for MW-54S/I, and lower TCE concentrations at DMW-11S/I in 2021, appear to indicate that TCE at DMW-11S has migrated downgradient to MW-54S/I; however, MW-54S/I may simply be an extension of the TCE-source area at the TT Median Area. An elevated TCE concentration (260,000 micrograms per kilogram) was detected in a shallow soil sample (at 6-8 feet below ground surface) when MW-54S/I was installed, suggesting that elevated TCE concentrations detected in this area are an extension of the TT Median Area source area (Tetra Tech, 2014d).

Petroleum Hydrocarbon Area—This area is in the central portion of the site (Figure 2-2) near well DMW-09 and Pond 1 (Figures 4-4 through 4-6). Wells DMW-09D and DMW-09I, with five and seven VOC exceedances, respectively, have the highest number of VOC exceedances among PHA wells (see Figures 4-4 through 4-6, and Table 4-3). At DMW-09D, TCE (4,000 μ g/L), cis-1,2-DCE (680 μ g/L) and VC (78 μ g/L) were approximately 800 times, 10 times and 39 times above their respective criteria (5 μ g/L, 70 μ g/L, and 2 μ g/L). At DMW-09I, TCE (1,800 μ g/L), cis-1,2-DCE (1,400 μ g/L), and VC (550 μ g/L) were approximately 360 times, 20 times, and 275 times above their respective criteria. Groundwater sampled from MW-20S, near DMW-09 and Pond 1, also contained a VC exceedance (5 μ g/L) but TCE was below its criterion with a concentration of 2.5 μ g/L.

The benzene concentration at DMW-09S (97 μ g/L) is the highest detected during this groundwater monitoring round (Table 4-2 and Figure 4-7); this concentration is nearly 20 times higher than its groundwater standard (5 μ g/L). Another well (MW-16S) in this area with a benzene exceedance (6.6 μ g/L) is hydraulically downgradient of DMW-09S (Figure 4-1). TCE exceedances (1,800 μ g/L, and 4,000 μ g/L) were detected in respective intermediate (DMW-09I), and lower (DMW-09D) surficial aquifer wells at the DMW-09 location, but TCE was not detected there in the shallow aquifer (at DMW-09S) in 2022. The groundwater sample from monitoring well DMW-09S also exhibited an elevated concentration of 1,2,4-trimethylbenzene (31 μ g/L) which has a screening level of 5.6 μ g/L.

TT Area East—This area is in the central portion of the DRA; wells sampled in this area in 2022 include wells MW-45S and MW-41S/I. Historical aerial photographs indicate that an open burning area and a pond/pit formerly occupied this area. Groundwater from well MW-45S, installed in the apparent TCE source-area at TT Area East, had exceedances of 1,2-dichloroethane (1,2-DCA) [61 μg/L], TCE (2,700 μg/L), VC (1,600 μg/L), and cis-1,2-DCE (2,100 μg/L), and a total cVOC concentration of 6,720 μg/L. Lower concentrations and exceedances for the same four analytes (1,2-DCA, TCE, cis-1,2-DCE, and VC) were also detected in MW-41S/I. In addition, benzene exceedances (32 μg/L and 34 μg/L) of its screening criterion (5 μg/L) were detected at respective wells MW-41S and MW-41, as well as an exceedance of chlorobenzene (580 μg/L), which has a groundwater screening level of 100 μg/L, at MW-41I. Chlorobenzene (91 μg/L) at MW-41S was detected below its screening criterion.

Former Pond 3—This area is in the central portion of the DRA, south of Pond 1 (Figure 2-2), at wells MW-53S/I. Wells MW-53S and MW-53I were installed in the former Pond 3 area, where

elevated concentrations of cVOCs were detected in the upper and intermediate surficial-aquifer zones during VAS in 2013. The TCE concentration detected in the upper surficial aquifer at MW-53S (1.8 μ g/L) in 2022 is slightly less than detected in 2021 (2.6 μ g/L), but the equal to or higher than those detected in 2020 (1.8 μ g/L), 2019 (1.4 μ g/L), and 2018 (1.8 μ g/L). The TCE concentration (6,000 μ g/L) detected at MW-53I in 2022 exceeds the screening level (5 μ g/L) and is generally consistent with concentrations detected in previous annual sampling rounds (4,500 μ g/L, 5,100 μ g/L, 6,100 μ g/L, and 5,600 μ g/L in 2021, 2020, 2019, and 2018, respectively). Groundwater concentrations of TCE in 2022 are much lower than the range of previously detected TCE concentrations (3,600–490,000 μ g/L, during the 2013 VAS) at similar depths. Vinyl chloride was detected at concentrations above its screening criteria (2 μ g/L) at both MW-53S (6.8 μ g/L) and MW-53I (4,300 μ g/L).

Drum Area—This area is in the southern portion of the site between wells MW-02/MW-19, MW-05/DMW-07, and MW-40S/I. It extends downgradient and to the east at wells DMW-04, DMW-05, and well clusters MW-50S/I/D, and MW-51S/I/D. The highest VOC concentrations in this area are in the upper surficial aquifer near wells DMW-07S, MW-40S, and DMW-05S; one or more of the three primary cVOCs (TCE, *cis*-1,2-DCE, and VC) exceed their respective groundwater standards in these wells (see Figures 4-4 through 4-6 and Table 4-3). The highest total cVOC concentrations (33,400 μg/L in 2007) in this area were generally detected at well DMW-07S. Concentrations of TCE (1,400 μg/L), *cis*-1,2-DCE (8,400 μg/L), and VC (2,100 μg/L) at DMW-07S in this round (2022) total 11,900 μg/L; all are exceedances of their respective MDE groundwater standards (5 μg/L, 70 μg/L, and 2 μg/L).

Area east of Pond 1—This area is in the northeastern portion of the site between Pond 1 and Frog Mortar Creek. The highest cVOC concentrations are generally near Frog Mortar Creek (Figures 4-4 through 4-6). In 2022, the TCE concentrations at wells MW-52I (930 μg/L) and MW-52D (3,700 μg/L) were lower than last year (4,800 μg/L and 7,300 μg/L, respectively), and generally consistent with levels detected in these wells over several years (2014 through 2020). This area is east of a wetland and a former pond or pit observed in historical photographs and appears to be at the lowest drainage point behind the berm that was constructed when the former Limehouse Cove was filled.

October 2022 Page 4-7

Groundwater concentrations of TCE, VC, and *cis*-1,2-DCE were above respective screening criteria at wells MW-52I/D, MW-46I/D, and MW-47I/D, although concentrations of *cis*-1,2-DCE at wells MW-46D and MW-47S/I were below the screening value. (Note that any results for shown for both intermediate (I) and deep (D) wells on [intermediate aquifer] Figure 4-5 are included because the "deep" wells at these locations are also screened in the intermediate aquifer; refer to Table 4-3 for well-specific aquifer locations.) Previously detected cVOC concentrations (2015–2021) in this area were more than 100 times their respective MDE groundwater standards. These concentrations (at the area east of Pond 1) suggest that high cVOC concentrations extend north of the area currently being monitored at the DRA. Additional wells in this area with notable concentrations of cVOCs greater than screening levels were DMW-03S (with *cis*-1,2-DCE [980 µg/L] and VC [3,600 µg/L] concentrations 14 times and 1,800 times their standards, respectively) and DMW-03I (with *cis*-1,2-DCE [440 µg/L], TCE [560 µg/L], and VC [240 µg/L] concentrations ranging from six times (*cis*-1,2-DCE) to as much as 120 times (VC) higher than their respective standards [70 µg/L and 2 µg/L]).

Taxiway Tango Area North—TCE and cis-1,2-DCE exceeded their groundwater standards (5 μg/L and 70 μg/L) at several intermediate wells north and west of Pond 2 (Figures 4-4 and 4-5). TCE exceedances of 2,500 μg/L and 1,600 μg/L were reported north of the pond in wells MW-16I and MW-17I (respectively); cis-1,2-DCE exceedances of 480 μg/L and 270 μg/L (respectively) were also detected in these wells, as was an exceedance of VC (33 μg/L) at MW-16I. An exceedance of VC (97 μg/L) was also detected north of the pond (and north of MW-16I and MW-17I) at MW-34I. Exceedances west of the pond include well MW-42I, with respective TCE, cis-1,2-DCE, and VC concentrations of 75 μg/L, 990 μg/L, and 210 μg/L. These exceedances suggest that the groundwater-contaminant plume extends northwest of wells DMW-09S/I/D.

Shoreline wells—Wells MW-46S/I/D through MW-52S/I/D form a northwest–southeast trending line on the embankment along the Frog Mortar Creek shoreline. TCE exceedances in shoreline wells range from 24 μ g/L (MW-50D) to 3,700 μ g/L (MW-52D), with an average concentration (detects only) of approximately 480 μ g/L. TCE concentrations above the MDE groundwater standard were detected in two-thirds (14 wells) of the 21 shoreline monitoring wells, with one-fifth (five wells) of these wells having TCE concentrations two orders of magnitude (or 100 times) higher than the MDE groundwater standard (5 μ g/L). These TCE concentrations are similar to

those detected in shoreline wells in 2016-2021. Over the last nine annual monitoring events (from 2013 to 2021), TCE concentrations in some surficial-aquifer wells along the shoreline have fluctuated, as indicated by the TCE concentrations detected at well MW-51S over time:

- $2013 13,000 \,\mu g/L$
- $2014 730 \,\mu\text{g/L}$
- $2015 250 \,\mu g/L$
- $2016 160 \,\mu g/L$
- $2017 5{,}500 \,\mu\text{g/L}$
- $2018 4{,}300 \,\mu\text{g/L}$
- $2019 56 \mu g/L$
- $2020 24 \mu g/L$
- $2021 23 \mu g/L$
- $2022 59 \,\mu g/L$

The concentrations of TCE daughter products *cis*-1,2-DCE and VC trending over time appear proportional to those of TCE. These trends likely reflect the containment achieved after startup of the groundwater treatment system.

Deep confined-aquifer wells—VOCs were not detected in the three wells (MW-27D, MW-29D, and MW-30D) sampled in the deep confined aquifer.

Natural-attenuation assessment parameters and haloacetic acids—No groundwater samples were collected for natural-attenuation assessment (NAA) parameters or haloacetic acids (HAA) in 2020, 2021, or 2022, as these analyses have been removed from the sampling program. Historical results for NAA and HAA are included in previous annual monitoring reports.

4.2.2 1,4-Dioxane

In general, 1,4-dioxane levels in high cVOC-concentration areas have decreased from initial sampling in 2009 to 2022 but tend to fluctuate over time. 1,4-Dioxane was detected in 49% of groundwater samples collected in 2022 (Table 4-2 and Figure 4-8), less than the 61% detected in 2021, with 2022 concentrations ranging from 1 μ g/L (MW-48I) to 450 μ g/L (MW-45S). The average of the detected 1,4-dioxane concentrations is 48.85 μ g/L. 1,4-Dioxane exceeded its United

States Environmental Protection Agency (USEPA) 1×10^{-6} regional screening level criterion (0.46 µg/L) in all samples in which it was detected (41 of 84 samples). Higher concentrations occur primarily in the upper and intermediate surficial-aquifer zones, in wells east of Pond 1 (DMW-03S [170 µg/L], and MW-52S/I [69 µg/L and 29 µg/L, respectively]). Elevated 1,4-dioxane concentrations are also present in the TT Area East (MW-45S and DMW-09I [450 µg/L and 100 µg/L, respectively]) and the area downgradient (MW-53S/I [75 µg/L and 140 µg/L, respectively]). The highest concentration of 1,4-dioxane throughout the site (450 µg/L) was detected in the TT Area East at MW-45S.

An elevated 1,4-dioxane concentration (130 μ g/L) was also reported for MW-16S, north of the PHA. Substantially lower concentrations of 1,4-dioxane are reported for wells at the Drum Area plume (the highest concentration in the area was 18 μ g/L [DMW-07S]). 1,4-Dioxane was not detected in the deep confined-aquifer groundwater samples (i.e., MW-27D, MW-29D, and MW-30D).

4.2.3 Metals

Tables 4-2 and 4-3 summarize descriptive statistics and detections, respectively, of total metals (unfiltered groundwater samples) and dissolved metals (filtered groundwater samples) in DRA monitoring wells. Metal concentrations that exceed MDE groundwater standards are listed in Table 4-3 and shown on Figures 4-9 through 4-13. Eight total metals and seven dissolved metals were detected at concentrations exceeding groundwater standards in one or more groundwater samples collected in 2022.

As shown in Table 4-3, the maximum concentrations of cadmium, chromium, and nickel exceed standards by more than one order of magnitude in both the total and dissolved metals fractions. Maximum concentrations of arsenic in both the total and dissolved metals fractions (both 19 µg/L detected at MW-14I) are nearly twice its standard of 10 µg/L. Wells DMW-03 and MW-45S appears to be installed in the respective cadmium and chromium source-areas. Total cadmium concentrations at MW-45S and DMW-03I during this round (81 µg/L and 800 µg/L, respectively) are typically several times higher than their historical concentrations were in nearby wells DMW-01A and DMW-01B. Note that wells DMW-01A/B have not been sampled since 2019.

Maximum concentrations of total and dissolved nickel (880 μ g/L and 850 μ g/L, respectively) were detected in well MW-24S, southwest of Taxiway Tango in the grassy area between Taxiway Tango and the airport runway. Maximum concentrations of total and dissolved zinc (1,900 μ g/L and 2,800 μ g/L, respectively) were also detected at MW-24S, with exceedances also detected at MW-41S (720 μ g/L, dissolved and total), MW-45S (830 μ g/L, dissolved and total), and at MW-54I (1000 μ g/L and 920 μ g/L) for total and dissolved zinc (respectively).

Hexavalent chromium was detected in 11 of 32 samples in which it was analyzed, at concentrations ranging from 0.013 μ g/L to 0.44 μ g/L (note that the sample collected at DMW-06S was rejected, so the total number of samples successfully analyzed for hexavalent chromium was 32). Six detections exceeded the MDE screening criteria of 0.035 μ g/L; exceedances ranged from 0.065 μ g/L (MW-14D) to 0.44 μ g/L (MW-15D). Most (i.e., four of six) exceedances of hexavalent chromium were detected in wells screened in the lower surficial aquifer or the deep confined aquifer. All other metals detected in groundwater samples collected from the deep confined-aquifer wells (i.e., in wells MW-27D, MW-29D, MW-30D, and MW-31D) were below their respective available groundwater criteria.

4.2.4 Petroleum Hydrocarbons

Thirty-seven samples from the DRA upper surficial-aquifer and one samples from the intermediate surficial-aquifer (MW-34I) were submitted for total petroleum hydrocarbons (TPH)-diesel-range organics (DRO) and TPH-gasoline-range organics (GRO) analysis (Table 3-1). As shown in Table 4-2, sitewide TPH-DRO were detected in 55% of the groundwater samples collected in 2022, at concentrations ranging from 230 μ g/L to 320,000 μ g/L, whereas TPH-GRO were detected in 39% of groundwater samples, at concentrations ranging from 54 μ g/L to 29,000 μ g/L. TPH-DRO and TPH-GRO exceedances of the groundwater standard (47 μ g/L for both) are in Figure 4-14. The average detected concentration of TPH-DRO is 16,130 μ g/L; the highest concentration reported is for well MW-54S. The average detected concentration of TPH-GRO is approximately 3,789 μ g/L, with the highest concentration reported for 2022 also at well MW-54S. The previous highest detection of TPH-DRO at MW-54S was 3,800 μ g/L in 2017; the concentration detected in 2022 (320,000 μ g/L) is approximately two orders of magnitude greater. TPH-GRO has been detected on numerous occasions above its 2022 detection (29,000 μ g/L), including 94,000

October 2022 Page 4-11

 μ g/L (2018), 67,000 μ g/L (2017), and 65,000 μ g/L (2019). The 2022 sample log sheet for MW-54S (Appendix B) reports a high turbidity (1,000 NTU) at the time of sampling, which most likely influenced the detected concentrations in this well.

One sample from the intermediate aquifer (MW-34I) was erroneously submitted to the laboratory for TPH-DRO and GRO analysis. TPH-GRO was detected at 77 μ g/L, a concentration higher than the groundwater standard of 47 μ g/L. TPH-DRO was not detected. Given these results, analyte characteristics, and site history, continued monitoring for TPH-DRO and GRO in the intermediate aquifer is not warranted.

Two samples from Main Terminal (MT) were submitted for TPH-DRO/GRO analysis. TPH-GRO was detected in MT-MW-02S at a concentration of 1,700 μ g/L but was not detected in MT-MW-01S. TPH-DRO was detected at both wells, with detected concentrations of 470 μ g/L (MT-MW-01S) and 7,400 μ g/L (MT-MW-02S). The detected concentrations exceeded the groundwater standard of 47 μ g/L.

4.2.5 Radium-228 and Total Alpha Radium

As shown in Table 4-2, radium-228 was detected in six of seven samples, while total alpha radium was detected in five of seven groundwater samples. Radium-228 concentrations range from 0.667 picocuries per liter (pCi/L) to 17.7 pCi/L. The average detected radium-228 concentration is 7.28 pCi/L, with the highest radium-228 concentration reported at well DMW-06I, screened in the intermediate surficial aquifer in the southeastern portion of the DRA. The radium-228 concentration at DMW-03I (14.1 pCi/L), east of Pond 1, also exceeded its groundwater standard (5 pCi/L), as did the concentration at DMW-06D (8.6 pCi/L). Total alpha radium was detected above the groundwater standard (5 pCi/L) at DMW-6I and was detected just under the standard at DMW-3I (4.87 pCi/L). All other concentrations of total alpha radium are less than the groundwater standard (5 pCi/L).

October 2022 Page 4-12

SECTION 5 SUMMARY

This section summarizes the findings of the 2022 groundwater sampling and analysis program for the Dump Road Area (DRA) and Main Terminal (MT) of Martin State Airport (MSA), including groundwater flow directions in the Dump Road Area.

- The airport runway and taxiway are at higher ground surface elevations that form a site-wide groundwater divide. East of the taxiway, groundwater generally flows to the south and southeast, towards Frog Mortar Creek.
- The groundwater flow patterns at the Dump Road Area are locally influenced by zones of enhanced groundwater recharge (the ponds) and enhanced groundwater discharge (the extraction. The groundwater interim remedial action extraction and treatment system in the Dump Road Area started operation in November 2017 and has operated continuously with only a few inactive periods. The extraction wells create cones of depression along the western shore of Frog Mortar Creek, and the groundwater east of the groundwater ridge flows towards the 16 extraction wells.
- Concentrations of chlorinated volatile organic compounds (cVOCs) exceed Maryland Department of the Environment (MDE) groundwater standards throughout much of the Dump Road Area, and at multiple depths. The two highest trichloroethene (TCE) concentrations observed in the current sampling round are 12,000 micrograms per liter (μg/L) and 20,000 μg/L, reported for upper and intermediate surficial-aquifer wells MW-54S and MW-54I (northwest of MW-45S in the Taxiway Tango median area), respectively. Multiple sources of chlorinated volatile organic compounds have resulted in in groundwater plumes that extend to areas north of Pond 2, south to wells MW-40S/I and DMW-07I, and west to the area between Taxiway Tango and the airport runway. Concentrations of chlorinated volatile organic compounds in groundwater are consistent with the 2021 and 2020 groundwater results, with some exceptions. The extraction wells continue to mitigate plume migration into Frog Mortar Creek.
- Volatile organic compounds (VOCs) were detected in groundwater at concentrations greater than the Maryland Department of the Environment groundwater standards in delineated areas north, east, and west of the waste material in the central portion of the Dump Road Area.
- The semivolatile organic compound (SVOC) 1,4-dioxane was detected primarily in groundwater samples from the upper and intermediate surficial aquifer zones. 1,4-Dioxane is co-located in areas that contain the highest concentrations of chlorinated volatile organic

October 2022 Page 5-1

- compounds (west of Taxiway Tango at MW-54S/I/D, east of Taxiway Tango at MW-45S and at MW-41S/I, the area hydraulically downgradient of MW-45S, and near and east of Pond 1).
- Concentrations of eight total and seven dissolved metals exceed groundwater standards in one or more surficial-aquifer groundwater samples. Maximum detected concentrations of cadmium and nickel exceed Maryland Department of the Environment groundwater standards by more than one order of magnitude.
- Wells DMW-03 and MW-45S are installed in the apparent respective cadmium and chromium source-areas east of Taxiway Tango. The total cadmium concentration at MW-45S during this round (800 µg/L) is several times higher than any other cadmium concentration detected elsewhere during the sampling event. Chromium concentrations were detected at range of much lower concentrations in 2022 (2.5 μg/L - 110 μg/L) as compared to the range of concentrations in 2021 (0.21 μ g/L – 1,100 μ g/L). The measured dissolved concentration of cadmium is similar to the concentration detected for its total metals fraction, at 810 µg/L, indicating that these metals are predominately present in their dissolved states.
- Hexavalent chromium was detected in 11 of the 32 samples in which it was analyzed. Six detections exceeded the Maryland Department of the Environment groundwater standard of 0.035 µg/L, detections ranged from 0.013 µg/L to 0.44 µg/L and within the range of background concentrations.
- Total petroleum hydrocarbons (TPH) diesel-range organics (DRO) and gasoline-range organics (GRO) were frequently detected in upper surficial-aquifer groundwater samples. Most concentrations exceed the Maryland Department of the Environment groundwater standard (47 µg/L). The highest concentrations of TPH-DRO and TPH-GRO detected in this round (in 2022) were detected at well MW-54S.
- Wells MT-MW-01S and MT-MW-02S were submitted for TPH-DRO/GRO analysis in 2022. TPH-GRO was detected in MT-MW-02S but was not detected in MT-MW-01S, while TPH-DRO was detected at both wells. The detected concentrations exceeded the groundwater standard of 47 µg/L.
- Radium-228 and total alpha radium were detected in six and five of seven groundwater samples in which they were analyzed, respectively. Detected radium-228 concentrations range from 0.667 picocuries per liter (pCi/L) to 17.7 pCi/L and detected total alpha radium concentrations range from 0.67 pCi/L to 6.39 pCi/L. Detected concentrations of radium-228 exceed the groundwater standard (5 pCi/L) in three monitoring wells, while one total alpha radium concentration exceeded its groundwater standard (also 5 pCi/L).

SECTION 6 REFERENCES

- Maryland Department of the Environment (MDE), 1989. Final Report: A Preliminary Assessment of Martin State Airport, Middle River, Maryland (MD-304). Prepared by the Maryland Hazardous and Solid Waste Management Administration, Maryland Department of the Environment, Baltimore, Maryland for the U.S. Environmental Protection Agency, Region 3, Philadelphia, Pennsylvania. March.
- Maryland Department of the Environment (MDE), 1992. Letter from Ms. Arlene G. Weiner (MDE, Baltimore, Maryland) to Maryland Aviation Administration: "Subsurface Investigations." Martin State Airport, Middle River, Maryland. January 6.
- Maryland Department of the Environment (MDE), 1997. Letter from Mr. Arthur O'Connell (MDE) to the Maryland Aviation Administration, Martin State Airport, Middle River, Maryland. January 24.
- Maryland Department of the Environment (MDE), 2018. MDE Cleanup Standards for Soil and Groundwater, 2018, Interim Final Guidance, Update No. 3. October.
- Massachusetts Department of Environmental Protection (Mass DEP), 2015. "2015 Standards and Guidelines for Contaminants in Massachusetts Drinking Waters." Office of Research and Standards Guidelines. Website:

 http://www.mass.gov/eea/agencies/massdep/water/drinking/standards/standards-and-guidelines-for-drinking-water-contaminants.html.
- Michigan Administrative Code R299.44, 2017. Part 201–Generic Cleanup Criteria and Screening Levels [Table 1-Groundwater: Residential and Nonresidential]. October.
- Tetra Tech, Inc. (Tetra Tech), 2010a. *Environmental Evaluation Addendum, Martin State Airport Main Terminal, 701 Wilson Point Road, Middle River, Maryland*. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. December.
- Tetra Tech, Inc. (Tetra Tech), 2010b. Environmental Evaluation Report for Martin State Airport Main Terminal, 701 Wilson Point Road, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. September.

- Tetra Tech, Inc. (Tetra Tech), 2012a. "Appendix A—Technical Memorandum for the Dump Road Area, Source Area Delineation" in *Dump Road Source-Areas Investigation Work Plan, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland*. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. September.
- Tetra Tech, Inc. (Tetra Tech), 2012b. *Main Terminal Phase II Site Investigation Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland*. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. April.
- Tetra Tech, Inc. (Tetra Tech), 2012c. Remedial Investigation Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. April.
- Tetra Tech, Inc. (Tetra Tech), 2013a. Dump Road Area Characterization of Possible Source Areas Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland. Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. May.
- Tetra Tech, Inc. (Tetra Tech), 2013b. *Review and Analysis of Historical Aerial Photographs, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland.* Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. January.
- Tetra Tech, Inc. (Tetra Tech), 2013c. Supplemental Main Terminal Phase II Site Investigation Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. September.
- Tetra Tech, Inc. (Tetra Tech), 2013d. Review and Analysis of Historical Aerial Photographs (Draft), Martin State Airport Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. January.
- Tetra Tech, Inc. (Tetra Tech), 2014a. *Dump Road Area Characterization of Possible Source Areas Report*. Lockheed Martin, Martin State Airport. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation Lockheed Martin Corporation, Bethesda. April.
- Tetra Tech, Inc. (Tetra Tech), 2014b. Dump Road Area Source-Areas Design-Characterization Groundwater-Investigation Work Plan, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. January.
- Tetra Tech, Inc. (Tetra Tech), 2014c. *Taxiway Tango Soil Characterization Report*. Lockheed Martin, Martin State Airport. Report prepared by Tetra Tech, Inc., Germantown,

9062 Tetra Tech • Lockheed Martin, Martin State Airport

- Maryland for Lockheed Martin Corporation Lockheed Martin Corporation, Bethesda. January.
- Tetra Tech, Inc. (Tetra Tech), 2014d. Dump Road Area Source-Areas Design-Characterization Groundwater-Investigation Report, Martin State Airport, 701 Wilson Point Road, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin Corporation, Bethesda, Maryland. November.
- Tetra Tech, Inc. (Tetra Tech), 2015. Groundwater Monitoring Report, Martin State Airport, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. December.
- Tetra Tech, Inc. (Tetra Tech), 2016. 2016 Groundwater Monitoring Report, Martin State Airport, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. November.
- Tetra Tech, Inc. (Tetra Tech), 2017. 2017 Groundwater Monitoring Report, Martin State Airport, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. November.
- Tetra Tech, Inc. (Tetra Tech), 2018. 2018 Groundwater Monitoring Report, Martin State Airport, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. December.
- Tetra Tech, Inc. (Tetra Tech), 2019. 2019 Groundwater Monitoring Report, Martin State Airport, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. November.
- Tetra Tech, Inc. (Tetra Tech), 2020a. 2020 Groundwater Monitoring Report, Martin State Airport, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. October.
- Tetra Tech, Inc. (Tetra Tech), 2020b. 2020 Monitoring Well Abandonment Report, Martin State Airport, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. November.
- Tetra Tech, Inc. (Tetra Tech), 2021. 2021 Groundwater Monitoring Report, Martin State Airport, Middle River, Maryland. Report prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. December.
- Tetra Tech, Inc. (Tetra Tech), 2022a. 2022 Groundwater Monitoring Work Plan, Martin State Airport, Middle River, Maryland. Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. January.
- Tetra Tech, Inc. (Tetra Tech), 2022b. Dump Road Area Source Area 5 In Situ Bioremediation Remedial Action Work Plan, Middle River, Maryland. Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. January.

- Tetra Tech, Inc. (Tetra Tech), 2022c. *Dump Road Area Source Area 5 In Situ Bioremediation Sampling Plan, Middle River, Maryland*. Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. January.
- Tetra Tech, Inc. (Tetra Tech), 2022d. *Waste Management Plan, Martin State Airport and Satellite Sites, Middle River, Maryland*. Prepared by Tetra Tech, Inc., Germantown, Maryland for Lockheed Martin, Bethesda, Maryland. April.
- United States Environmental Protection Agency (USEPA), 2006. *Treatment Technologies for 1,4-Dioxane: Fundamentals and Field Applications*. Office of Solid Waste and Emergency Response. EPA 542-R-06-009. December.
- United States Environmental Protection Agency (USEPA), 2009. *Emerging Contaminant 1,4-Dioxane*. Office of Solid Waste and Emergency Response fact sheet. EPA 505-F-09-006. September.
- United States Environmental Protection Agency (USEPA), 2014. *Technical Fact Sheet—1,4-Dioxane*, Office of Solid Waste and Emergency Response fact sheet. EPA 505-F-14-011. January.
- United States Environmental Protection Agency (USEPA), 2017a. *National Functional Guidelines for Organic Superfund Methods Data Review*. January.
- United States Environmental Protection Agency (USEPA), 2017b. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. January.
- United States Environmental Protection Agency (USEPA), 2017c. *Regional Screening Levels for Chemical Contaminants at Superfund Sites*. Prepared by the U.S. Department of Energy's Oak Ridge National Laboratory. June. http://epa-prgs.ornl.gov/chemicals/index.shtml.

FIGURES

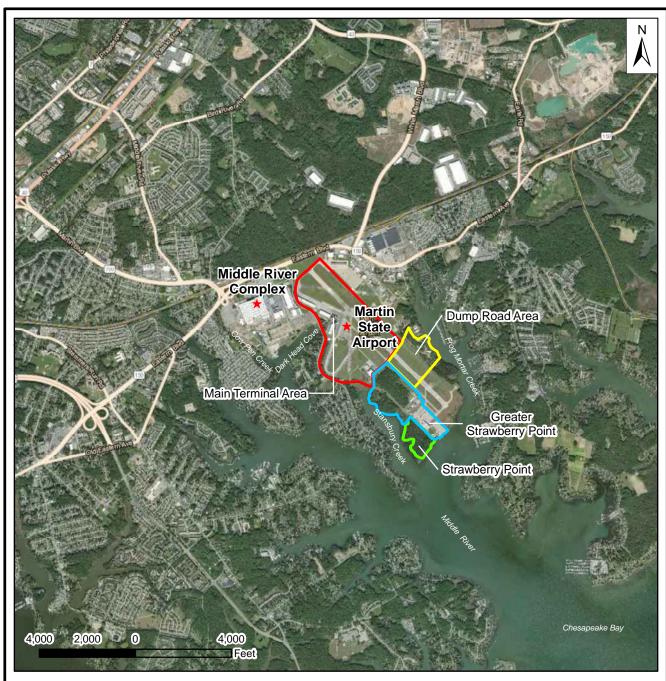
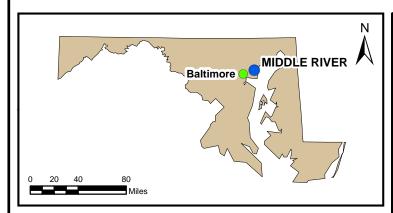

October 2022 Figures

Figure 1-1 Martin State Airport Site Location Map


Figure 2-1 Martin State Airport and Surrounding Features

- Figure 2-2 Site Features and Areas of Concern—Dump Road Area
- Figure 2-3 Recognized Environmental Conditions—Main Terminal Area
- Figure 3-1 Groundwater Monitoring Well Locations, 2022—Dump Road Area
- Figure 4-1 Groundwater Elevation Contour Map, April 2022—Upper Surficial Aquifer, Dump Road Area
- Figure 4-2 Groundwater Elevation Contour Map, April 2022—Intermediate Surficial Aquifer, Dump Road Area
- Figure 4-3 Groundwater Elevation Contour Map, April 2022—Lower Surficial Aquifer, Dump Road Area
- Figure 4-4 Concentrations of Trichloroethene, *cis*-1,2-Dichloroethene and Vinyl Chloride Exceeding Groundwater Standards, 2022—Upper Surficial Aquifer, Dump Road Area
- Figure 4-5 Concentrations of Trichloroethene, *cis*-1,2-Dichloroethene and Vinyl Chloride Exceeding Groundwater Standards, 2022—Intermediate Surficial Aquifer, Dump Road Area
- Figure 4-6 Concentrations of Trichloroethene, *cis*-1,2-Dichloroethene and Vinyl Chloride Exceeding Groundwater Standards, 2022—Lower Surficial and Deep Confined Aquifers, Dump Road Area
 - Figure 4-7 Concentrations of Benzene Exceeding the Groundwater Standard, 2022— Dump Road Area
- Figure 4-8 Concentrations of 1,4-Dioxane Exceeding the Groundwater Standard, 2022— Dump Road Area
- Figure 4-9 Concentrations of Total Metals Exceeding Groundwater Standards, 2022— Upper Surficial Aquifer, Dump Road Area
- Figure 4-10 Concentrations of Dissolved Metals Exceeding Groundwater Standards, 2022—Upper Surficial Aquifer, Dump Road Area
- Figure 4-11 Concentrations of Total Metals Exceeding Groundwater Standards, 2022— Intermediate Surficial Aquifer, Dump Road Area
 - Figure 4-12 Concentrations of Dissolved Metals Exceeding Groundwater Standards, 2022—Intermediate Surficial Aquifer, Dump Road Area
 - Figure 4-13 Concentrations of Total and Dissolved Metals Exceeding Groundwater Standards, 2022—Lower Surficial and Deep Confined Aquifers, Dump Road Area
 - Figure 4-14 Concentrations of Petroleum Hydrocarbons Exceeding Groundwater Standards, 2022—Upper Surficial Aquifer, Dump Road Area

October 2022 Figures

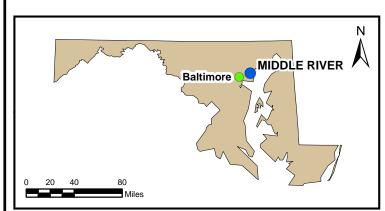
Aerial photograph provided by ESRI's ArcGIS Online World Imagery map service (© 2017 ESRI and its data suppliers).

FIGURE 1-1

MARTIN STATE AIRPORT SITE LOCATION MAP

Lockheed Martin, Martin State Airport Middle River, Maryland

DATE MODIFIED:

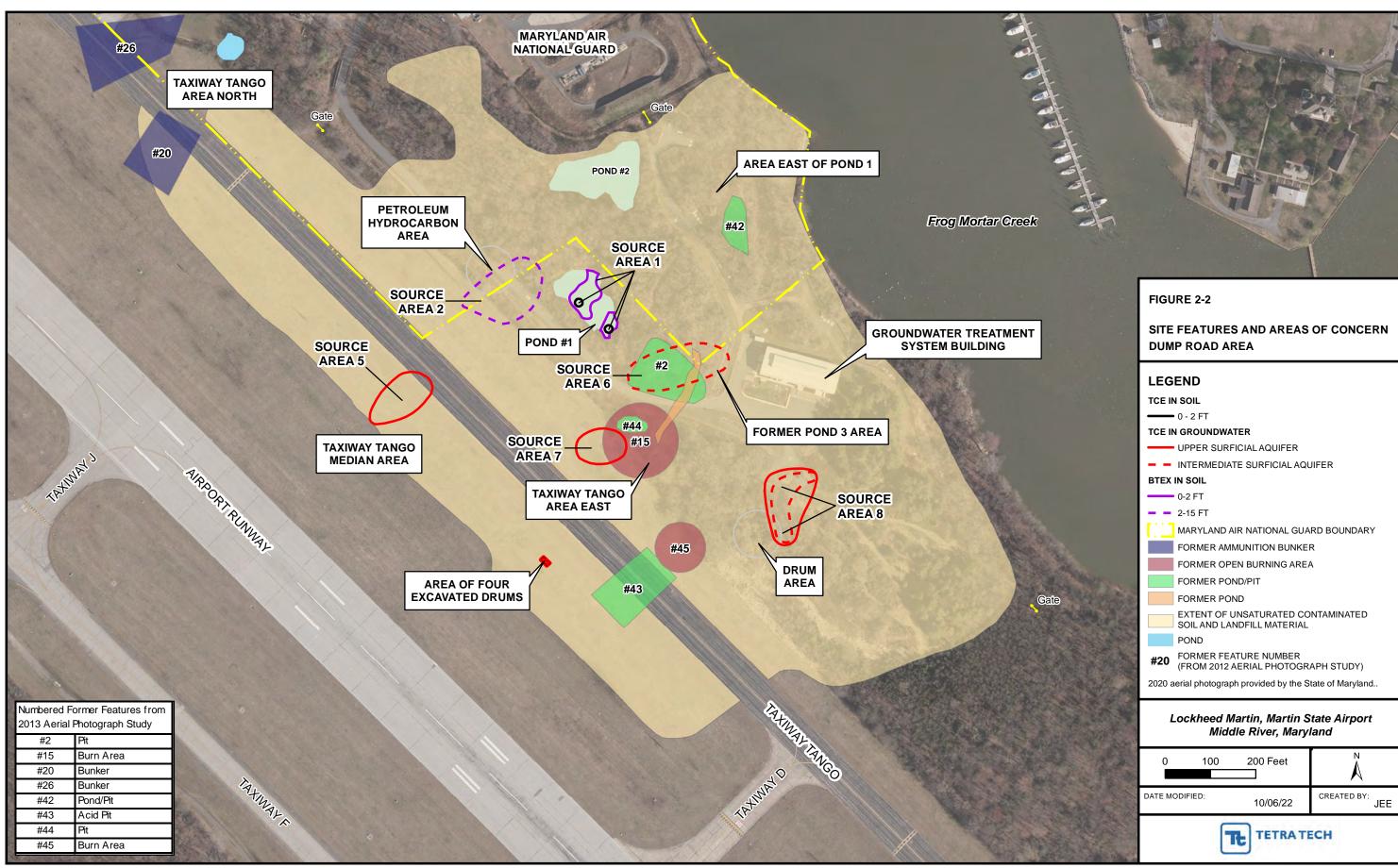

11/19/18

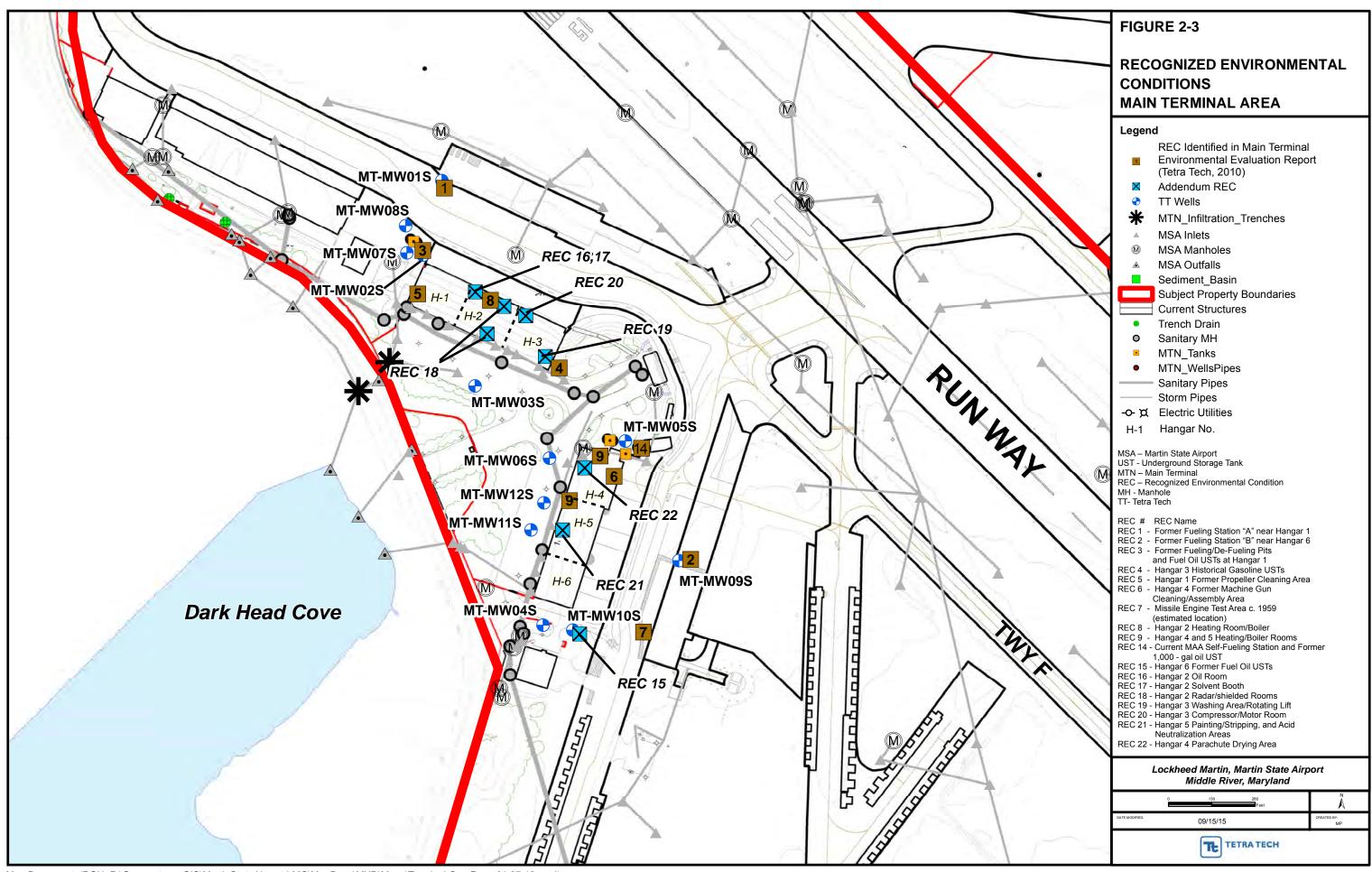
CREATED BY: JEE

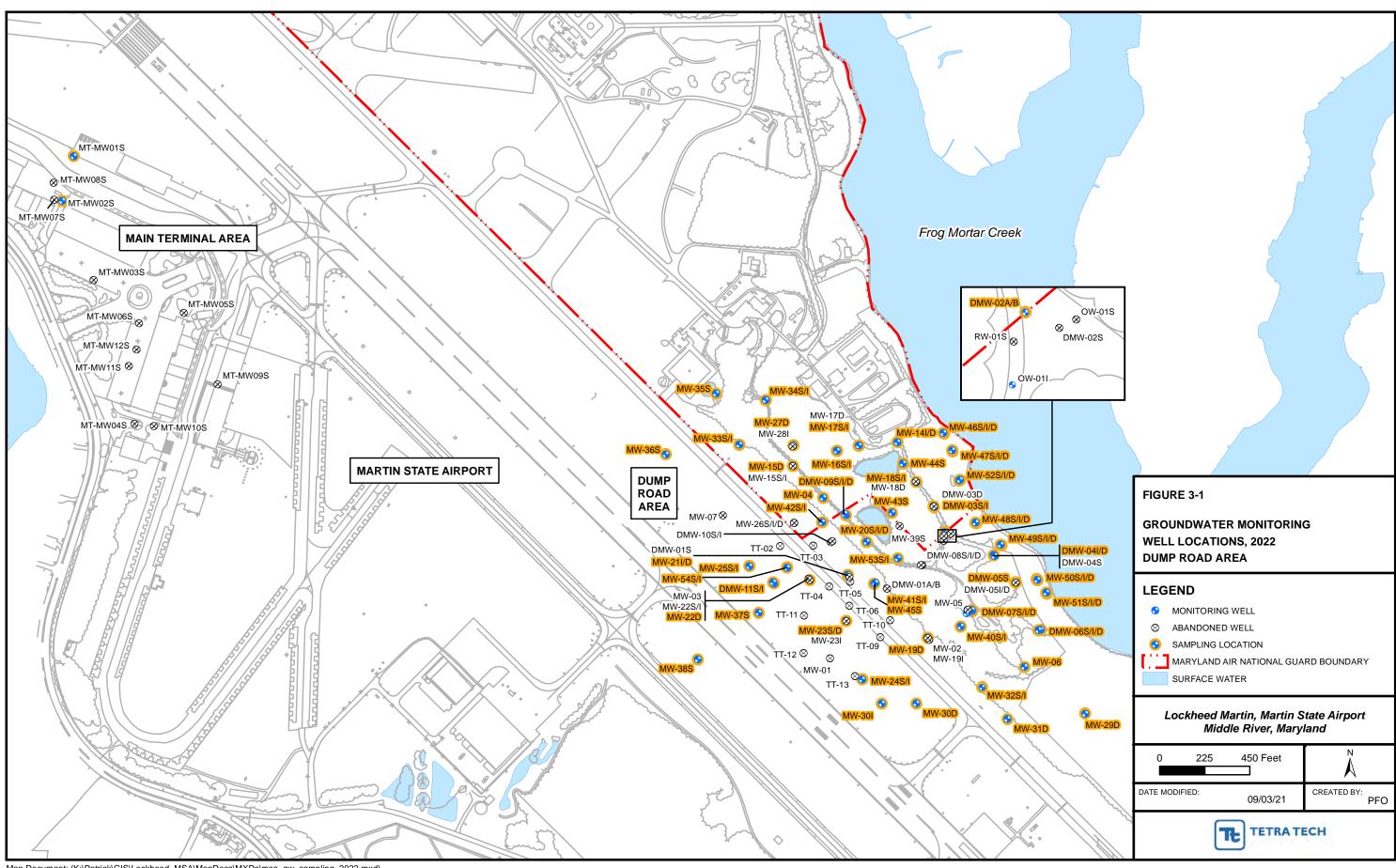
2017 aerial photograph provided by the State of Maryland.

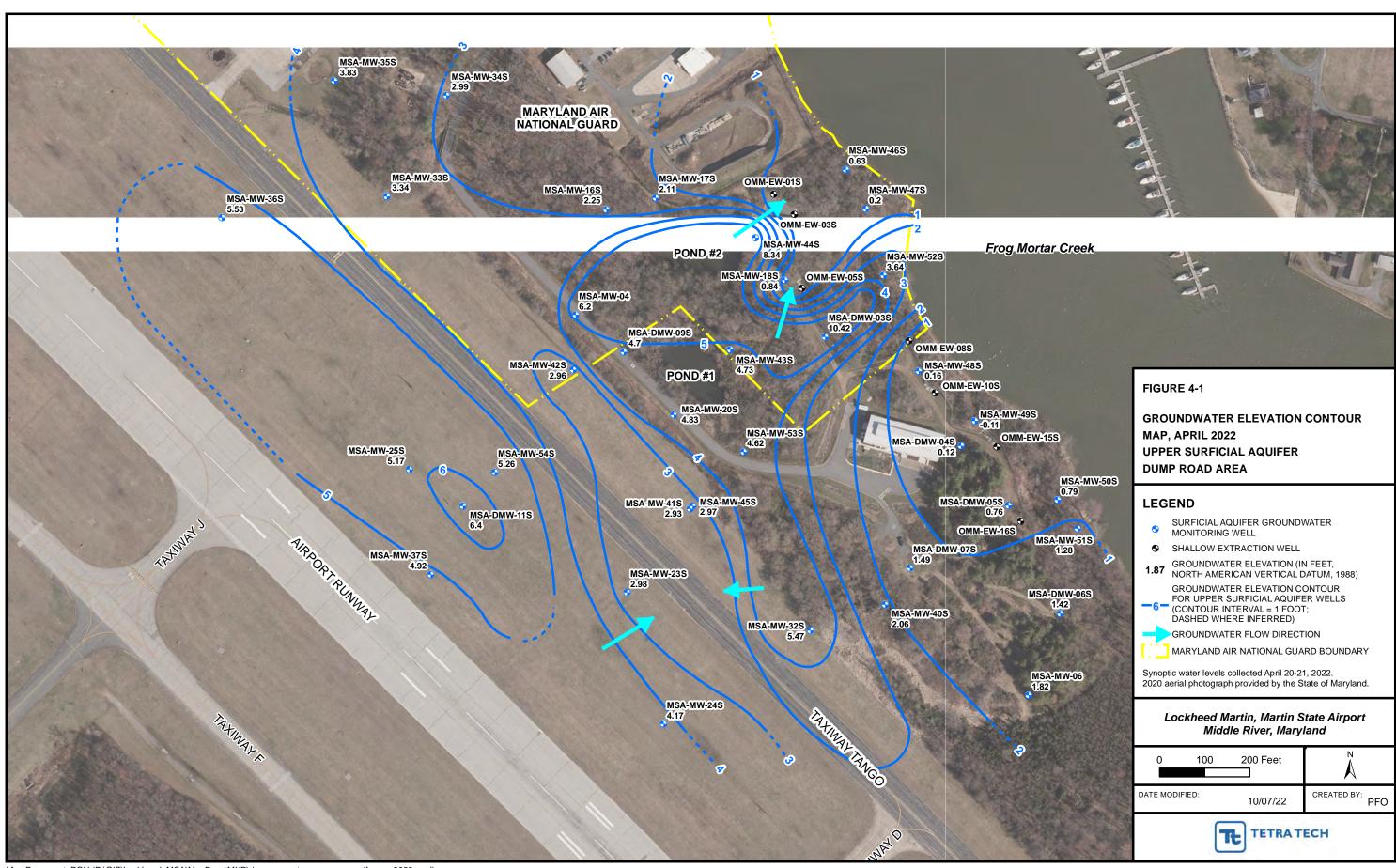
FIGURE 2-1

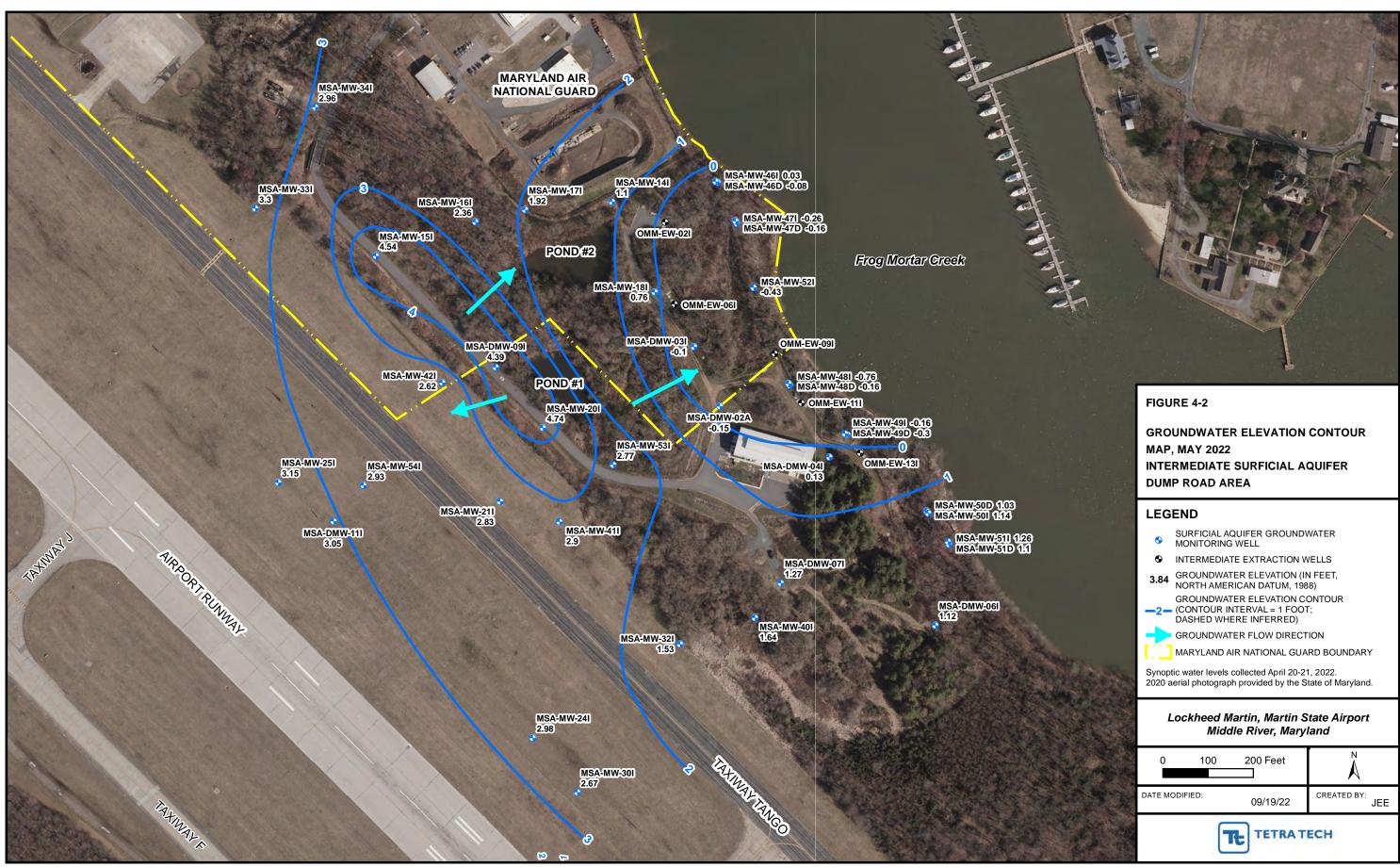
MARTIN STATE AIRPORT AND SURROUNDING FEATURES

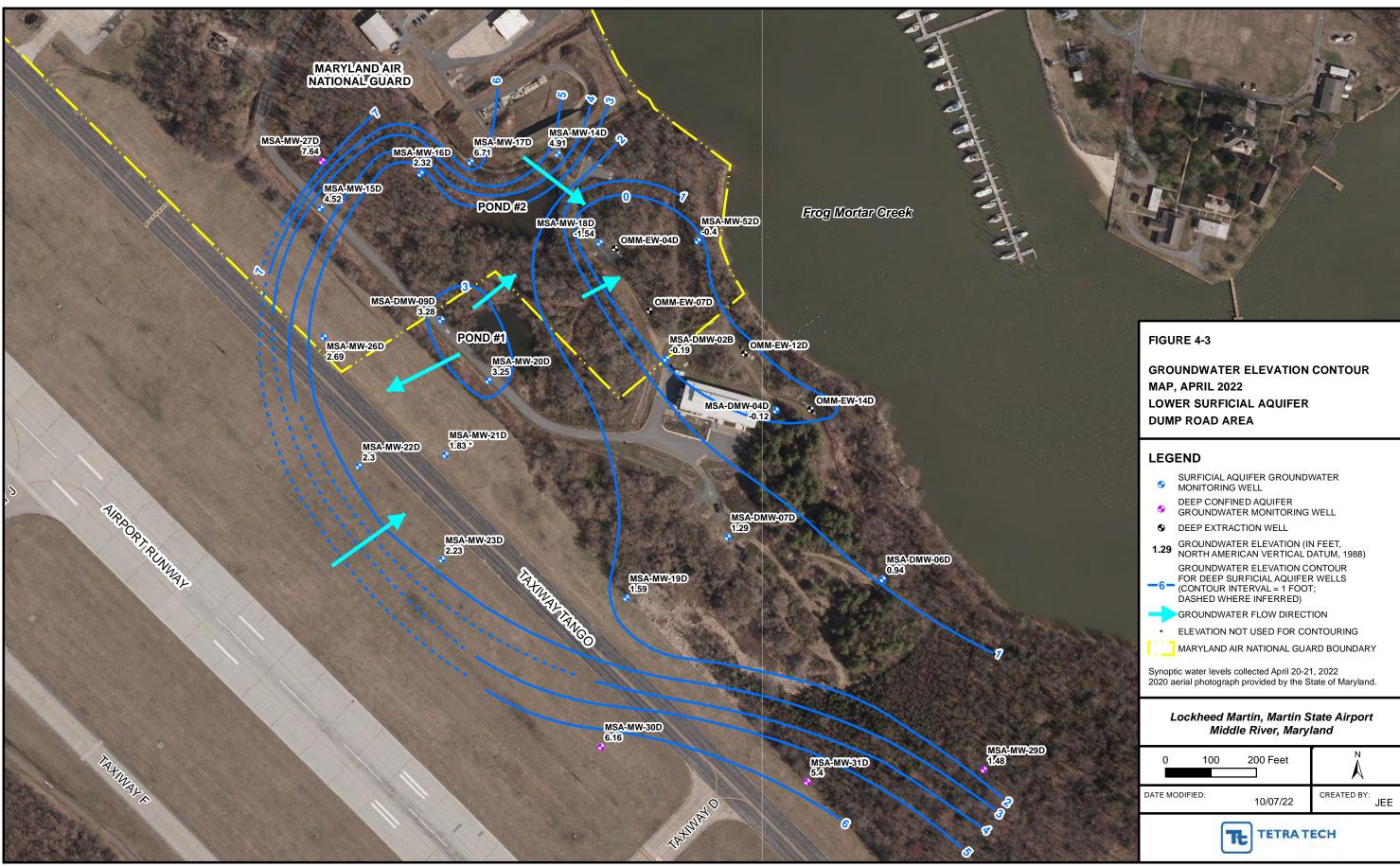

Lockheed Martin, Martin State Airport Middle River, Maryland

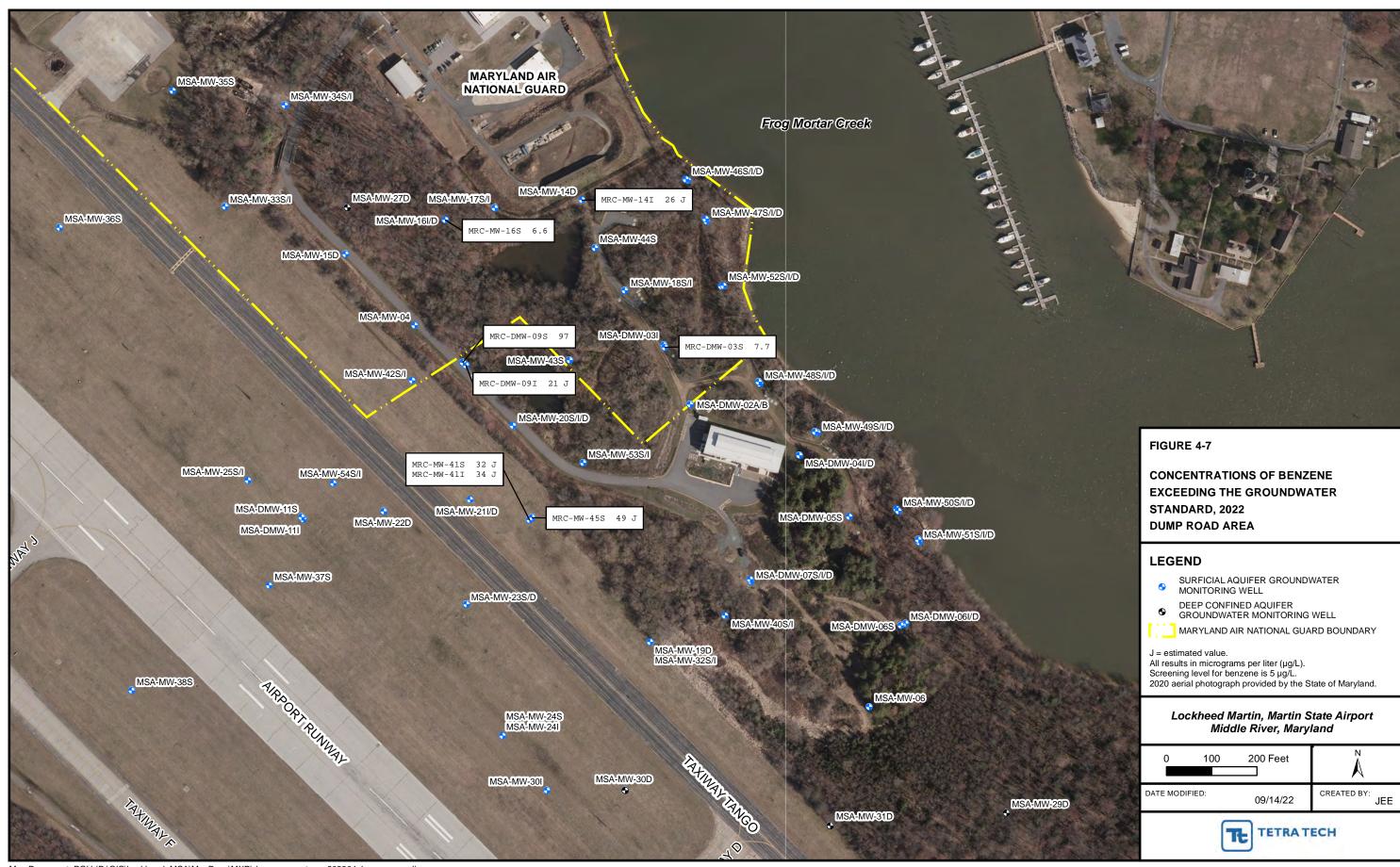

DATE MODIFIED:

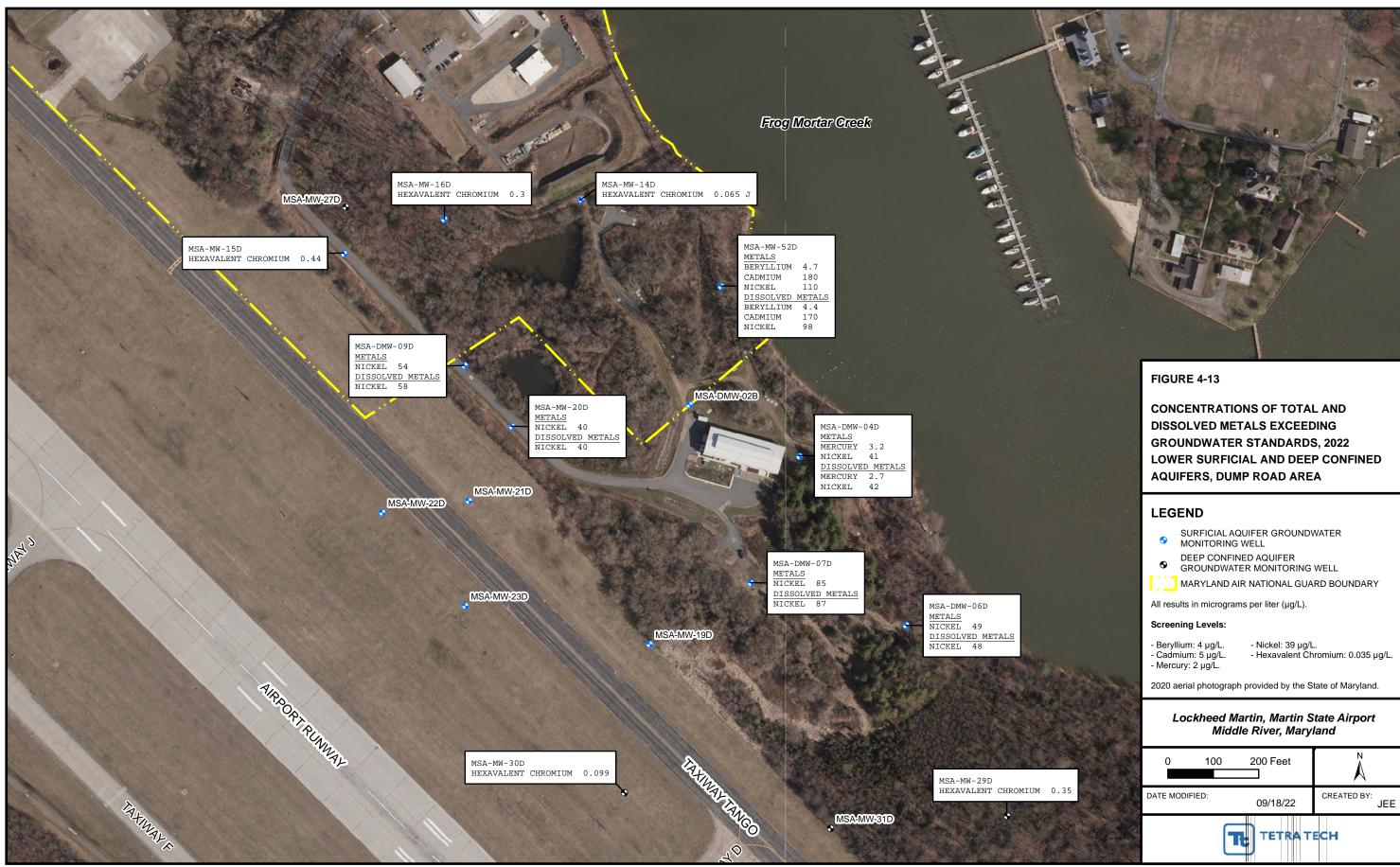

09/12/18


CREATED BY: JEE









TABLES

October 2022 Tables

Table 3-1 Chemical Analyses and Laboratory Analytical Methods for Wells Sampled in 2022

Table 4-1 Groundwater Levels and Elevations, April 20-21, 2022

Table 4-2 Statistical Summary of Dump Road Area Groundwater Sampling Results—2022

Table 4-3 Detected Analytes and Screening-Criteria Exceedances for Groundwater Samples—2022, Dump Road Area

October 2022 Tables

Table 3-1

Chemical Analyses and Laboratory Analytical Methods for Wells Sampled in 2022
Lockheed Martin, Martin State Airport, Middle River, Maryland
Page 1 of 3

	Analytical Requirements											
Manifestina Mall	VOCs (TICs, Freon 22, Freon 113)	1,4-Dioxane	Hexavalent Chromium ¹	Total PPM	Dissolved PPM	Mercury	GRO and DRO	Radium 224, 226, and 228				
Monitoring Well	(USEPA 8260)	(USEPA 8270 SIM)	(218.6)	(USEPA 6020)	(USEPA 6020)	(USEPA 7470)	(USEPA 8015)	(USEPA 900 Series)				
	3x40mL vials w/ hydrochloric acid	2-250mL ambers		500mL w/ nitric		See Metals	2x40mL vials w/hydrochloric acid & 2-250 mL ambers	(Different labs) 2 liter plastic w/nitric acid				
Upper Surficial-Aquifer												
MW-4	Х	Х		Х	Х	Х	X					
MW-6	Х	Х		Х	Х	Х	Х					
DMW-3S	Х	Х		Х	Х	Х	Х					
DMW-5S	Х	Х		Х	Х	Х	Х					
DMW-6S			Х	Х	Х	Х	Х	Х				
DMW-7S	Х	Х		Х	Х	Х	Х					
DMW-9S	X	X		X	X	X	X					
DMW-11S	Х	Х		Х	Х	Х	Х					
MW-16S	Х	Х		Х	Х	Х	Х	Х				
MW-17S	Х	Х		Х	Х	Х	Х					
MW-18S	Х	Х					Х					
MW-20S	Х	Х		Х	Х	Х	Х					
MW-23S	Х	Х		Х	Х	Х	Х					
MW-24S	X	X		X	X	X	X					
MW-25S	X	X		X	X	X	X					
MW-32S	1			X	X	X	X					
MW-33S	Х	Х		Х	Х	Х	Х					
MW-34S	Х	Х		Х	Х	Х	Х					
MW-35S	Х	Х		Х	Х	Х	Х					
MW-36S	X	X		X	X	X						
MW-37S				X	X	X	Х					
MW-38S				X	X	X						
MW-40S	Х	Х		X	X	X	Х					
MW-41S	X	X		X	X	X	X					
MW-42S	X	X		X	X	X	X					
MW-43S	X	X	<u> </u>				X					
MW-44S	X	X	1	Х	Х	Х	X					
MW-45S	X	X	1	X	X	X	X					
MW-46S	X	X	Х	X	X	X	X					
MW-47S	X	X	X	X	X	X	X					
MW-48S	X	X	X	X	X	X	X					
MW-49S	X	X	X	X	X	X	X					
MW-50S	X	X	X	X	X	X	X					
MW-51S	X	X	X	X	X	X	X					
MW-52S	X	X	X	X	X	X	X					
MW-53S	X	X	X	X	X	X	X					
MW-54S	X	X	X	X	X	X	X					
MT-MW-01S	^	^			^		X					
MT-MW-01S			 				X					
1V1 1 -1V1 VV -U2S			1	1	l		^					

Table 3-1

Chemical Analyses and Laboratory Analytical Methods for Wells Sampled in 2022
Lockheed Martin, Martin State Airport, Middle River, Maryland
Page 2 of 3

				Analytical F	Requirements			
	VOCs (TICs, Freon 22, Freon 113)	1,4-Dioxane	Hexavalent Chromium ¹	Total PPM	Dissolved PPM	Mercury	GRO and DRO	Radium 224, 226, and 228
Monitoring Well	(USEPA 8260)	(USEPA 8270 SIM)	(218.6)	(USEPA 6020)	(USEPA 6020)	(USEPA 7470)	(USEPA 8015)	(USEPA 900 Series)
rmediate Surficial-Ac	quifer							
DMW-2A	X	X		X	X	X		
DMW-3I	X	Х		Х	X	Χ		Χ
DMW-4I	X	Х		Х	X	X		
DMW-6I				Х	X	X		Χ
DMW-7I	X	Х		Х	X	X		
DMW-9I	X	Х		Х	Х	X		
MW-11I	X	Х		Х	X	X		
MW-14I	X	Х		Х	Х	X		
MW-16I	X	Х		Х	Х	X		
MW-17I	X	Х		Х	Х	X		
MW-18I	Х	Х		Х	Х	X		
MW-20I	X	Х		Х	Х	X		
MW-21I	X	Х		Х	Х	X		
MW-24I	X	Х		Х	Х	X		
MW-25I	X	Х		Х	Х	X		
MW-30I	X	Х		Х	Х	X		
MW-32I				Х	X	Х		
MW-33I	X	Х	Х					
MW-34I	Х	Х		Х	Х	Χ	Χ	
MW-40I	X	Х		Х	Х	X		
MW-41I	X	Х		Х	Х	Χ		
MW-42I	X	Х		Х	Х	X		
MW-46I	X	Х	Х	Х	Х	Χ		
MW-47I	X	Х	Х	Х	Х	Х		
MW-48I	X	Х	Х	Х	Х	Х		
MW-49I	X	Х	Х	Х	Х	Х		
MW-50I	X	Х	Х	Х	Х	X		
MW-51I	Х	Х	Х	Х	Х	Х		
MW-52I	Х	Х	Х	Х	Х	Х		
MW-53I	Х	Х	Х	Х	Х	Х		
MW-54I	Х	Х	Х	Х	Х	Х		

Table 3-1

Chemical Analyses and Laboratory Analytical Methods for Wells Sampled in 2022
Lockheed Martin, Martin State Airport, Middle River, Maryland
Page 3 of 3

				Analytical F	Requirements			
	VOCs (TICs, Freon 22, Freon 113)	1,4-Dioxane	Hexavalent Chromium ¹	Total PPM	Dissolved PPM	Mercury	GRO and DRO	Radium 224, 226 and 228
Monitoring Well	(USEPA 8260)	(USEPA 8270 SIM)	(218.6)	(USEPA 6020)	(USEPA 6020)	(USEPA 7470)	(USEPA 8015)	(USEPA 900 Serie
wer Surficial-Aquifer								
DMW-2B	X	Χ						
DMW-4D	Х	X		Х	X	X		
DMW-6D	X	Х		Х	X	Χ		X
DMW-7D				Х	X	X		
DMW-9D	X	Х		Х	Х	Х		
MW-14D	Х	X	Х					
MW-15D	Х	X	Х	Х	Х	Х		
MW-16D	X	X	Х	Х	Х	Х		X
MW-19D	X	X		Х	Х	Χ		
MW-20D	X	X		Х	Х	Χ		
MW-21D	Х	X		Х	Х	Х		
MW-22D	X	X		Х	Х	Χ		
MW-23D	X	X		Х	Х	Χ		
MW-46D	X	X	Х	Х	Х	Χ		
MW-47D	X	X	Х	Х	Х	X		
MW-48D	X	X	Х	Х	Х	Χ		
MW-49D	X	X	Х	Х	Х	X		
MW-50D	Х	Х	Х	Х	Х	Х		
MW-51D	Х	X	Х	Х	Х	Х		
MW-52D	Х	X	Х	Х	X	Χ		
ep Wells								
MW-27D	X	Х		Х	Х	Х		
MW-29D	Х	X	Х	Х	Х	Х		Х
MW-30D	X	Х	Х					
MW-31D			Х	Х	X	X		
2022 Totals (94 wells)	84	84	33	86	86	86	38	7

Notes:

1. Hexavalent chromium will be analyzed by USEPA Method 218.6 (ion chromotography) with a specified detection limit of 0.005 ug/L which is lower than the method's published detection limit of 0.10 $\mu g/L$.

2. MW-16D (total/dissolved metals) and MW-34I (TPH DRO/GRO) were sampled for analytes not stated in the work plan and are denoted with a bolded X

Abbreviations:

μg/L - micrograms per liter
 DRO - diesel-range organics
 PPM - priority pollutant metals
 TICs - tentatively identified compounds

GRO - gasoline-range organics USEPA - Unites States Environmental Protection Agency

mL - milliliter VOCs - volatile organic compounds

Table 4-1 Groundwater Levels and Elevations—April 20-21, 2022 Dump Road Area, Martin State Airport Middle River, Maryland Page 1 of 3

Well ID	Aquifer level	Elevation- top of well casing NAVD88 ⁽¹⁾ (feet)	Depth to groundwater- top of well casing (feet)	Groundwater elevation NAVD88 ⁽¹⁾ (feet)					
Dump Road Area -	• • • • • • • • • • • • • • • • • • • •								
MSA-DMW-03S	S	16.52	6.1	10.42					
MSA-DMW-04S	S	20.52	20.4	0.12					
MSA-DMW-05S	S	21.34	20.58	0.76					
MSA-DMW-06S	S	18.62	17.2	1.42					
MSA-DMW-07S	S	21.84	20.35	1.49					
MSA-DMW-09S	S	11.45	6.75	4.7					
MSA-DMW-11S	S	9.2	2.8	6.4					
MSA-MW-16S	S	10.2	7.95	2.25					
MSA-MW-17S	S	7.61	5.5	2.11					
MSA-MW-18S	S	8.89	8.05	0.84					
MSA-MW-20S	S	12.44	7.61	4.83					
MSA-MW-23S	S	10.01	7.03	2.98					
MSA-MW-24S	S	7.72	3.55	4.17					
MSA-MW-25S	S	9.69	4.52	5.17					
MSA-MW-32S	S	7.27	1.8	5.47					
MSA-MW-33S	S	9.97	6.63	3.34					
MSA-MW-34S	S	7.89	4.9	2.99					
MSA-MW-35S	S	12.63	8.8	3.83					
MSA-MW-36S	S	11.88	6.35	5.53					
MSA-MW-37S	S	10.7	5.78	4.92					
MSA-MW-4	S	10.34	4.14	6.2					
MSA-MW-40S	S	17.48	15.42	2.06					
MSA-MW-41S	S	10.23	7.3	2.93					
MSA-MW-42S	S	8.88	5.92	2.96					
MSA-MW-43S	S	18.08	13.35	4.73					
MSA-MW-44S	S	9.21	0.87	8.34					
MSA-MW-45S	S	10.03	7.06	2.97					
MSA-MW-46S	S	11.26	10.63	0.63					
MSA-MW-47S	S	11.96	11.76	0.2					
MSA-MW-48S	S	19.92	19.76	0.16					
MSA-MW-49S	S	19.84	19.95	-0.11					
MSA-MW-50S	S	12.55	11.76	0.79					
MSA-MW-51S	S	9.69	8.41	1.28					
MSA-MW-52S	S	13.24	9.6	3.64					
Dump Road Area - upper surficial aquifer (continued)									
MSA-MW-53S	S	14.37	9.75	4.62					
MSA-MW-54S	S	10.75	5.49	5.26					
MSA-MW-6	S	15.72	13.9	1.82					

Table 4-1 Groundwater Levels and Elevations—April 20-21, 2022 Dump Road Area, Martin State Airport Middle River, Maryland Page 2 of 3

Well ID	Aquifer level	Elevation- top of well casing NAVD88 ⁽¹⁾ (feet)	Depth to groundwater- top of well casing (feet)	Groundwater elevation NAVD88 ⁽¹⁾ (feet)		
Dump Road Area -	intermediate surfic					
MSA-DMW-03I	l	16.45	16.55	-0.1		
MSA-DMW-04I	I	20.48	20.35	0.13		
MSA-DMW-06I	l	18.64	17.52	1.12		
MSA-DMW-07I	1	21.9	20.63	1.27		
MSA-DMW-09I	l	11.4	7.01	4.39		
MSA-DMW-11I	1	9.15	6.1	3.05		
MSA-DMW-2A	l	21.65	21.8	-0.15		
MSA-MW-14I	I	11.72	10.62	1.1		
MSA-MW-15I	I	8.79	4.25	4.54		
MSA-MW-16I	1	10.06	7.7	2.36		
MSA-MW-17I	l	7.68	5.76	1.92		
MSA-MW-18I	1	8.91	8.15	0.76		
MSA-MW-20I	l	12.39	7.65	4.74		
MSA-MW-21I	1	10.83	8	2.83		
MSA-MW-24I	l	7.68	4.7	2.98		
MSA-MW-25I	l	9.72	6.57	3.15		
MSA-MW-30I	I	7.52	4.85	2.67		
MSA-MW-32I	l	7.28	5.75	1.53		
MSA-MW-33I	I	10.02	6.72	3.3		
MSA-MW-34I	l	7.88	4.92	2.96		
MSA-MW-40I	I	17.59	15.95	1.64		
MSA-MW-41I	I	10.23	7.33	2.9		
MSA-MW-42I	1	8.87	6.25	2.62		
MSA-MW-46D	I	11.67	11.75	-0.08		
MSA-MW-46I	I	11.19	11.16	0.03		
MSA-MW-47D	I	12.04	12.2	-0.16		
MSA-MW-47I	I	11.94	12.2	-0.26		
MSA-MW-48D	ı	20.12	20.28	-0.16		
MSA-MW-48I	ı	19.94	20.7	-0.76		
MSA-MW-49D	I	19.6	19.9	-0.3		
MSA-MW-49I	I	19.59	19.75	-0.16		
Dump Road Area -	intermediate surfic	ial aquifer (continue	ed)			
MSA-MW-50D	I	13.12	12.09	1.03		
MSA-MW-50I	I	12.64	11.5	1.14		
MSA-MW-51D	ļ	9.55	8.45	1.1		
MSA-MW-51I	I	9.61	8.35	1.26		
MSA-MW-52I	I	13.27	13.7	-0.43		
MSA-MW-53I	I	14.39	11.62	2.77		
MSA-MW-54I	I	10.83	7.9	2.93		
Dump Road Area -	lower surficial aqui	fer				

Table 4-1 Groundwater Levels and Elevations—April 20-21, 2022 Dump Road Area, Martin State Airport Middle River, Maryland Page 3 of 3

Well ID	Aquifer level	Elevation- top of well casing NAVD88 ⁽¹⁾ (feet)	Depth to groundwater- top of well casing (feet)	Groundwater elevation NAVD88 ⁽¹⁾ (feet)		
MSA-DMW-04D	D	20.44	20.56	-0.12		
MSA-DMW-06D	D	18.51	17.57	0.94		
MSA-DMW-07D	D	21.94	20.65	1.29		
MSA-DMW-09D	D	11.41	8.13	3.28		
MSA-DMW-2B	D	21.66	21.85	-0.19		
MSA-MW-14D	D1	11.56	6.65	4.91		
MSA-MW-15D	D	8.77	4.25	4.52		
MSA-MW-16D	D	10.22	7.9	2.32		
MSA-MW-17D	D	7.56	0.85	6.71		
MSA-MW-18D	D	8.88	10.42	-1.54		
MSA-MW-19D	D	7.94	6.35	1.59		
MSA-MW-20D	D	12.4	9.15	3.25		
MSA-MW-21D	D	10.78	8.95	1.83		
MSA-MW-22D	D	11.02	8.72	2.3		
MSA-MW-23D	D	10.03	7.8	2.23		
MSA-MW-26D	D	11.66	8.97	2.69		
MSA-MW-52D	D	13.04	13.44	-0.4		
Dump Road Area -	deep confined aqui	fer				
MSA-MW-27D	DD	8.39	0.75	7.64		
MSA-MW-29D	DD	11.43	9.95	1.48		
MSA-MW-30D	DD	8.26	2.1	6.16		
MSA-MW-31D	DD	6.95	1.55	5.4		

Synoptic groundwater-level measurements were collected on April 20-21, 2022.

- 1 Based on an October 2010 survey of all Dump Road Area wells
- "--" not available
- D lower surficial aquifer
- D1 aquitard beneath lower surficial aquifer
- DD Deep confined aquifer below the lower surficial aquifer
- I intermediate surficial aquifer
- MSA Martin State Airport

NAVD88 = North American Vertical Datum of 1988

NM - not measured

S - upper surficial aquifer

SW - surface water

Table 4-2

Statistical Summary of Dump Road Area Groundwater Sampling Results - 2022 Martin State Airport, Middle River, Maryland Page 1 of 1

					Annual (2022) I	ORA Martin State Airport G	Groundwater Sam	ples				
	Frequency of											
Parameter		or ection	Minimum	Maximum	Location of maximum	Sample with maximum	Minimum	Maximum	Average of	Average of all	Standard	
			concentration (detects)	concentration (detects)	detected concentration	detected concentration	concentration (nondetects)	concentration (nondetects)	detected results	results	deviation	Sample Date
	Number	Percent	(uetects)	(detects)			(nondetects)	(nonuetects)	resuits			
Volatile organic compounds (μg/L)												
1,1,1-TRICHLOROETHANE	3/84	4	4.1	10 J	MSA-MW-48D	MSA-MW-48D-052422	0.48	480	6.5	11.35	39.11	20220524
1,1,2-TRICHLOROTRIFLUOROETHANE	2/84	2	0.59 J	1.3	MSA-DMW-04I	MSA-DMW-4I-051922	0.41	410	0.95	9.60	33.51	20220519
1,1-DICHLOROETHANE	4/84	5	0.73 J	6.1	MSA-DMW-04I	MSA-DMW-4I-051922	0.47	470	3.56	11.16	38.37	20220519
1,1-DICHLOROETHENE	7/84	8	2.3	140	MSA-DMW-11S	MSA-DMW-11S-060922	0.49	490	29.87	13.59	42.31	20220609
1,2,3-TRIMETHYLBENZENE	6/84	7	1 J	15 J	MSA-DMW-09S	MSA-DMW-09S-051722	0.31	310	5.3	7.54	25.34	20220517
1,2,4-TRICHLOROBENZENE	2/84	2	2.4	57	MSA-MW-52I	MSA-MW-52I-061622	0.77	770	29.7	18.42	62.96	20220616
1,2,4-TRIMETHYLBENZENE	3/84	4	2.3	31 J	MSA-DMW-09S	MSA-DMW-09S-051722	0.52	520	15.43	12.50	42.38	20220517
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	3/84 24/84	4 29	2.1 0.25 J	3.5 61 J	MSA-DMW-03S MSA-MW-45S	MSA-DMW-3S-051922 MSA-MW-45S-060722	0.48 0.21	480 210	2.6 12.18	11.27 7.88	39.12 19.50	20220519 20220607
1,3-DICHLOROBENZENE	1/84	1	5.5	5.5	MSA-MW-48I	MSA-MW-48I-052422	0.45	450	5.5	10.60	36.76	20220507
1,4-DICHLOROBENZENE	5/84	6	3.9 J	35	MSA-MW-48I	MSA-MW-48I-052422	0.41	410	18.78	10.54	33.64	20220524
2-BUTANONE	2/84	2	1.2 J	1.2 J	MSA-MW-52S	MSA-MW-52S-061622	1.2	1200	1.2	27.62	97.41	20220616
2-BUTANONE	2/84	2	1.2 J	1.2 J	MSA-MW-42S	MSA-MW-42S-060222	1.2	1200	1.2	27.62	97.41	20220602
4-ISOPROPYLTOLUENE	1/84	1	0.57 J	0.57 J	MSA-MW-42S	MSA-MW-42S-060222	0.56	560	0.57	13.02	45.64	20220602
ACETONE	2/84	2	5.4 J	11	MSA-MW-42S	MSA-MW-42S-060222	5.4	5400	8.2	126.61	440.46	20220602
BENZENE	17/84	20	0.54 J	97	MSA-DMW-09S	MSA-DMW-09S-051722	0.42	420	16.89	12.41	35.88	20220517
CARBON TETRACHLORIDE	6/84	7	2.5	7,200	MSA-MW-54I	MSA-MW-54I-060922	0.26	130	1382.42	101.61	790.68	20220609
CHLOROBENZENE	17/84	20	0.42 J	580	MSA-MW-41I	MSA-MW-41I-060222	0.38	380	67.01	21.88	75.95	20220602
CHLOROFORM CIS 1.2 DICHLOROFTHENE	8/84	10	0.47 J	1,700	MSA-MW-54I	MSA-MW-54I-060922	0.47	240	409.70	44.03	232.14	20220609
CIS-1,2-DICHLOROETHENE DIISOPROPYL ETHER	64/84 3/84	76 4	0.5 J 0.39 J	23,000 2.8 J	MSA-MW-54S MSA-MW-16S	MSA-MW-54S-060922 MSA-MW-16S-052522	0.46 0.17	18 170	1342.37 1.43	1022.94 4.01	3442.89 13.85	20220609 20220525
ETHYLBENZENE	3/84 4/84	5	0.39 J 1.4	2.8 J 240	MSA-MW-165 MSA-DMW-09S	MSA-DMW-09S-051722	0.17	420	73.725	13.21	42.60	20220525
ISOPROPYLBENZENE	2/84	2	0.54 J	1.1	MSA-MW-42S	MSA-MW-42S-060222	0.49	490	0.82	11.50	40.03	20220517
M+P-XYLENES	8/84	10	1.1 J	2,200	MSA-DMW-09S	MSA-DMW-09S-051722	0.42	420	380.44	45.72	253.22	20220502
METHYLENE CHLORIDE	2/84	2	3.1 J	120 J	MSA-MW-41S	MSA-MW-41S-060222	2.6	2600	61.55	61.31	212.09	20220602
N-PROPYLBENZENE	1/84	1	0.76 J	0.76 J	MSA-MW-42S	MSA-MW-42S-060222	0.57	570	0.76	13.29	46.51	20220602
NAPHTHALENE	4/84	5	1.3	160 J	MSA-DMW-07S	MSA-DMW-7S-052022	0.8	800	71.225	21.08	67.54	20220520
O-XYLENE	8/84	10	0.51 J	240	MSA-DMW-09S	MSA-DMW-09S-051722	0.42	420	45.25	13.99	43.72	20220517
SEC-BUTYLBENZENE	3/84	4	0.53 J	0.58 J	MSA-DMW-05S	MSA-DMW-5S-051922	0.53	530	0.56	12.46	43.34	20220519
TERTIARY-BUTYL ALCOHOL	4/84	5	9.5 J	96	MSA-MW-52S	MSA-MW-52S-061622	7.2	7200	37.13	169.05	586.27	20220616
TETRACHLOROETHENE	2/84	2	4.2	6.5	MSA-DMW-04I	MSA-DMW-4I-051922	0.44	440	5.35	10.41	35.85	20220519
TOLUENE	8/84	10	4.1	6,900	MSA-MW-54S	MSA-MW-54S-060922	0.44	220	1126.76	111.72	772.42	20220609
TOTAL XYLENES	10/84	12	1.1 J	2,400	MSA-DMW-09S	MSA-DMW-09S-051722	0.42	420	336.55	49.55	277.39	20220517
TRANS-1,2-DICHLOROETHENE	12/84	14	0.51 J	220 J	MSA-DMW-03S	MSA-DMW-3S-051922	0.51	510	29.69	15.89	47.68	20220519
TRICHLOROETHENE	56/84	67	0.61 J	20,000	MSA-MW-54I	MSA-MW-54I-060922	0.44	22	1373.35	915.88	2708.08	20220609
VINYL CHLORIDE Semivolatile organic compounds (µg/L)	54/84	64	0.54 J	6,800	MSA-DMW-11S	MSA-DMW-11S-060922	0.45	450	599.56	388.43	1198.53	20220609
1,4-DIOXANE	41/84	49	1	450	MSA-MW-45S	MSA-MW-45S-060722	0.36	0.42	48.85	23.94	63.25	20220607
Metals, total (μg/L)	11/01	13	_	130	111371 11111 133	1113/111111 133 000/22	0.50	0.12	10.03	23.51	03.23	20220007
ANTIMONY	6/86	7	0.61 J	3.1	MSA-MW-24S	MSA-MW-24S-060822	0.57	0.57	1.24	0.35	0.33	20220608
ARSENIC	46/86	53	0.78 J	19	MSA-MW-14I	MSA-MW-14I-052622	0.75	0.75	4.63	2.65	3.85	20220526
BERYLLIUM	32/86	37	0.62 J	8.6 J	MSA-MW-24S	MSA-MW-24S-060822	0.62	0.62	2.67	1.19	1.67	20220608
CADMIUM	44/86	51	0.21 J	800	MSA-DMW-03I	MSA-DMW-3I-052322	0.2	0.2	46.42	23.80	99.80	20220523
CHROMIUM	26/86	30	2.5 J	110	MSA-MW-24S	MSA-MW-24S-060822	2.5	2.5	9.35	3.70	11.95	20220608
COPPER	54/86	63	1.7 J	1,300 J	MSA-MW-24S	MSA-MW-24S-060822	1.7	1.7	45.11	28.64	143.35	20220608
LEAD	42/86	49	0.51 J	37	MSA-MW-24S	MSA-MW-24S-060822	0.45	0.45	2.23	1.20	4.01	20220608
MERCURY	26/86	30	0.13 J	3.2	MSA-DMW-04D	MSA-DMW-4D-051922	0.13	0.17	0.61	0.23	0.52	20220519
NICKEL	71/86	83	1.5 J	880 J	MSA-MW-24S	MSA-MW-24S-060822	1.5	1.5	54.42	45.06	103.09	20220608
SELENIUM SILVER	24/86 11/86	28 13	0.91 J 0.065 J	20 J 1.9	MSA-MW-24S MSA-MW-47I	MSA-MW-24S-060822 MSA-MW-47I-061422	0.89 0.053	0.89 0.053	2.78 0.51	1.10 0.09	2.56 0.28	20220608 20220614
THALLIUM	23/86	27	0.003 J	1.3	MSA-MW-24S	MSA-MW-24S-060822	0.033	0.58	0.46	0.20	0.20	20220614
ZINC	62/86	72	15 J	1,900 J	MSA-MW-24S	MSA-MW-24S-060822	15	15	186.39	136.47	264.06	20220608
Metals, filtered (μg/L)	_, =,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				-			3 	
ANTIMONY	3/86	3	0.61 J	1.3 J	MSA-MW-48S	MSA-MW-48S-052422	0.57	0.57	0.88	0.31	0.12	20220524
ARSENIC	40/86	47	0.83 J	19	MSA-MW-14I	MSA-MW-14I-052622	0.75	0.75	4.67	2.37	3.65	20220526
BERYLLIUM	27/86	31	0.72 J	8.9 J	MSA-MW-24S	MSA-MW-24S-060822	0.62	0.62	3.02	1.16	1.65	20220608
CADMIUM	39/86	45	0.2 J	810	MSA-DMW-03I	MSA-DMW-3I-052322	0.2	0.2	45.41	20.65	96.82	20220523
CHROMIUM	22/86	26	2.6 J	24	MSA-MW-24S	MSA-MW-24S-060822	2.5	2.5	5.78	2.41	3.36	20220608
COPPER	38/86	44	1.8 J	470 J	MSA-MW-24S	MSA-MW-24S-060822	1.7	1.7	37.67	17.12	59.39	20220608
LEAD	23/86	27	0.46 J	7.5	MSA-DMW-09I	MSA-DMW-09I-051722	0.45	0.45	1.48	0.56	0.94	20220517
MERCURY NICKEL	16/86 70/86	19 81	0.13 J 1.6 J	2.7 850 J	MSA-DMW-04D MSA-MW-24S	MSA-DMW-4D-051922 MSA-MW-24S-060822	0.13 1.5	0.17 1.5	0.35 53.88	0.12 43.99	0.29 99.41	20220519 20220608
NICKEL SELENIUM	24/86	28	0.89 J	850 J 11 J	MSA-MW-24S MSA-MW-24S	MSA-MW-24S-060822 MSA-MW-24S-060822	0.89	0.89	2.03	0.89	1.35	20220608
SILVER	1/86	1	0.89 J 0.62 J	0.62 J	MSA-MW-47I	MSA-MW-47I-061422	0.89	0.89	0.62	0.89	0.06	20220608
THALLIUM	18/86	21	0.82 J	1.2	MSA-MW-24S	MSA-MW-24S-060822	0.033	0.58	0.62	0.03	0.08	20220614
ZINC	54/86	63	16 J	2,800 J	MSA-MW-24S	MSA-MW-24S-060822	15	15	215.78	138.28	338.94	20220608
Field parameters	,						-					
COLOR (cu)	82/82	100	0	0	MSA-DMW-03S	MSA-DMW-3S-051922	NULL	NULL	0	0	0	20220519
DISSOLVED OXYGEN (mg/L)	82/82	100	0	4.89	MSA-MW-47D	MSA-MW-47D-061422	NULL	NULL	0.36	0.36	1.06	20220614
OXIDATION REDUCTION POTENTIAL (mv)	82/82	100	-310	470	MSA-MW-50I	MSA-MW-50I-060722	NULL	NULL	99.95	99.95	157.65	20220607
PH (s.u.)	82/82	100	3.02	9.54	MSA-DMW-03S	MSA-DMW-3S-051922	NULL	NULL	5.94	5.94	1.33	20220519
SALINITY (ppt)	82/82	100	0	2.2	MSA-DMW-03S	MSA-DMW-3S-051922	NULL	NULL	0.26	0.26	0.41	20220519
SPECIFIC CONDUCTANCE (ms/cm)	82/82	100	0.012	4.1	MSA-DMW-03S	MSA-DMW-3S-051922	NULL	NULL	0.80	0.80	0.89	20220519
TEMPERATURE (deg C)	82/82	100	2.63	26.28	MSA-MW-44S	MSA-MW-44S-052022	NULL	NULL	17.49	17.49	2.95	20220520
TURBIDITY (ntu)	82/82	100	0.05	1,000	MSA-MW-54S	MSA-MW-54S-060922	NULL	NULL	19.54	19.54	109.93	20220609
Miscellaneous (µg/L) HEXAVALENT CHROMIUM	11/32	34	0.012 1	0.44	MSA-MW-15D	MSA-MW-15D-052622	0.005	0.05	0.45	0.05	0.11	20220520
Petroleum hydrocarbons (µg/L)	11/32	34	0.013 J	0.44	INIOW-ININA-TOD	IVIDA-IVIVV-15U-U52622	0.005	0.05	0.15	0.05	0.11	20220526
	45/20	39	54 J	29,000	MSA-MW-54S	MSA-MW-54S-060922	49	49	3,788.53	1,510.30	4,791.14	20220609
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	15/4×		. JT J	. 23.000	141211 14144-7 4 2	1710/ LIVIVY JTJ-UUUJZZ	7.7	, , ,	٠,،٥٥.১٥	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,1 J 1.14	20220003
GASOLINE-RANGE ORGANICS DIESEL-RANGE ORGANICS	15/38 21/38	55		•	MSA-MW-54S	MSA-MW-54S-060922	210	680	16.130		51.832.28	20220609
GASOLINE-RANGE ORGANICS	21/38		230 Ј	320,000	MSA-MW-54S	MSA-MW-54S-060922	210	680	16,130	8,976.71	51,832.28	20220609
GASOLINE-RANGE ORGANICS DIESEL-RANGE ORGANICS				•	MSA-MW-54S MSA-DMW-06I	MSA-MW-54S-060922 MSA-DMW-6I-060622	0.412	0.412	16,130 7.28		51,832.28 7.25	20220609

For non-detects, 1/2 sample quantitation limit was used as a proxy concentration. This accounts for the possible presence of analytes in a sample below the quantification limit, and may artificially elevate the 'average for all samples' values.

μg/L - micrograms per liter DRO - diesel-range oragnics GW - groundwater DRA - Dump Road Area

GRO - gasoline-range organics

J - estimated value

MSA - Martin State Airport MW- monitoring well

pCci/L - picocuries per liter TPH - total petroleum hydrocarbons

Table 4-3 Detected Analytes and Screening-Criteria Exceedances for Groundwater Samples—2022 Dump Road Area, Martin State Airport Missle River, Maryland Page 1 of 7

LOCATION Maryland DMW-02A DMW-02B DMW-03I DMW-03S DMW-04I DMW-05S DMW-06D DMW-061 DMW-06S DMW-07D MSA-DMW-3I-052322 MSA-DMW-4I-051922 MSA-DMW-5S-051922 SAMPLE ID Department of the MSA-DMW-2A-051822 MSA-DMW-2B-051822 MSA-DMW-3S-051922 MSA-DMW-4D-051922 MSA-DMW-6D-060622 MSA-DMW-6I-060622 MSA-DMW-6S-060622 MSA-DMW-7D-052022 SAMPLE DATE Environment 20220518 20220518 20220523 20220519 20220519 20220519 20220519 20220606 20220606 20220606 20220520 Groundwater Standard (1) (2) (3) Volatile organic compounds (µg/L) 1,1,1-TRICHLOROETHANE 200 0.96 U 0.48 U 5.4 0.48 U 0.48 UJ 48 U 0.48 U 9.6 U 1,1,2-TRICHLOROTRIFLUOROETHANE NC 41 U 0.41 U 8.2 U 0.82 U 0.41 U 1.3 0.59 J 0.41 UJ 0.94 U 0.47 U 6.1 0.73 J 0.47 UJ 1,1-DICHLOROETHANE 2.8 47 U 0.47 U 9.4 U 1,1-DICHLOROETHENE 49 U 0.49 U 9.8 U 2.3 0.49 U 17 16 0.49 UJ 1,2,3-TRIMETHYLBENZENE NC 31 U 0.31 U 6.2 U 1.2 J 0.31 UJ 6.6 J 0.31 UJ 1 J 1,2,4-TRICHLOROBENZENE 70 77 U 0.77 U 15 U 1.5 UJ 0.77 UJ 0.77 UJ 0.77 UJ 0.77 UJ 1.2.4-TRIMETHYLBENZENE 5.6 52 U 0.52 U 10 U 0.52 U 0.52 U 0.52 UJ 1 U 2.3 1,2-DICHLOROBENZENE 600 0.48 U 9.6 U 3.5 0.48 U 0.48 U 0.48 U 0.48 UJ 48 U 5.8 J 5.1 0.21 U 7.7 1,2-DICHLOROETHANE 21 U 0.21 U 14 0.21 UJ 1,3-DICHLOROBENZENE NC 9 U 0.9 U 0.45 U 0.45 U 0.45 U 0.45 UJ 45 U 0.45 U 1,4-DICHLOROBENZENE 75 41 U 0.41 U 8.2 U 0.82 U 0.41 U 0.41 U 0.41 U 0.41 UJ 2-BUTANONE 560 120 UJ 1.2 UJ 23 U 2.3 U 1.2 U 1.2 U 1.2 UJ 1.2 U 4-ISOPROPYLTOLUENE NC 56 U 0.56 U 11 U 1.1 U 0.56 U 0.56 U 0.56 U 0.56 UJ 1,400 110 U 5.4 U 5.4 UJ ACETONE 540 U 5.4 U 11 U 5.4 U 5.4 U BENZENE 42 U 0.42 U 8.4 U 7.7 0.42 U 2.4 2.2 0.42 UJ CARBON TETRACHLORIDE 5.2 U 0.52 U 0.26 U 0.26 U 0.26 U 0.26 UJ 0.26 U 26 U CHLOROBENZENE 100 38 U 0.38 U 7.6 U 0.9 J 0.38 U 0.77 J 0.38 U 0.38 UJ CHLOROFORM 80 0.47 U 9.4 U 0.94 U 0.47 U 0.47 J 0.47 UJ 47 U 1 CIS-1,2-DICHLOROETHENE 70 830 4.3 440 980 J 33 2000 J 2700 J 0.46 UJ DIISOPROPYL ETHER 0.17 U 0.17 UJ NC 0.17 U 3.4 U 17 U 1.1 J 0.17 U 0.17 U ETHYLBENZENE 700 42 U 0.42 U 8.4 U 5.5 0.42 U 0.42 U 1.4 0.42 UJ ISOPROPYLBENZENE 45 49 U 0.49 U 9.8 U 0.98 U 0.49 U 0.54 J 0.49 U 0.49 UJ M+P-XYLENES NC 42 U 0.42 U 8.4 U 3.7 J 0.42 U 0.42 U 2.7 0.42 UJ METHYLENE CHLORIDE 260 U 52 U 5.2 U 2.6 U 3.1 J 2.6 U 2.6 UJ 2.6 U NAPHTHALENE 0.17 0.8 U 16 UJ 3.6 0.8 U 0.8 U 0.8 UJ 80 UJ 1.3 N-PROPYLBENZENE NC 0.57 U 0.57 U 0.57 U 57 U 0.57 U 11 U 1.1 U 0.57 UJ O-XYLENE NC 0.42 U 8.4 U 4.7 0.42 U 2.1 0.42 UJ 42 U SEC-BUTYLBENZENE NC 53 U 0.53 U 11 U 1.1 U 0.53 U 0.56 J 0.58 J 0.53 UJ TERTIARY-BUTYL ALCOHOL NC 140 UJ 7.2 U 7.2 UJ 720 U 7.2 UJ 19 J 7.2 U 7.2 U TETRACHLOROETHENE 44 U 0.44 U 8.8 U 0.88 U 0.44 U 6.5 4.2 0.44 UJ 1,000 0.44 U 0.44 UJ TOLUENE 44 U 0.44 U 8.8 U 34 0.44 U 4.1 TOTAL XYLENES 1,000 42 U 0.42 U 8.4 U 8.4 0.42 U 2.1 4.7 0.42 UJ 220 J TRANS-1,2-DICHLOROETHENE 10 U 0.51 U 5.2 0.51 UJ 100 51 U 0.51 U 20 TRICHLOROETHENE 2400 1.6 560 5.4 48 4500 J 3000 J 0.44 UJ 240 VINYL CHLORIDE 290 0.45 UJ 3600 J 990 J 0.45 UJ 2 2.3 92 J Semivolatile organic compounds (µg/L) 1,4-DIOXANE 0.46 25 J 170 J 48 J 0.37 UJ 0.37 UJ 19 J 6.8 J 0.39 U Field parameters TEMPERATURE (deg C) 21.25 15.38 22.51 22.16 14.53 17.72 20.56 NC 20.65 19.31 16.51 15.29 DISSOLVED OXYGEN (mg/L) NC 4.75 0.11 0.87 0.442 SPECIFIC CONDUCTANCE (ms/cm) NC 0.722 0.016 4.1 1.04 0.849 0.378 0.384 0.691 0.482 OXIDATION REDUCTION POTENTIAL (mv) 266 243 306 -310 266 277 -22 252 405 268 NC -99 TURBIDITY (ntu) NC 4.69 12.4 6.89 5.6 5.84 1.46 11.7 6.85 9.9 4.95 4.99 SALINITY (ppt) NC 0.4 2.2 0.5 0.2 0.2 0.3 0.2 0.4 0.2 0.4 4.21 6.38 7.37 PH (s.u.) NC 4.92 4.13 9.54 4.29 3.98 5.19 4.24 4.56 Metals (μg/L) ANTIMONY 0.57 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 0.75 U 5.4 ARSENIC 10 3.9 J 0.75 U 13 BERYLLIUM 4 4.3 0.62 U 2.9 0.64 J 1.2 8.4 0.62 U 1.9 CADMIUM 360 800 1.8 0.2 U 11 0.2 U 1.1 3.6 0.2 U 2 CHROMIUM 100 2.8 J 3.7 J 4.7 J 2.5 U COPPER 1,300 8.2 1.7 U 68 2.3 11 17 33 31 60 1.7 U LEAD 15 2.1 1.8 1.1 0.45 U 3.2 0.45 U 0.45 U 1.4 0.45 U 3.2 MERCURY 0.13 U 0.19 J 0.55 0.21 0.13 U 0.13 J 3.2 0.13 U 1.9 2 0.22 NICKEL 39 140 85 2.7 41 52 6.8 49 59 1.5 U 85 SELENIUM 50 0.89 U 1.5 J 0.89 U 2.7 J 0.89 U 0.89 U 1.5 J 1.4 J 1 J 0.91 J SILVER 9.4 0.053 U THALLIUM 0.43 J 0.58 U 0.2 U 0.43 J 0.24 J 0.64 J 0.2 U 0.2 U 0.2 U 0.2 U 600 420 250 15 U 170 18 J 100 230 15 U 150 Metals, filtered (μg/L) ARSENIC 0.75 U 0.75 U 0.75 U 0.75 U 3.8 J 0.75 U 0.75 U 0.75 U BERYLLIUM 2.9 4.2 0.62 U 2.9 0.62 U 7.8 0.62 U 1.8 1.3 CADMIUM 350 810 0.2 U 11 0.2 U 0.2 U 1.9 2.5 U 3.8 J 2.5 U 2.5 U 2.5 U CHROMIUM 100 2.5 U 2.5 U 2.5 U 2.5 U 2.5 U COPPER 1,300 33 8.9 1.7 U 31 66 1.7 U 10 55 1.7 U 17 LEAD 1.9 1.7 0.45 U 0.5 J 3.2 0.45 U 1.2 0.45 U 2.6 0.45 U 15 MERCURY 0.13 U 0.13 U 0.14 J 2.7 0.13 U 0.13 J 0.13 U 0.13 U 0.13 U 0.31 NICKEL 39 140 87 91 1.5 U 42 51 6.3 48 55 1.5 U SELENIUM 50 1.4 J 1.4 J 0.89 U 1.8 J 0.96 J 0.89 U 2.5 J 0.89 U 0.89 U 1.1 J 0.053 U SILVER 9.4 THALLIUM 0.31 J 0.55 U 0.2 U 0.63 J 0.22 J 0.22 J 0.2 U 0.2 U 0.2 U 0.2 U ZINC 600 420 270 15 U 80 170 18 J 100 220 15 U 150 Miscellaneous (μg/L) HEXAVALENT CHROMIUM 0.035 0.005 UR Petroleum hydrocarbons (μg/L) GASOLINE-RANGE ORGANICS 47 830 2,400 49 U DIESEL-RANGE ORGANICS 47 1,800 410 J 890

14.1

4.87

1.69 J

1.2

17.7

6.39

8.6

2.93

Bold font indicates a positive detection.

Gray shading indicates value exceeds standard.

-- - not analyzed
J - detected, concentration estimated

Radionuclides (pCi/L)
RADIUM-228

TOTAL ALPHA RADIUM

MDE - Maryland Department of the Environment $\mu g/L$ - micrograms per liter MW - monitoring well

MW - monitoring well
NA - not available (second column) or not analyzed
NJ - tentatively identified; concentration estimated

NJ - tentatively identified; of pCi/L - picocuries per liter

U - not detected
USEPA - United States Environmental Protection Agency

¹⁻ MDE groundwater standards (MDE, 2018) unless otherwise noted.

²⁻ USEPA regional screening level for 1,4-dioxane (set at a 1×10^{-6} risk level); MDE standard is not 3- USEPA Radionuclides Rule 66 FR 76708; MDE standard is not available.

Table 4-3 Detected Analytes and Screening-Criteria Exceedances for Groundwater Samples—2022 Dump Road Area, Martin State Airport Missle River, Maryland Page 2 of 7

DMW-07I	DMW-07S	DMW-09D	DMW-09I	DMW-09S	DMW-11I	DMW-11S	MW-04	MW-06	MW-14D	MW-14I	MW-15D	MW-16D	MW-16I	MW-16S
MSA-DMW-7I-052022	MSA-DMW-75-052022	MSA-DMW-09D-051722	MSA-DMW-09I-051722	MSA-DMW-09S-051722	MSA-DMW-11I-060922	MSA-DMW-11S-060922	MSA-MW-04-051322	MSA-MW-06-060622	MSA-MW-14D-052622	MSA-MW-14I-052622	MSA-MW-15D-052622	MSA-MW-16D-052522	MSA-MW-16I-052522	MSA-MW-16S-052522
20220520	20220520	20220517	20220517	20220517	20220608	20220609	20220513	20220606	20220526	20220526	20220526	20220525	20220525	20220525
Intermediate	Upper	Lower	Intermediate	Upper	Intermediate	Upper	Upper	Upper	Aquitard below	Intermediate	Lower	Lower	Intermediate	Upper
0.48 U 0.41 U	96 U 82 U	48 U 41 U	19 U 16 U	19 U 16 U	4.8 U 4.1 U	48 U 41 U	0.48 U 0.41 U	0.48 U 0.41 U	0.48 U 0.41 U	24 U 21 U	0.48 U 0.41 U	0.48 U 0.41 U	19 U 16 U	0.96 U 0.82 U
0.47 U	94 U	47 U	19 U	19 U	4.7 U	47 U	0.41 U	0.41 U	0.41 U	24 U	0.41 U	0.47 U	19 U	0.94 U
0.49 U	98 U	49 U	20 U	20 U	4.9 U	140	0.49 U	0.49 U	0.49 U	25 U	0.49 U	0.49 U	20 U	0.98 U
0.31 UJ	62 UJ	31 U	12 U	15 J	3.1 U	31 U	0.31 U	0.31 U	0.31 U	16 U	0.31 U	0.31 U	12 U	0.62 U
0.77 U 0.52 UJ	150 U 100 UJ	77 U 52 U	31 U 21 U	31 U 31 J	7.7 U 5.2 U	77 U 52 U	0.77 U 0.52 U	0.77 U 0.52 U	0.77 UJ 0.52 U	39 UJ 26 U	0.77 UJ 0.52 U	0.77 U 0.52 U	31 U 21 U	1.5 U 1 U
0.48 U	96 U	48 U	19 U	19 U	4.8 U	48 U	0.48 U	0.48 U	0.48 U	24 U	0.48 U	0.48 U	19 U	2.1
0.56 J	42 U	24 J	46	8.4 U	2.1 U	21 U	0.98 J	0.21 U	0.21 U	11 U	0.21 U	0.21 U	8.4 U	0.42 U
0.45 U 0.41 U	90 U 82 U	45 U 41 U	18 U 16 U	18 U 16 U	4.5 U 4.1 U	45 U 41 U	0.45 U 0.41 U	0.45 U 0.41 U	0.45 U 0.41 U	23 U 21 U	0.45 U 0.41 U	0.45 U 0.41 U	18 U 16 U	0.9 U 0.82 U
1.2 U	230 U	120 U	46 U	46 U	12 U	120 U	1.2 U	1.2 U	1.2 U	58 U	1.2 U	1.2 UJ	46 UJ	2.3 UJ
0.56 UJ	110 UJ	56 U	22 U	22 U	5.6 U	56 U	0.56 U	0.56 U	0.56 U	28 U	0.56 U	0.56 U	22 U	1.1 U
5.4 U	1100 U	540 U	220 U	220 U	54 U	540 U	5.4 U	5.4 U	5.4 U	270 U	5.4 U	5.4 UJ	220 UJ	11 UJ
0.42 U 0.26 U	84 U 52 U	42 U 26 U	21 J 15 J	97 10 U	4.2 U 2.6 U	42 U 26 U	0.42 U 0.26 U	0.42 U 0.26 U	0.42 U 0.26 U	26 J 13 U	0.42 U 0.26 U	0.42 U 0.26 U	17 U 10 U	6.6 0.52 U
0.26 U	76 U	38 U	15 U	210	3.8 U	38 U	6.8	0.26 U	0.28 U	19 U	0.28 U	0.28 U	15 U	0.32 U
0.47 U	94 U	140	120	19 U	4.7 U	47 U	0.47 U	0.47 U	0.47 U	24 U	0.47 U	0.47 U	19 U	0.94 U
57	8400	680	1400	18 U	340	7200	0.72 J	0.54 J	0.46 U	75	0.94 J	0.46 U	480	22
0.17 U 0.42 U	34 U 84 U	17 U 42 U	6.8 U 17 U	6.8 U 240	1.7 U 4.2 U	17 U 42 U	0.17 U 0.42 U	0.17 U 0.42 U	0.17 U 0.42 U	8.5 U 21 U	0.17 U 0.42 U	0.17 U 0.42 U	6.8 U 17 U	2.8 J 0.84 U
0.42 U	98 U	49 U	20 U	20 U	4.2 U	42 U	0.42 U	0.42 U	0.49 U	25 U	0.42 U	0.42 U	20 U	0.84 U
0.42 U	84 U	42 U	17 U	2200	4.2 U	42 U	0.42 U	0.42 U	0.42 U	21 U	0.42 U	0.42 U	17 U	0.84 U
2.6 U	520 U	260 U	100 U	100 U	26 U	260 U	2.6 U	2.6 U	2.6 U	130 U	2.6 U	2.6 U	100 U	5.2 U
0.8 UJ 0.57 U	160 J 110 U	80 U 57 U	32 U 23 U	32 U 23 U	8 U 5.7 U	80 U 57 U	0.8 U 0.57 U	0.8 U 0.57 U	0.8 U 0.57 U	40 U 29 U	0.8 U 0.57 U	0.8 U 0.57 U	32 U 23 U	1.6 U 1.1 U
0.42 U	84 U	42 U	17 U	240	4.2 U	42 U	0.42 U	0.42 U	0.42 U	21 U	0.42 U	0.42 U	17 U	0.84 U
0.53 U	110 U	53 U	21 U	21 U	5.3 U	53 U	0.53 U	0.53 U	0.53 U	27 U	0.53 U	0.53 U	21 U	1.1 U
7.2 UJ	1400 UJ	720 U	290 U	290 U	72 U	720 U	7.2 UJ	7.2 UJ	7.2 U	360 U	7.2 U	7.2 UJ	290 UJ	14 UJ
0.44 U 0.44 U	88 U 88 U	44 U 54 J	18 U 18 U	18 U 180	4.4 U 4.4 U	44 U 120	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U	22 U 22 U	0.44 U 0.44 U	0.44 U 0.44 U	18 U 18 U	0.88 U 0.88 U
0.44 U	84 U	42 U	17 U	2400	4.4 U	42 U	0.44 U	0.44 U	0.42 U	21 U	0.42 U	0.42 U	17 U	0.84 U
1.3	100 U	51 U	20 U	20 U	5.1 U	51 U	0.51 U	0.51 U	0.51 U	26 U	0.51 U	0.51 U	20 U	1 U
44	1400	4000	1800	18 U	61	1400	0.44 U	0.44 U	0.44 U	22 U	0.44 U	0.44 U	2500 J	0.88 U
23	2100	78 J	550	18 U	110	6800	1	0.45 U	0.45 U	1400	0.45 U	0.45 U	33 J	83
1.1 J	18 J	36 J	100 J	5.8 J	0.37 UJ	8.3	2.2 J	0.36 U	0.37 U	15	0.37 U	0.37 U	0.37 U	130 J-
					1		1		1 12 22	1	1	1122	1	1000
16.78	21.19 0	15.54	18.44	16.92	15.94	16.1	17.07	14.97 0	15.69 1.17	14.79	19.03 0.15	14.22	14.12 0.77	13.54
0.611	1.04	0.348	0.782	0.862	0.048	0.492	1.21	0.695	0.169	1.53	0.047	0.024	0.086	1.88
157	51	99	85	-125	47	3	-162	-20	25	-82	204	321	281	-80
8.03	12.26	26	16.5	4.39	2.46	1.51	1.7	4.83	5.54	5.16	5.36	2.36	3.2	5.18
0.3 5.14	0.5 6.39	0.2 4.58	0.4 5.8	0.4 7.08	5.81	0.02 6.8	0.6 8.05	0.3 6.47	0.1 7.55	0.8 6.73	5.62	0 4.39	3.98	0.9 6.63
	5.55				5.02		1.00				J.U.			
0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U		0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
0.75 U 1.7	0.75 U 0.62 U	6.2 0.68 J	0.75 U 3.2	1.1 J 0.62 U	3.8 J 0.62 U	5 0.62 U	0.75 U 0.62 U	1.7 J 0.62 J		19 0.62 U	0.75 U 0.62 U	0.75 U 0.62 U	6.5 0.62 U	0.78 J 0.62 U
2.7	0.62 U	0.88 J	6.6	0.62 U	0.62 U	0.82 U	0.62 U	0.82 J 0.2 U		0.82 U	0.62 U	0.62 U	0.82 U	0.62 U
3.3 J	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		2.5 U	2.5 U	2.5 U	2.5 U	2.9 J
34	3.5	13	17	1.7 U	4.8	1.7 U	1.7 U	1.7 U		1.7 U	3.4	4.7	3.2	1.7 U
2.3 0.13 U	0.45 U 0.13 U	5 0.13 U	4 0.13 U	0.45 U 0.13 U	0.71 J 0.49	0.45 U 0.13 U	0.82 J 0.13 U	0.45 U 0.13 U		0.45 U 0.13 U	0.45 U 0.13 U	0.45 U 0.13 U	0.45 U 0.13 U	0.45 U 0.13 U
37	6.5	54	110	1.5 U	1.5 J	2.9	1.5 U	5.5		1.5 U	9.4	11	53	28
0.89 U	0.89 U	0.89 U	1.9 J	0.89 U	0.89 U	0.89 U	0.89 U	0.89 U		0.89 U	0.89 U	0.89 U	0.89 U	0.89 U
0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U		0.053 U	0.053 U	0.053 U	0.053 U	0.053 U
0.2 U 150	0.2 U 15 U	0.2 U 170	0.2 U 360	0.2 U 15 U	0.58 J 17 J	0.2 U 15 U	0.2 U 30	0.2 U 24		0.2 U 15 U	0.2 U 15 J	0.2 U 19 J	0.2 U 87	0.2 U 23
	15 0												, <i>,</i>	
0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U		0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
0.75 U	0.75 U	6.3	1.2 J	0.9 J	3.9 J	4.1 J	0.75 U	1.5 J		19	0.75 U	0.75 U	4 J	0.75 U
1.7 2	0.62 U 0.2 U	0.62 U 0.2 U	6	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U		0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.29 J	0.62 U 0.2 U
2.7 J	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U		2.5 U	2.5 U	2.5 U	2.5 U	2.7 J
1.7 U	3.1	1.7 U	22	1.7 U	2.3	1.7 U	1.7 U	1.7 U		1.7 U	3.3	5.3	1.8 J	1.7 U
0.95 J	0.45 U	0.45 U	7.5 0.13 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U		0.45 U	0.45 U	0.45 U	0.45 U	0.45 U 0.13 U
0.13 U 39	0.13 U 6.7	0.13 U 58	100	0.13 U 1.5 U	0.17 J 1.6 J	0.13 U 2.2	0.13 U 1.5 U	0.13 U 5.5		0.13 U 1.5 U	0.13 U 9.7	0.13 U 11	0.13 U 50	25
0.89 U	0.89 U	0.89 U	2 J	0.89 U	0.89 U	0.89 U	0.89 U	0.89 U		0.89 U	0.89 U	0.89 U	0.89 U	0.89 U
0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U		0.053 U	0.053 U	0.053 U	0.053 U	0.053 U
0.2 U 150	0.2 U 15 U	0.2 U 160	0.2 U 330	0.2 U 15 U	0.2 U 16 J	0.2 U 15 U	0.2 U 15 U	0.42 J 19 J		0.2 U 15 U	0.2 U 15 U	0.2 U	0.2 U 81	0.2 U 15 U
130	T2 U	100	330	12 0	T0 1	T2 U	13 U	Ta 1		13 U	T2 0	17 J	Δ1	15 U
									0.065 J		0.44	0.3		
	4,700 400 J			5,200 920		4,200 1,100	49 U 310 J	49 U 380 J						54 J 230 J
	400 3			320		1,100	310 3	300 3						230 3
												0.906		0.667
	1	1	1	1	1	1	1		1	1	1	0.443 U	1	0.67

Table 4-3 Detected Analytes and Screening-Criteria Exceedances for Groundwater Samples—2022 Dump Road Area, Martin State Airport Missle River, Maryland Page 3 of 7

MW-17I	MW-17S	MW-18I	MW-18S	MW-19D	MW-20D	MW-201	MW-20S	MW-21D	MW-21I	MW-22D	MW-23D	MW-23S	MW-24I
MSA-MW-17I-061022 20220609	MSA-MW-17S-061022 20220610	MSA-MW-18I-051822 20220518	MSA-MW-18S-051822 20220518	MSA-MW-19D-060722 20220607	MSA-MW-20D-051322 20220513	MSA-MW-20I-051322 20220513	MSA-MW-20S-051322 20220513	MSA-MW-21D-060322 20220603	MSA-MW-21I-060322 20220603	MSA-MW-22D-060322 20220603	MSA-MW-23D-060322 20220603	MSA-MW-23S-060322 20220603	MSA-MW-24I-060822 20220608
20220003	20220010	20220310	20220313	2022007	20220313	20220313	20220313	20220003	20220003	20220003	20220003	20220003	20223000
Intermediate	Upper	Intermediate	Upper	Lower	Lower	Intermediate	Upper	Lower	Intermediate	Lower	Lower	Upper	Intermediate
memediate	Оррег	memediate	Оррел	2007C1	Lowe :	mermediate	Оррсі	Lower	memediace	2001CI	Editor	Оррег	intermediate
19 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	0.48 U	2.4 U	0.48 U	0.48 U	0.48 U	1.2 U
16 U 19 U	0.41 U 0.47 U	0.41 U 0.47 U	0.41 U 0.47 U	0.41 U 0.47 U	0.41 U 0.47 U	0.41 U 0.47 U	0.41 U 0.47 U	0.41 U 0.47 U	2.1 U 2.4 U	0.41 U 0.47 U	0.41 U 0.47 U	0.41 U 0.47 U	1 U 1.2 U
20 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	0.49 U	2.5 U	0.49 U	0.49 U	0.49 U	1.2 U
12 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	0.31 U	1.6 U	0.31 U	0.31 U	0.31 U	0.78 U
31 U 21 U	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U	3.9 U 2.6 U	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U	1.9 U 1.3 U
19 U	0.32 U	0.32 U	0.32 U	0.48 U	0.48 U	0.32 U	0.32 U	0.32 U	2.4 U	0.32 U	0.48 U	0.32 U	1.3 U
8.4 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.21 U	0.27 J	0.21 U	1.1 U	0.21 U	0.21 U	0.21 U	0.53 U
18 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	2.3 U	0.45 U	0.45 U	0.45 U	1.1 U
16 U 46 U	0.41 U 1.2 U	0.41 U 1.2 UJ	0.41 U 1.2 UJ	0.41 U 1.2 U	2.1 U 5.8 U	0.41 U 1.2 U	0.41 U 1.2 U	0.41 U 1.2 U	1 U 2.9 U				
22 U	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U	0.56 U	2.8 U	0.56 U	0.56 U	0.56 U	1.4 U
220 U	5.4 U	27 U	5.4 U	5.4 U	5.4 U	14 U							
17 U 10 U	0.42 U 0.26 U	0.42 U 0.26 U	0.42 U 0.26 U	0.42 U 0.26 U	0.42 U 0.26 U	0.42 U 0.26 U	0.42 U 0.26 U	0.42 U 0.26 U	2.1 U 1.3 U	0.42 U 0.26 U	0.42 U 2.5	0.74 J 0.26 U	1.1 U 65
15 U	0.26 U	0.26 U 0.42 J	0.26 U	0.26 U	0.26 U	0.26 U	2.9	0.26 U	1.9 U	0.26 U	0.38 U	0.26 U	0.95 U
19 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	0.47 U	2.4 U	0.47 U	3.1	0.47 U	13
270	1	3.6	2.6	0.46 U	2.9	0.5 J	18	0.46 U	210	0.46 U	0.46 U	0.46 U	5.1
6.8 U 17 U	0.17 U 0.42 U	0.17 U 0.42 U	0.17 U 0.42 U	0.17 U 0.42 U	0.17 U 0.42 U	0.17 U 0.42 U	0.17 U 0.42 U	0.17 U 0.42 U	0.85 U 2.1 U	0.17 U 0.42 U	0.17 U 0.42 U	0.17 U 0.42 U	0.43 U 1.1 U
20 UJ	0.42 U 0.49 UJ	0.42 U 0.49 U	0.42 U 0.49 U	0.42 U 0.49 U	0.42 U	0.42 U 0.49 U	0.42 U 0.49 U	0.42 U 0.49 U	2.1 U 2.5 U	0.42 U 0.49 U	0.42 U 0.49 U	0.42 U 0.49 U	1.1 U
17 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	2.1 U	0.42 U	0.42 U	0.42 U	1.1 U
100 U	2.6 U	13 U	2.6 U	2.6 U	2.6 U	6.6 U							
32 U 23 U	0.8 U 0.57 U	0.8 U 0.57 U	0.8 U 0.57 U	0.8 U 0.57 U	0.8 U 0.57 U	0.8 U 0.57 U	0.8 U 0.57 U	0.8 U 0.57 U	4 U 2.9 U	0.8 U 0.57 U	0.8 U 0.57 U	0.8 U 0.57 U	2 U 1.4 U
17 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	2.1 U	0.42 U	0.42 U	0.42 U	1.1 U
21 U	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U	0.53 U	2.7 U	0.53 U	0.53 U	0.53 U	1.3 U
290 U	7.2 U	7.2 UJ	7.2 U	36 U	7.2 U	7.2 U	7.2 U	18 U					
18 U 18 U	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U	2.2 U 2.2 U	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U	1.1 U 1.1 U
17 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	0.42 U	2.1 U	0.42 U	0.42 U	0.42 U	1.1 U
20 U	1.6	0.51 U	0.59 J	0.51 U	3.4 J	0.51 U	0.51 U	0.51 U	1.3 U				
1600 18 U	5.4 0.45 U	2.2 3.4	0.44 U 0.8 J	24 0.45 U	4.8 0.56 J	0.44 U 0.45 UJ	2.5 5 J	1.1 0.45 U	3.4 J 54	0.44 U 0.45 U	1.5 0.45 U	0.44 U 0.93 J	150 1.1 U
18 0	0.43 0	3.4	0.8 3	0.43 0	0.30 3	0.45 01	3,	0.43 0	34	0.43 0	0.43 0	0.33 1	1.1 0
0.39 U	0.39 U	0.37 UJ	1.2 J	0.36 U	0.37 UJ	0.37 UJ	1.3 J	0.37 U	2.2	0.42 U	0.42 U	0.4 U	0.37 U
14.81	15.86	18.34	15.69	15.74	18.1	17.47	17.04	17.33	16.96	18.47	18.97	19.08	16.58
0	0.1	0	0	0	0	0.95	0	0	0	1.85	0	0.78	0
0.059	0.166	0.847	1.61	0.25	0.232	0.136	0.223	0.094	1.11	0.161	0.146	0.331	0.189
327 3.17	23 5.12	-5 27.8	-67 42.7	-26 2.35	260 2.75	83 5.18	70 9.76	<u>3</u> 9.9	-73 5.07	9.6	-66 11.8	-60 20.9	-44 4.39
0	0.01	0.4	0.8	0.1	0.1	0.1	0.1	0	0.5	0.01	0.01	0.02	0.01
4.25	7.66	6.64	6.94	5.58	5.35	7.7	6.41	6.39	6.87	6.56	6.92	7.31	7.23
0.57 U	0.57 U	0.57 U		0.57 U	0.61 J	0.57 U							
2.5 J	3.4 J	0.87 J		0.75 U	0.75 U	1 J	0.83 J	0.75 U	16	1.4 J	1 J	0.82 J	2 J
0.62 U	0.62 U	0.62 U		0.62 J	0.62 U	0.62 UJ							
0.2 U	0.2 U	2.3 2.5 U		0.2 U	1 25 11	0.2 U	0.51 J	0.2 U					
2.5 U 1.7 U	2.5 U 1.7 J	2.5 0		5.8 1.7 U	2.5 U 3.1	2.5 U 3.3	2.5 U 4.9	2.5 U 1.8 J	2.5 U 1.7 U	2.7 J 1.9 J	5 3.7	4.4 J 7.2	2.5 U 3 J
0.45 U	0.54 J	0.71 J		0.45 U	0.45 U	0.52 J	0.85 J	0.51 J	0.45 U	0.79 J	0.63 J	1.3	0.55 J
0.13 U	0.13 U	0.13 J		0.13 U	1.7	0.13 U	0.13 U	0.22	0.25	0.13 U	0.13 U	0.31	0.13 U
35 0.89 U	43 0.89 U	1.7 J 0.89 U		11 0.89 U	40 0.93 J	1.5 U 0.89 U	1.5 U 0.89 U	3.5 0.89 U	1.5 U 0.89 U	3.7 0.89 U	1.9 J 0.89 U	3.6 0.89 U	6.3 J 0.89 UJ
0.89 U	0.053 U	0.053 U		0.053 U	0.053 U	0.053 U	0.89 U	0.89 U	0.89 U	0.053 U	0.89 U	0.89 U	0.053 UJ
0.2 U	0.2 U	0.2 U		0.42 J	0.2 U								
72	23	15 U		15 U	69	15 U	15 U	21	15 U	62	15 U	35	15 UJ
0.57 U	0.57 U	0.57 U		0.57 U									
1.6 J	3.1 J	0.75 U		0.75 U	17	1.5 J	0.75 U	0.83 J	1.3 J				
0.62 U	0.62 U	0.62 U		0.93 J	0.62 U	0.62 UJ							
0.2 U 2.5 U	0.2 U 2.5 U	2.1 2.5 U		0.2 J 5.5	0.93 J 2.5 U	0.2 U 2.5 U	0.2 U 2.5 U	0.2 U 2.5 U	0.2 U 2.5 U	0.2 U 2.5 U	0.2 U 3.5 J	0.2 U 3.5 J	0.2 U 2.5 U
1.7 U	1.7 U	1.7 U		1.7 U	2.6	2.4	4	1.7 U	1.7 UJ				
0.45 U	0.45 U	0.45 U		0.45 U									
0.13 U 30	0.13 U 42	0.13 J 1.8 J		0.13 U 12	0.13 U 40	0.13 U 1.5 U	0.13 U 1.5 U	0.16 J 3.6	0.16 J 1.5 U	0.2 3.7	0.13 J 1.7 J	0.13 U 3.4	0.13 U 5 J
0.89 U	0.89 U	0.89 U		0.9 J	0.89 J	0.89 U	0.89 UJ						
0.053 U	0.053 U	0.053 U		0.053 U	0.053 UJ								
0.2 U	0.2 U	0.2 U		0.84 J	0.2 U								
65	17 J	15 U		15 U	68	15 U	15 U	23	15 U	23	15 U	15 U	15 UJ
					-								
	49 U		49 U				49 U		_		_	49 U	
	230 U		230 U				220 U					240 U	
		i				i							

Table 4-3 Detected Analytes and Screening-Criteria Exceedances for Groundwater Samples—2022 Dump Road Area, Martin State Airport Missle River, Maryland Page 4 of 7

NAVA 246	2014 251	NAW 250	2014 270	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MW 20D	MW 20D	1 ANN 201	MW 24D	2014 221	1 ANN 220	201	BANA 22C	2014 201	B014 246
MW-24S MSA-MW-24S-060822	MW-25I MSA-MW-25I-060622	MW-25S MSA-MW-25S-060622	MW-27D MSA-MW-27D-051722	MW-29D MSA-MW-29D-061522	MW-29D MSA-MW-29D-061622	MW-30D MSA-MW-30D-061522	MW-30I MSA-MW-30I-060822	MW-31D MSA-MW-31D-061522	MW-32I MSA-MW-32I-061022	MW-32S MSA-MW-32S-061522	MW-33I MSA-MW-33I-060822	MW-33S MSA-MW-33S-060822	MW-34I MSA-MW-34I-051622	MW-34S MSA-MW-34S-051622
20220608	20220606	20220606	20220517	20220614	20220616	20220615	20220607	20220615	20220610	20220615	20220608	20220608	20220516	20220516
Upper	Intermediate	Upper	Deep/confined	Deep/confined	Deep/confined	Deep/confined	Intermediate	Deep/confined	Intermediate	Upper	Intermediate	Upper	Intermediate	Upper
0.48 U 0.41 U		0.48 U 0.41 U	4.8 U 4.1 U				0.48 U 0.41 U	0.48 U 0.41 U	0.96 U 0.82 U	0.48 U 0.41 U				
0.47 U		0.47 U	4.7 U				0.47 U	0.47 U	0.94 U	0.47 U				
0.49 U		0.49 U	4.9 U				0.49 U	0.49 U	0.98 U	0.49 U				
0.31 U 0.77 U		0.31 U 0.77 U	3.1 U 7.7 U				0.31 U 0.77 U	0.31 U 0.77 U	0.62 U 1.5 U	0.31 U 0.77 U				
0.52 U		0.52 U	5.2 U				0.52 U	0.52 U	1 U	0.52 U				
0.48 U		0.48 U	4.8 U				0.48 U	0.48 U	0.96 U	0.48 U				
0.21 U 0.45 U		0.21 U 0.45 U	2.1 U 4.5 U				0.21 U 0.45 U	0.21 U 0.45 U	5.8 0.9 U	0.35 J 0.45 U				
0.41 U		0.41 U	4.1 U				0.41 U	0.41 U	0.82 U	0.41 U				
1.2 U		1.2 U	12 U				1.2 U	1.2 U	2.3 U	1.2 U				
0.56 U 5.4 U		0.56 U 5.4 U	5.6 U 54 U				0.56 U 5.4 U	0.56 U 5.4 U	1.1 U 11 U	0.56 U 5.4 U				
0.42 U		0.42 U	4.2 U				0.42 U	0.42 U	1.2 J	0.42 U				
0.26 U		0.26 U	62				0.26 U	0.26 U	0.52 U	0.26 U				
0.38 U 0.47 U		0.38 U 0.47 U	3.8 U 5.7 U				0.38 U 0.47 U	0.38 U 0.47 U	0.76 U 0.94 U	0.38 U 0.47 U				
0.46 U	0.46 U	7.5	0.46 U	0.47 U		0.46 U	4.6 U				0.47 U	9.8	57	2.6
0.17 U		0.17 U	1.7 U				0.17 U	0.17 U	0.34 U	0.17 U				
0.42 U 0.49 U		0.42 U 0.49 U	4.2 U 4.9 U				0.42 U 0.49 U	0.42 U 0.49 U	0.84 U 0.98 U	0.42 U 0.49 U				
0.49 U		0.49 U 0.42 U	4.9 U				0.49 U	0.49 U	0.98 U 6	0.49 U				
2.6 U		2.6 U	26 U				2.6 U	2.6 U	5.2 U	2.6 U				
0.8 U 0.57 U		0.8 U 0.57 U	8 U 5.7 U				0.8 U 0.57 U	0.8 U 0.57 U	1.6 U	0.8 U 0.57 U				
0.42 U	0.57 U	0.57 U	0.42 U	0.37 U		0.37 U	4.2 U				0.37 U 0.42 U	0.42 U	1.1 U 1.6 J	0.57 U
0.53 U		0.53 U	5.3 U				0.53 U	0.53 U	1.1 U	0.53 U				
7.2 U	7.2 UJ	7.2 UJ	7.2 U	7.2 UJ		7.2 UJ	72 U				7.2 U	7.2 U	14 UJ	7.2 UJ
0.44 U 0.44 U		0.44 U 0.44 U	4.4 U 4.4 U				0.44 U 0.44 U	0.44 U 0.44 U	0.88 U 0.88 U	0.44 U 0.44 U				
0.42 U		0.42 U	4.2 U				0.42 U	0.42 U	7.6	0.42 U				
0.51 U		0.51 U	5.1 U				0.51 U	0.51 U	1 U	0.51 U				
0.44 U 0.45 U	0.44 U 0.45 U	0.44 U 20	0.44 U 0.45 U	0.44 U 0.45 U		0.44 U 0.45 U	560 4.5 U				0.44 U 0.45 U	6.3	0.88 U 97	0.44 ∪ 1.7 J
0.39 U	0.39 U	0.39 U	0.39 UJ	0.37 U		0.37 U	0.39 U				0.37 U	0.39 U	0.36 UJ	0.37 UJ
18	15.97	15.16	14.66	16.29		18.18	2.63	18.61	19.64	20.98	17.19	19.58	15.42	15.14
0	0	0	1.81	4.76		1.34	0	0	0	0	0	0	0	0.29
3.05 235	0.49 -52	0.173 -61	0.014 345	0.012 304		0.021 196	0.081 233	0.311 -79	0.312 -90	0.46 -7	0.131 -155	0.08	0.1 257	0.089 285
11.2	27.5	4.97	1.68	4.38		3.76	0.05	5.39	4.9	5.07	5.38	5.09	6.23	5.06
0.16	0.01	0.01	0	0		0	0	0.01	0.1	0.02	0.1	0	0	0
4.05	7.34	7.19	4.2	4.49		5.58	5.77	8.1	6.89	7.07	7.42	6.25	4.61	4.46
3.1	0.57 U	0.57 U	0.57 U	0.57 U			0.57 U	0.57 U	0.57 U	0.57 U		0.57 U	0.57 U	0.57 U
0.75 U	10	4.9 J	0.75 U	0.75 U			0.75 U	0.75 U	2 J	0.8 J		6.7	0.75 U	2.7 J
8.6 J 4.1	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U			0.62 UJ 0.35 J	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U		0.62 UJ 0.2 U	2.5 0.34 J	1.4 0.39 J
110	7.2	2.8 J	2.5 U	2.5 U			2.5 U	3 J	5.7	3.2 J		2.5 U	2.5 U	2.5 U
1300 J	4.3	2.9	3.9	1.7 U			5.3 J	2.3	1.7 U	1.7 U		5.7 J	280	11
2.6	1.3 0.13 U	1.3 0.13 U	0.45 U 0.13 U	0.45 U 0.13 U			0.45 U 0.13 U	0.54 J 0.13 U	0.45 U 0.13 U	0.45 U 0.13 U		2.2 0.13 U	0.81 J 0.16 J	0.86 J 0.25
880 J	18	15	6.5	1.7 J			17 J	1.5 U	1.5 U	1.5 U		3.4 J	260	180
20 J	0.89 U	0.89 U	0.89 U	0.89 U			0.89 UJ	0.89 U	0.89 U	0.89 U		0.89 UJ	0.89 U	0.89 U
1.5 J 1.3	0.053 U 0.2 U	0.053 U 0.2 U	0.053 U 0.42 U	0.053 U 0.2 U			0.053 UJ 0.45 J	0.053 U 0.2 U	0.053 U 0.2 U	0.053 U 0.2 U		0.096 J 0.2 U	0.053 U 0.37 J	0.053 U 0.56 J
1900 J	15 U	15 U	29	19 J			420 J	310	15 J	15 U		180 J	500	330
2.57	0.55	0.55	2.55	2.55			2.55	0.57	0.55	A == ··		A 5= ··	0.57.:	0.55
0.57 U 0.75 U	0.57 U 11	0.57 U 4.5 J	0.57 U 0.75 U	0.57 U 0.75 U			0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 1.6 J	0.57 U 0.75 U		0.57 U 6.9	0.57 U 0.75 U	0.57 U 1.4 J
8.9 J	0.62 U	0.62 U	0.73 U	0.62 UJ			0.73 U 0.62 UJ	0.62 UJ	0.62 U	0.73 U 0.62 UJ		0.62 UJ	2.2	1.6
4.2	0.2 U	0.2 U	0.2 U	0.2 U			0.36 J	0.2 U	0.2 U	0.2 U		0.2 U	0.27 J	0.43 J
24 470 J	7 4.3	2.8 J 3.1	2.5 U 3.3	2.5 U 1.7 U			2.5 U 5.3 J	2.6 J 1.7 U	5.2 1.7 U	2.5 U 1.7 U		2.5 U 3.9 J	2.5 U 250	2.5 U 8.5
1.3	1.2	1.4	0.45 U	0.45 U			0.45 U	0.45 U	0.45 U	0.45 U		1.3	0.45 U	0.51 J
0.13 U			0.13 U	0.13 U	0.13 U	0.13 U		0.13 U	0.13 U	0.13 U				
850 J	18	15	6.4	1.7 J			18 J	1.5 U	1.5 U	1.5 U		4 J	240	170
11 J 0.053 UJ	0.89 U 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U			0.89 UJ 0.053 UJ	0.89 U 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U		0.89 UJ 0.053 UJ	0.89 U 0.053 U	0.89 U 0.053 U
1.2	0.2 U	0.2 U	0.58 U	0.2 U			0.5 U	0.2 U	0.2 U	0.49 U		0.2 U	0.2 U	0.8 J
2800 J	15 U	15 U	20	32			410 J	95	21	15 U		160 J	490	320
				0.35		0.099		0.05 U			0.05 U			
49 U 260 J		49 U 240 U								49 U 230 U		49 U 230 U	77 J 220 U	49 U 230 U
200 J		Z4U U								250 U		250 U	ZZU U	230 U
					0.412 U									
					0.254 U									

Table 4-3 Detected Analytes and Screening-Criteria Exceedances for Groundwater Samples—2022 Dump Road Area, Martin State Airport Missle River, Maryland Page 5 of 7

1411/250	1 ANN 252		1 1111 200	100	1 200		1 2011 440	1 100	1 100	1 1000	1	1	1997.455	1 1000
MW-35S MSA-MW-35S-052322	MW-36S MSA-MW-36S-060622	MW-37S MSA-MW-37S-060622	MW-38S MSA-MW-38S-060822	MW-40I MSA-MW-40I-052722	MW-40S MSA-MW-40S-052722	MW-41I MSA-MW-41I-060222	MW-41S MSA-MW-41S-060222	MW-42I MSA-MW-42I-060222	MW-42S MSA-MW-42S-060222	MW-43S MSA-MW-43S-061322	MW-44S MSA-MW-44S-052022	MW-45S MSA-MW-45S-060722	MW-46D MSA-MW-46D-061322	MW-46I MSA-MW-46I-061322
20220523	20220606	20220606	20220608	20220527	20220527	20220602	20220602	20220527	20220602	20220613	20220520	20220607	20220613	20220613
Upper	Upper	Upper	Upper	Intermediate	Upper	Intermediate	Upper	Intermediate	Upper	Upper	Upper	Upper	Intermediate	Intermediate
0.48 U 0.41 U	0.48 U 0.41 U			9.6 U 8.2 U	19 U 16 U	19 U 16 U	19 U 16 U	19 U 16 U	0.48 U 0.41 U	0.48 U 0.41 U	0.48 U 0.41 U	48 U 41 U	0.96 U 0.82 U	1.9 U 1.6 U
0.47 U	0.47 U			9.4 U	19 U	19 U	19 U	19 U	0.41 U	0.41 U	2	47 U	0.94 U	1.9 U
0.49 U	0.49 U			9.8 U	20 U	20 U	20 U	20 U	0.49 U	0.49 U	0.49 U	49 U	0.98 U	2.8 J
0.31 UJ 0.77 U	0.31 U 0.77 U			6.2 U 15 U	12 U 31 U	12 U 31 U	12 U 31 U	12 U 31 U	6.1 0.77 U	0.31 U 0.77 U	0.31 UJ 0.77 U	31 U 77 U	0.62 U 1.5 U	1.2 U 3.1 U
0.52 UJ	0.52 U			10 U	21 U	21 U	21 U	21 U	13	0.52 U	0.52 UJ	52 U	1.5 U	2.1 U
0.48 U	0.48 U			9.6 U	19 U	19 U	19 U	19 U	0.48 U	0.48 U	0.48 U	48 U	0.96 U	1.9 U
0.25 J 0.45 U	0.21 U 0.45 U			4.2 U 9 U	8.4 U 18 U	22 J 18 U	53 18 U	8.4 U 18 U	2 0.45 U	0.21 U 0.45 U	0.21 U 0.45 U	61 J 45 U	2.8 0.9 U	6.2 1.8 U
0.41 U	0.41 U			8.2 U	16 U	26 J	16 U	16 U	0.41 U	0.41 U	8	41 U	0.82 U	1.6 U
1.2 U	1.2 U			23 U	46 U	46 U	46 U	46 U	1.2 J	1.2 U	1.2 U	120 U	2.3 U	4.6 U
0.56 UJ 5.4 U	0.56 U 5.4 U			11 UJ 110 U	22 U 220 U	22 U 220 U	22 U 220 U	22 U 220 U	0.57 J 11	0.56 U 5.4 U	0.56 UJ 5.4 U	56 U 540 U	1.1 U 11 U	2.2 U 22 U
0.42 U	0.42 U			8.4 U	17 U	34 J	32 J	17 U	2.9	0.42 U	0.42 U	49 J	0.84 U	1.7 U
0.26 U	0.26 U			5.2 U	10 U	10 U	10 U	10 U	0.26 U 1.7	0.26 U	0.26 U	26 U	0.52 U	1 U
0.38 U 0.47 U	0.38 U 0.47 U			7.6 U 9.4 U	15 U 19 U	580 19 U	91 19 U	15 U 19 U	0.47 U	0.38 U 0.47 U	4.1 0.47 U	210 47 U	0.76 U 0.94 U	13 1.9 U
8.1	0.46 U			750	1800	1200	1500	990	2	0.46 U	0.63 J	2100	53	110
0.17 U	0.17 U			3.4 U	6.8 U	6.8 U	6.8 U	6.8 U	0.17 U	0.17 U	0.17 U	17 U	0.34 U	0.68 U
0.42 U 0.49 U	0.42 U 0.49 U			8.4 U 9.8 UJ	17 U 20 U	17 U 20 U	17 U 20 U	17 U 20 U	48 1.1	0.42 U 0.49 U	0.42 U 0.49 U	42 U 49 U	0.84 U 0.98 U	1.7 U 2 U
0.42 U	0.42 U			8.4 U	17 U	24 J	17 U	66 J	740	0.42 U	1.1 J	42 U	0.84 U	1.7 U
2.6 U 0.8 UJ	2.6 U 0.8 U			52 U 16 U	100 U 32 U	100 U 32 U	120 J 32 U	100 U 32 U	2.6 U 0.8 U	2.6 U 0.8 U	2.6 U 120 J	260 U 80 U	5.2 U 1.6 U	10 U 3.2 U
0.8 UJ	0.8 U 0.57 U			16 U	23 U	23 U	23 U	23 U	0.8 U	0.8 U	0.57 U	57 U	1.6 U	2.3 U
0.42 U	0.42 U			8.4 U	17 U	17 U	17 U	17 U	110	0.42 U	0.51 J	42 U	1.1 J	1.7 U
0.53 U	0.53 U			11 U	21 U 290 U	21 U	21 U 290 U	21 U	0.53 J	0.53 U	0.53 U	53 U	1.1 U	2.1 U
7.2 UJ 0.44 U	7.2 UJ 0.44 U			140 U 8.8 U	18 U	290 U 18 U	18 U	290 U 18 U	7.2 U 0.44 U	7.2 UJ 0.44 U	7.2 UJ 0.44 U	720 U 44 U	14 UJ 0.88 U	29 UJ 1.8 U
0.44 U	0.44 U			8.8 U	18 U	18 U	18 U	18 U	22	0.44 U	0.44 U	44 U	0.88 U	1.8 U
0.42 U 0.51 U	0.42 U 0.51 U			8.4 U 27	17 U	24 J 20 U	17 U 20 U	66 J 20 U	850 0.51 U	0.42 U 0.51 U	1.6 J 0.51 U	42 U 51 U	1.1 J 1 U	1.7 U 2 U
1.6	0.44 U			93	86	460	2300	75	0.31 U	0.44 U	0.44 U	2700	140	250
1	0.45 U			36	52	920	1300	210	1.6	0.45 U	0.54 J	1600	13	86
0.37 UJ	0.4 U			5	2.5	140	0.39 UJ	22	0.37 UJ	0.4 U	7.4 J	450	0.39 U	11
0.07	31.5					- 10	0.05 05		0.07 00	5			0.03 0	
19.07 0	15.99 0	15.2 0	16.22	15.92	15.5	19.74 0	18.97 0	17.98 0	23.22	19.7 0.01	26.28 0	15.45	18.01 0	18.7 0
0.141	0.054	0.28	0.143	1.41	1.29	0.834	0.659	0.199	0.149	0.516	1.29	0.924	0.029	0.311
226	275	85	-41	45	-22	-54	157	30	-9	153	-251	252	212	210
4.2 0.1	1.84	4.66 0.01	7.4 0.1	5.65 0.7	3.45 0.6	5.45 0.4	6.27 0.3	1.22 0.1	9.81 0.1	9.48 0.02	4.01 0.6	4.23 0.05	6.96	7.77 0.01
4.5	4.16	6.38	6.2	6.19	6.96	7.04	6.56	5.71	6	7.62	7.38	6.05	4.63	5.4
0.57 U 0.75 U	0.57 U 2.8 J	0.57 U 1.1 J	0.57 U 11	0.57 U 5.1	0.57 U 3.1 J	0.57 U 3.4 J	0.57 U 0.75 U	0.57 U 2.9 J	0.65 J 2.6 J		0.57 U 0.75 U	0.83 J 0.75 U	0.57 U 2.2 J	0.57 U 0.75 U
3.4	1	0.62 U	0.62 UJ	0.66 J	0.62 U		0.62 U	0.62 U	0.62 U	0.62 U				
0.5 J	0.4 J	0.2 U	0.2 U	0.22 J	0.2 U	3.7	67	0.2 U	0.2 U		0.2 U	81	0.2 U	0.88 J
2.5 U 5.3	2.5 U 1.7 U	2.5 U 1.7 U	2.5 U 1.7 UJ	2.5 U 1.7 U	2.5 U 1.7 U	2.5 U 1.7 U	2.5 U 2.7	2.5 U 2.9	6.7 4.1		2.5 U 1.7 U	2.5 U	2.5 U 1.7 U	2.5 U 1.7 U
0.75 J	0.45 U	1.1	1.6		0.45 U	0.45 U	0.83 J	0.45 U						
0.13 U	0.13 U	1.4	0.13 U	0.15 J		0.13 U	0.13 U	0.13 U	0.13 U					
120 0.89 U	120 0.89 U	2 0.89 U	5.9 J 0.89 UJ	1.5 J 0.98 J	1.7 J 0.89 U	6.2 0.89 U	89 1.1 J	2.7 0.89 U	1.5 U 0.89 U		1.5 U 0.89 U	110 2 J	22 0.89 U	60 0.89 U
0.053 U	0.053 U	0.053 U	0.053 UJ	0.053 U	0.053 U	0.053 U	0.053 U	0.08 J	0.065 J		0.053 U	0.053 U	0.053 U	0.053 U
0.37 U	0.73 J	0.2 U	0.23 U	0.38 J	0.74 J	0.2 U	0.2 U	0.36 J	0.36 J		0.2 U	0.77 J	0.25 J	0.2 U
160	200	17 J	19 J	15 U	15 U	42	720	31	42		28	830	41	190
0.57 U		0.57 U	0.61 J	0.57 U	0.57 U									
0.75 U	2.2 J	0.75 U	10	4.5 J	2.8 J	3.9 J	0.75 U	3.1 J	1.9 J		0.75 U	0.75 U	2.7 J	0.75 U
3.3 0.32 J	0.72 J 0.2 U	0.62 U 0.2 U	0.62 UJ 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 3.9	0.62 U 67	0.62 U 0.2 U	0.62 U 0.2 U		0.62 U 0.2 U	0.62 U 79	0.62 U 0.2 U	0.62 U 0.87 J
2.5 U	5.8		2.5 U	2.5 U	2.5 U	2.5 U								
3.9	1.7 U	1.7 U	1.7 UJ	1.7 U	1.7 U	1.7 U	3	1.7 U	1.7 U		1.7 U	3.2	1.7 U	1.7 U
0.49 J 0.13 U	0.45 U 0.13 U	0.45 U 0.17 J	0.45 U 0.13 U		0.45 U 0.13 U	0.45 U 0.13 U	0.45 U 0.13 U	0.45 U 0.13 U						
110	120	1.9 J	5.8 J	1.6 J	1.8 J	6.9	94	3	1.5 U		1.5 U	110	25	59
0.89 U	0.89 U	0.89 U	0.89 UJ	0.89 U	0.89 U	0.89 U	1.3 J	0.89 U	0.89 U		0.89 U	1.9 J	0.89 U	0.89 U
0.053 U 0.34 U	0.053 U 0.2 U	0.053 U 0.2 U	0.053 UJ 0.2 U	0.053 U 0.56 J	0.053 U 0.37 J	0.053 U 0.2 U	0.053 U 0.2 U	0.053 U 0.42 J	0.053 U 0.2 U		0.053 U 0.2 U	0.053 U 0.39 J	0.053 U 0.2 U	0.053 U 0.2 U
150	180	17 J	16 J	15 U	15 U	43	720	15 U	15 U		15 U	830	48	180
													0.005 U	0.03
													0.003 0	0.03
49 U		49 U			1,000		2,300		2,500	49 U	49 U	2,500		
650 U		230 U			250 J		300 J		390 J	250 J	510	360 J		

Table 4-3 Detected Analytes and Screening-Criteria Exceedances for Groundwater Samples—2022 Dump Road Area, Martin State Airport Missle River, Maryland Page 6 of 7

MW-46S	MW-47D	MW-47I	MW-47S	MW-48D	MW-48I	MW-48S	MW-49D	MW-49I	MW-49S	MW-50D	MW-50I	MW-50S	MW-51D	MW-51I
MSA-MW-46S-061422	MSA-MW-47D-061422	MSA-MW-47I-061422	MSA-MW-47S-061422	MSA-MW-48D-052422	MSA-MW-48I-052422	MSA-MW-48S-052422	MSA-MW-49D-060922	MSA-MW-49I-060922	MSA-MW-49S-060922	MSA-MW-50D-060722	MSA-MW-50I-060722	MSA-MW-50S-060722	MSA-MW-51D-060722	MSA-MW-51I-060722
20220614	20220614	20220614	20220614	20220524	20220524	20220524	20220609	20220609	20220609	20220607	20220607	20220607	20220607	20220607
Upper	Intermediate	Intermediate	Upper	Intermediate	Intermediate	Upper	Intermediate	Intermediate	Upper	Intermediate	Intermediate	Upper	Intermediate	Intermediate
Spps			Spirot.			Spp.			oppo.					
0.48 U	4.8 U	1.9 U	0.48 U	10 J	0.48 U	0.48 U	9.6 U	4.1	0.48 U	0.48 U	0.96 U	4.8 U	1.9 U	0.48 U
0.41 U 0.47 U	4.1 U 4.7 U	1.6 U 1.9 U	0.41 U 0.47 U	8.2 U 9.4 U	0.41 U 0.47 U	0.41 U 0.47 U	8.2 U 9.4 U	1.6 U 5.4	0.41 U 0.47 U	0.41 U 0.47 U	0.82 U 0.94 U	4.1 U 4.7 U	1.6 U 1.9 U	0.41 U 0.47 U
0.49 U	4.9 U	2 U	0.49 U	15 J	0.49 U	0.49 U	9.8 U	16	0.49 U	0.49 U	0.98 U	4.9 U	2 U	0.49 U
0.31 U	3.1 U	1.2 U	0.31 U	6.2 U	0.31 U	0.31 U	6.2 U	1.9 J	0.31 U	0.31 U	0.62 U	3.1 U	1.2 U	0.31 U
0.77 U	7.7 U	3.1 U	0.77 U	15 U	2.4	0.77 U	15 U	3.1 U	0.77 U	0.77 U	1.5 U	7.7 U	3.1 U	0.77 U
0.52 U 0.48 U	5.2 U 4.8 U	2.1 U 1.9 U	0.52 U 0.48 U	10 U 9.6 U	0.52 U 2.2	0.52 U 0.48 U	10 U 9.6 U	2.1 U 1.9 U	0.52 U 0.48 U	0.52 U 0.48 U	1 U 0.96 U	5.2 U 4.8 U	2.1 U 1.9 U	0.52 U 0.48 U
0.40 U	8.1 J	4.6	0.40 U	4.2 U	0.21 U	0.21 U	4.2 U	5	0.48 U	0.40 U	0.42 U	2.1 U	0.84 U	0.21 U
0.45 U	4.5 U	1.8 U	0.45 U	9 U	5.5	0.45 U	9 U	1.8 U	0.45 U	0.45 U	0.9 U	4.5 U	1.8 U	0.45 U
0.41 U	4.1 U	1.6 U	0.41 U	21	35	0.41 U	8.2 U	3.9 J	0.41 U	0.41 U	0.82 U	4.1 U	1.6 U	0.41 U
1.2 U 0.56 U	12 U 5.6 U	4.6 U 2.2 U	1.2 U 0.56 U	23 U 11 U	1.2 U 0.56 U	1.2 U 0.56 U	23 U 11 U	4.6 U 2.2 U	1.2 U 0.56 U	1.2 U 0.56 U	2.3 U 1.1 U	12 U 5.6 U	4.6 U 2.2 U	1.2 U 0.56 U
5.4 U	54 U	22 U	5.4 U	110 U	5.4 U	5.4 U	110 U	22 U	5.4 U	5.4 U	11 U	54 U	22 U	5.4 U
0.42 U	4.2 U	1.7 U	0.89 J	8.4 U	1.1	0.42 U	8.4 U	1.7 U	0.42 U	0.42 U	0.84 U	4.2 U	1.7 U	0.42 U
0.26 U	2.6 U	1 U	0.26 U	5.2 U 7.6 U	0.26 U	0.26 U	5.2 U 7.6 U	1 U 1.5 U	0.26 U	0.26 U	0.52 U	2.6 U 3.8 U	1 U 1.5 U	0.26 U 0.38 U
0.38 U 0.47 U	3.8 U 4.7 U	6 1.9 U	1.5 0.47 U	9.4 U	8 0.47 U	0.38 U 0.47 U	7.6 U 9.4 U	1.5 U	0.38 U 0.47 U	0.38 U 0.47 U	0.76 U 0.94 U	4.7 U	1.5 U 1.9 U	0.38 U 0.47 U
0.47 U	47	37	0.76 J	570	50	0.47 U	180	700	1.6	25	32	300	21	3.5
0.17 U	1.7 U	0.68 U	0.39 J	3.4 U	0.17 U	0.17 U	3.4 U	0.68 U	0.17 U	0.17 U	0.34 U	1.7 U	0.68 U	0.17 U
0.42 U	4.2 U	1.7 U	0.42 U	8.4 U	0.42 U	0.42 U	8.4 U	1.7 U	0.42 U	0.42 U	0.84 U	4.2 U	1.7 U	0.42 U
0.49 U 0.42 U	4.9 U 4.2 U	2 U 1.7 U	0.49 U 0.42 U	9.8 U 8.4 U	0.49 U 0.42 U	0.49 U 0.42 U	9.8 U 8.4 U	2 U 1.7 U	0.49 U 0.42 U	0.49 U 0.42 U	0.98 U 0.84 U	4.9 U 4.2 U	2 U 1.7 U	0.49 U 0.42 U
2.6 U	26 U	10 U	2.6 U	52 U	2.6 U	2.6 U	52 U	10 U	2.6 U	2.6 U	5.2 U	26 U	10 U	2.6 U
0.8 U	8 U	3.2 U	0.8 U	16 UJ	0.8 UJ	0.8 UJ	16 U	3.2 U	0.8 U	0.8 U	1.6 U	8 U	3.2 U	0.8 U
0.57 U	5.7 U	2.3 U	0.57 U	11 U	0.57 U	0.57 U	11 U	2.3 U	0.57 U	0.57 U	1.1 U	5.7 U	2.3 U	0.57 U
0.42 U 0.53 U	4.2 U 5.3 U	1.7 U 2.1 U	0.42 U 0.53 U	8.4 U 11 U	0.42 U 0.53 U	0.42 U 0.53 U	8.4 U 11 U	1.7 U 2.1 U	0.42 U 0.53 U	0.42 U 0.53 U	0.84 U 1.1 U	4.2 U 5.3 U	1.7 U 2.1 U	0.42 U 0.53 U
7.2 U	72 UJ	29 U	24 J	140 UJ	7.2 UJ	7.2 UJ	140 U	29 U	7.2 U	7.2 U	14 UJ	72 U	29 UJ	7.2 U
0.44 U	4.4 U	1.8 U	0.44 U	8.8 U	0.44 U	0.44 U	8.8 U	1.8 U	0.44 U	0.44 U	0.88 U	4.4 U	1.8 U	0.44 U
0.44 U	4.4 U	1.8 U	0.44 U	8.8 U	0.44 U	0.44 U	8.8 U	1.8 U	0.44 U	0.44 U	0.88 U	4.4 U	1.8 U	0.44 U
0.42 U 0.51 U	4.2 U 5.1 U	1.7 U 2 U	0.42 U 0.51 U	8.4 U 10 U	0.42 U 0.51 U	0.42 U 0.51 U	8.4 U 10 U	1.7 U 6.3	0.42 U 0.51 U	0.42 U 0.51 U	0.84 U 1 U	4.2 U 5.1 U	1.7 U 2 U	0.42 U 0.51 U
0.44 U	360	150	0.61 J	590	4.3	0.44 U	760	1700	2.1	24	74	300	62	2
0.45 U	6.4 J	37	8.2	95	9.3	0.45 U	21	110	0.45 U	1.1	1.4 J	40	1.8 U	0.45 U
1.5	14	15	44	13	1	0.4 U	4.2	10	0.37 UJ	0.37 UJ	0.37 U	2.7	1.5	0.39 UJ
1.5	14	15	44	15	1	0.4 0	4.2	10	0.37 03	0.57 03	0.37 0	2.1	1.5	0.39 01
16.5	17.78	16.17	16.49	16.18	15.87	14.33	18.07	17.05	17.44	16.41	17.16	16.93	15.76	17.61
0	4.89	0	0	0	0	4.25	0	0	0	0	1.4	0	0	0
0.53 95	0.128 190	1.5 70	2.19	1.46	3.41 -129	1.25 -53	1.04 348	1.76 149	2.52	0.556 304	0.62 470	2.49	1.27 289	0.568 312
12.1	3.52	7.48	9.15	3.69	3.7	6.9	1.95	3.55	6.49	3.85	6.4	3.94	0.2	0.42
0.03	0.01	0.07	0.11	0.8	1.8	0.6	0.5	0.9	1.3	0.3	0.3	1.3	0.06	0.03
6.62	7.1	7.04	7.42	6.35	7.49	7.54	3.65	5.64	6.74	3.32	3.02	3.74	4.06	3.69
0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	1.3 J	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
5.5	0.84 J	2 J	4.4 J	2.4 J	2.4 J	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U	0.75 U
0.62 U	0.62 U	0.89 J	0.62 U	1.2	0.62 U	0.62 U	5.7	0.97 J	0.62 U	3.6	3.2	2.6	3	3.4
0.2 U 2.9 J	0.51 J 2.5 U	21 2.5 U	0.2 U 2.5 U	0.74 J 2.5 U	0.2 U 2.5 U	0.39 J 2.5 U	12 2.5 U	2.5 U	1.2 2.5 U	2.3 3.1 J	1.8 3.2 J	2.6 3.5 J	2.8 2.5 U	1.8 2.5 J
2.9 J	2.5 U	2.5 0	2.5 U	2.5 U 1.7 U	2.5 U	2.5 0	73	2.5 0	2.5 U 1.7 U	49	29	25	2.5 U 56	19
0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.78 J	0.45 U	0.45 U	0.96 J	1.3	1.5	0.7 J	0.56 J
0.14 J	0.13 U	0.18 J	0.13 U	0.22	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.22	0.17 U	0.21	0.31	0.24
2.4 0.89 U	85 0.89 U	14	1.5 U 0.89 U	24 0.94 J	1.5 U 0.89 U	0.89 U	67 2.2 J	16 0.89 U	1.5 U 0.89 U	50 1.2 J	40 1.4 J	45 1.5 J	54 1.3 J	58 0.89 U
0.89 U	0.89 U	1.9	0.89 U	0.94 J 0.053 U	0.89 U	0.89 U	0.053 U	0.89 U	0.89 U	0.053 U	0.053 U	0.053 U	0.1 J	0.89 U
0.21 J	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.23 J	0.28 J	0.31 J	0.2 J	0.2 U
15 U	69	73	15 U	18 J	15 U	15 U	250	31	15 U	120	82	160	140	100
0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	1.3 J	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
4.3 J	2.2 J	1.5 J	5.3	3.5 J	2.4 J	0.75 U	0.57 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
0.62 U	0.62 U	0.62 U	0.62 U	1.2	0.62 U	0.62 U	5.4	1.1	0.62 U	3.8	3.6	2.6	2.9	3.7
0.2 U	0.2 U	6.3	0.2 U	0.23 J	0.2 U	0.2 U	11	47	0.45 J	2.2	1.8	2.7	2.6	1.7
2.9 J 1.7 U	2.5 U 1.7 U	2.5 U 6	2.5 U 1.7 U	2.5 U 1.7 U	2.5 U 1.7 U	2.5 U 2.2	2.5 U 71	2.7 J 10	2.5 U 1.7 U	2.8 J 49	3.1 J 30	3.3 J 26	2.5 U 40	2.7 J 20
0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.45 U	0.77 J	0.45 U	0.45 U	0.92 J	1.2	1.5	0.67 J	0.55 J
0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.13 U	0.26	0.17 U	0.22	0.23	0.26
2.3	96	15	1.5 U	24	1.5 U	1.8 J	65	18	1.5 U	50	40	45	53	59
0.89 U 0.053 U	0.89 U 0.053 U	6.3 0.62 J	0.89 U 0.053 U	0.9 J 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U	2.1 J 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U	1.1 J 0.053 U	1.3 J 0.053 U	1.4 J 0.053 U	1.2 J 0.053 U	0.89 U 0.053 U
0.053 U	0.053 U	0.62 J 0.2 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.053 U	0.033 U
15 U	66	68	15 U	15 U	15 U	15 U	260	39	15 U	120	87	160	140	110
0.024	0.005.11	0.012.1	0.017.1	0.005.11	0.005.11	0.24	0.005 11	0.005.11	0.01.11	0.005 11	0.005.11	0.04.11	0.005.11	0.005 11
0.034	0.005 U	0.013 J	0.017 J	0.005 U	0.005 U	0.24	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U
49 U			49 U			49 U			49 U			300		
240 U			500		-	220 UJ			210 U			230 U		
					-			-	-		-		-	

Table 4-3 Detected Analytes and Screening-Criteria Exceedances for Groundwater Samples—2022 Dump Road Area, Martin State Airport Missle River, Maryland Page 7 of 7

MW-51S									
	MW-52D	MW-52I	MW-52S	MW-531	MW-53S	MW-541	MW-54S	MT-MW01S	MT-MW02S
MSA-MW-51S-060722 20220607	MSA-MW-52D-061622 20220616	MSA-MW-52I-061622 20220616	MSA-MW-52S-061622 20220616	MSA-MW-53I-052522 20220525	MSA-MW-53S-052322 20220523	MSA-MW-54I-060922 20220609	MSA-MW-54S-060922 20220609	MT-MW-01S-061022 20220610	MT-MW-02S-0610 20220610
20220007	20220010	20220010	20220010	20220323	20220323	20220003	20220003	20220010	20220010
Upper	Lower	Intermediate	Upper	Intermediate	Upper	Intermediate	Upper	Upper	Upper
			- Spp		Spp.			Spp.	
0.48 U	96 U	24 U	0.48 U	240 U	0.48 U	480 U	480 U		
0.41 U 0.47 U	82 U 94 U	21 U 24 U	0.41 U 0.47 U	210 U 240 U	0.41 U 0.47 U	410 U 470 U	410 U 470 U		
0.49 U	98 U	25 U	0.49 U	250 U	0.49 U	490 U	490 U		
0.31 U	62 U	16 U	0.31 UJ	160 U	0.31 UJ	310 U	310 U		
0.77 U	150 UJ	57	0.77 UJ	390 U	0.77 U	770 U	770 U		
0.52 U	100 U	26 U	0.52 U	260 U	0.52 UJ	520 U	520 U		
0.48 U 0.21 U	96 U 42 U	24 U 15 J	0.48 U 1	240 U 110 U	0.48 U 0.82 J	480 U 210 U	480 U 210 U		
0.21 U	90 U	23 U	0.45 U	230 U	0.82 J 0.45 U	450 U	450 U		
0.41 U	82 U	21 U	0.41 U	210 U	0.41 U	410 U	410 U		
1.2 U	230 U	58 U	1.2 J	580 UJ	1.2 U	1200 U	1200 U		
0.56 U	110 U	28 U	0.56 U	280 U	0.56 UJ	560 U	560 U		
5.4 U	1100 UJ	270 U	5.4 J	2700 UJ	5.4 U	5400 U	5400 U		
0.42 U 0.26 U	84 U 52 U	21 U 13 U	1.9 0.26 U	210 U 130 U	0.54 J 0.26 U	420 U 7200	420 U 950 J		
0.38 U	76 U	19 U	1.4	190 U	0.38 U	380 U	380 U		
0.47 U	94 U	24 U	0.47 U	240 U	0.47 U	1700	1300		
65	410	1500	18	19000	2.9	5200	23000		
0.17 U	34 U	8.5 U	0.17 U	85 U	0.17 U	170 U	170 U		
0.42 U	84 U	21 U	0.42 U	210 U	0.42 U	420 U	420 U		
0.49 U 0.42 U	98 U 84 U	25 U 21 U	0.49 U 0.42 U	250 U 210 U	0.49 U 0.42 U	490 U 420 U	490 U 420 U		
2.6 U	520 U	130 U	2.6 U	1300 U	2.6 U	2600 U	2600 U		
0.8 U	160 U	40 U	0.8 U	400 U	0.8 UJ	800 U	800 U		
0.57 U	110 U	29 U	0.57 U	290 U	0.57 U	570 U	570 U		
0.42 U	84 U	21 U	0.42 U	210 U	0.42 U	420 U	420 U		
0.53 U	110 U	27 U 360 U	0.53 U 96	270 U 3600 UJ	0.53 U 9.5 J	530 U	530 U		
7.2 UJ 0.44 U	1400 UJ 88 U	22 U	0.44 U	220 U	9.5 J 0.44 U	7200 U 440 U	7200 U 440 U		
0.44 U	88 U	22 U	0.44 U	220 U	0.44 U	1700	6900		
0.42 U	84 U	21 U	0.42 U	210 U	0.42 U	420 U	420 U	1	
0.51 J	100 U	26 U	2.4	260 U	0.51 U	510 U	510 U		
59	3700	930	0.78 J	6000	1.8	20000	12000		
1.9	110 J	410	21	4300	6.8	450 U	6400		
0.39 UJ	30	29	69	140	75 J	95	230		
16.1	21.07	19.05	16.79	20.56	25.29	18.23	18.39	24.31	24.55
0	0	0	0	0	0	0	0	0	0
1.58	2.88	3.09	1.59	0.759	0.734	0.421	1.26	0.168	0.336
247 1.09	287	140	-95	242	80	170	-47	-72	-3
0.08			F 2F				1		
	4.56 0.15	18.5	5.35 0.09	4.2	47	56	1000	1.34	7.14
5.68	0.15 4.35		5.35 0.09 8.15				1		
5.68	0.15 4.35	18.5 0.16 5.9	0.09 8.15	4.2 0.4 4.37	47 0.4 5.83	56 0.02 5.24	1000 0.06	1.34 0.1	7.14 0.02
5.68 0.57 U	0.15 4.35 0.57 U	18.5 0.16 5.9	0.09 8.15 0.57 U	4.2 0.4 4.37	47 0.4 5.83	56 0.02 5.24 0.57 U	1000 0.06 6.77	1.34 0.1 6.81	7.14 0.02
0.57 U 0.75 U	0.15 4.35 0.57 U 0.75 U	18.5 0.16 5.9 0.57 U 0.75 U	0.09 8.15 0.57 U	4.2 0.4 4.37 0.57 U 0.75 U	0.4 5.83 0.57 U 4.2 J	56 0.02 5.24 0.57 U 6.8	0.06 6.77 0.92 J	1.34 0.1 6.81	7.14 0.02 6.83
0.57 U 0.75 U 2.5	0.15 4.35 0.57 U 0.75 U	18.5 0.16 5.9 0.57 U 0.75 U	0.09 8.15 0.57 U 13 0.62 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1	0.4 5.83 0.57 U 4.2 J 0.62 U	56 0.02 5.24 0.57 U 6.8 0.62 U	0.06 6.77 0.92 J 14 0.62 U	1.34 0.1 6.81	7.14 0.02 6.83
0.57 U 0.75 U 2.5	0.15 4.35 0.57 U 0.75 U 4.7 180	18.5 0.16 5.9 0.57 U 0.75 U 2 260	0.09 8.15 0.57 U 13 0.62 U 0.2 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100	0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J	0.02 5.24 0.57 U 6.8 0.62 U	1000 0.06 6.77 0.92 J 14 0.62 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2.97	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2.97 19	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U 1.7 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.45 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4 0.13 U	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U 1.7 U 0.46 J 0.13 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J 0.13 U	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U 0.13 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U 0.13 U	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U 0.13 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.45 U 0.75 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4 0.13 U 98	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U 1.7 U 0.46 J 0.13 U 38	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 3	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J 0.13 U 160	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U 0.13 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U 0.13 U 110	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U 0.13 U 23	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.45 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.29 15 0.89 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4 0.13 U 98 1.7 J	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U 1.7 U 0.46 J 0.13 U 38 0.89 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 3 1.4 J	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J 0.13 U 160 1.6 J	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U 0.13 U 21 0.89 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U 0.13 U 110 1.4 J	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U 0.13 U 23 1.1 J	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.45 U 0.75 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4 0.13 U 98	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U 1.7 U 0.46 J 0.13 U 38	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 3	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J 0.13 U 160	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U 0.13 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U 0.13 U 110	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U 0.13 U 23	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.45 U 0.75 U 0.89 U 0.90 1.90 1.90 1.90 1.90 1.90 1.90 1.90	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4 0.13 U 98 1.7 J 0.053 U	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U 1.7 U 0.46 J 0.13 U 38 0.89 U 0.053 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 3 1.4 J 0.053 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J 0.13 U 160 1.6 J 0.053 U	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U 0.13 U 21 0.89 U 0.053 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U 0.13 U 110 1.4 J 0.053 U	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U 0.13 U 23 1.1 J 0.053 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.45 U 0.29 15 0.89 U 0.053 U 0.2 U 15 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4 0.13 U 98 1.7 J 0.053 U 0.2 U 300	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U 1.7 U 0.46 J 0.13 U 38 0.89 U 0.053 U 0.2 U 110	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 3 1.4 J 0.053 U 0.2 U 17 J	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J 0.13 U 160 1.6 J 0.053 U 0.23 J 270	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U 0.13 U 21 0.89 U 0.053 U 0.2 U 21 0.89 U 0.053 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U 0.13 U 110 1.4 J 0.053 U 0.2 U 920	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U 0.13 U 23 1.1 J 0.053 U 0.2 U 33	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.45 U 0.9 15 0.89 U 0.12 J 0.2 U 21	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4 0.13 U 98 1.7 J 0.053 U 0.2 U	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U 1.7 U 0.46 J 0.13 U 38 0.89 U 0.053 U 0.2 U	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 3 1.4 J 0.053 U 0.2 U	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J 0.13 U 160 1.6 J 0.053 U 0.23 J	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U 0.13 U 21 0.89 U 0.053 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U 0.13 U 110 1.4 J 0.053 U 0.2 U	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U 0.13 U 23 1.1 J 0.053 U 0.2 U	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.45 U 0.75 U 0.75 U 0.75 U 0.89 U 0.90 15 0.89 U 0.053 U 0.2 U 15 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4 0.13 U 98 1.7 J 0.053 U 0.2 U 300	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U 1.7 U 0.46 J 0.13 U 38 0.89 U 0.053 U 0.2 U 110	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 3 1.4 J 0.053 U 0.2 U 17 J	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J 0.13 U 160 1.6 J 0.053 U 0.23 J 270	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U 0.13 U 21 0.89 U 0.053 U 0.12 U 23	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U 0.13 U 110 1.4 J 0.053 U 0.2 U 920	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U 0.13 U 23 1.1 J 0.053 U 0.2 U 33	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.45 U 0.75 U 0.75 U 0.89 U 0.9 15 0.89 U 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4 0.13 U 98 1.7 J 0.053 U 0.2 U 300	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U 1.7 U 0.46 J 0.13 U 38 0.89 U 0.053 U 0.2 U 110	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 3 1.4 J 0.053 U 0.2 U 17 J	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J 0.13 U 160 1.6 J 0.053 U 0.23 J 270	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.75 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U 0.13 U 21 0.89 U 0.053 U 0.2 U 21 0.89 U 0.053 U	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U 0.13 U 110 1.4 J 0.053 U 0.2 U 920	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U 0.13 U 23 1.1 J 0.053 U 0.2 U 33	1.34 0.1 6.81	7.14 0.02 6.83
5.68 0.57 U 0.75 U 2.5 1.1 2.5 U 1.7 U 0.45 U 0.24 15 0.89 U 0.12 J 0.2 U 21 0.57 U 0.75 U 2.6 1 2.5 U 1.7 U 0.45 U 0.9 15 0.89 U 0.12 J 0.75 U	0.15 4.35 0.57 U 0.75 U 4.7 180 7.2 13 1.4 0.13 U 110 2 J 1.1 0.2 U 330 0.57 U 0.75 U 4.4 170 6.5 11 1.4 0.13 U 98 1.7 J 0.053 U 0.2 U 300	18.5 0.16 5.9 0.57 U 0.75 U 2 260 2.5 U 1.7 U 2.5 0.13 U 39 0.89 U 0.4 J 0.2 U 140 0.57 U 0.86 J 1.9 52 2.5 U 1.7 U 0.46 J 0.13 U 38 0.89 U 0.053 U 0.2 U 110 0.02	0.09 8.15 0.57 U 13 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 2.5 1.3 J 0.053 U 0.2 U 15 U 0.57 U 8.4 0.62 U 0.2 U 2.5 U 1.7 U 0.45 U 0.13 U 3 1.4 J 0.053 U 0.2 U 17 J	4.2 0.4 4.37 0.57 U 0.75 U 2.1 100 21 150 0.96 J 0.13 U 160 1.9 J 0.053 U 0.23 J 280 0.57 U 0.75 U 2 97 19 140 0.9 J 0.13 U 160 1.6 J 0.053 U 0.23 J 270	47 0.4 5.83 0.57 U 4.2 J 0.62 U 0.29 J 3.1 J 1.7 U 0.45 U 0.13 U 22 0.89 U 0.053 U 0.2 U 25 0.57 U 0.62 U 0.23 J 2.5 U 1.7 U 0.45 U 0.13 U 21 0.89 U 0.053 U 0.12 U 23	56 0.02 5.24 0.57 U 6.8 0.62 U 39 9.8 2.3 0.86 J 0.13 U 120 1.6 J 0.053 U 0.2 U 1000 0.57 U 2.9 J 0.62 U 23 6.2 1.7 U 0.45 U 0.13 U 110 1.4 J 0.053 U 0.2 U 920	1000 0.06 6.77 0.92 J 14 0.62 U 19 13 4.8 1.8 0.13 U 26 1.5 J 0.053 U 0.2 U 100 0.73 J 10 0.62 U 5.2 8.9 1.7 U 0.45 U 0.13 U 23 1.1 J 0.053 U 0.2 U 33	1.34 0.1 6.81	7.14 0.02 6.83

APPENDICES

October 2022 Appendices

Appendix A—Groundwater Level Measurement Records

Appendix B—Monitoring Well Purging and Sampling Records

Appendix C—Waste Disposal Documentation

Appendix D—Analytical Data Tables

Appendix E—Data-Validation Reports with Chain-of-Custody Forms

Appendix F—Full Laboratory Analytical Reports

October 2022 October 2022 Appendices

APPENDIX A—GROUNDWATER LEVEL MEASUREMENT RECORDS

Tetra Tech

GROUNDWATER LEVEL MEASUREMENT SHEET

Project Name:MSA Annual GW 2022Project No.:112IC09567Location:Martin State AirportPersonnel:Walt Pryor

Weather Conditions: 4/20 (Clear 65 deg F) 4/21 (Clear 59 deg F) Measuring Device: Solinst WL Meter

Tidally Influenced: Yes _x__ No ___ Remarks:

Well or Piezometer Number	Date	Time	Elevation of Reference Point (feet)*	Total Well Depth (feet)*	Water Level Indicator Reading (feet)*	Thickness of Free Product (feet)*	Groundwater Elevation (feet)*	Comments
MSA-DMW-03I	4/21/2022	1018	16.45	57.13	16.55		-0.10	
MSA-DMW-03S	4/21/2022	1015	16.52	26.39	6.10		10.42	
MSA-DMW-04D	4/20/2022	1421	20.44	83.52	20.56		-0.12	
MSA-DMW-04I	4/20/2022	1418	20.48	59.22	20.35		0.13	
MSA-DMW-04S	4/20/2022	1415	20.52	32.75	20.40		0.12	
MSA-DMW-05S	4/20/2022	1426	21.34	32.91	20.58		0.76	
MSA-DMW-06D	4/20/2022	1450	18.51	72.51	17.57		0.94	
MSA-DMW-06I	4/20/2022	1447	18.64	53.43	17.52		1.12	
MSA-DMW-06S	4/20/2022	1444	18.62	27.22	17.20		1.42	
MSA-DMW-07D	4/20/2022	0824	21.94	76.41	20.65		1.29	
MSA-DMW-07I	4/20/2022	0822	21.90	52.82	20.63		1.27	
MSA-DMW-07S	4/20/2022	0820	21.84	30.07	20.35		1.49	
MSA-DMW-09D	4/21/2022	0939	11.41	65.73	8.13		3.28	
MSA-DMW-09I	4/21/2022	0937	11.40	39.97	7.01		4.39	
MSA-DMW-09S	4/21/2022	0935	11.45	13.35	6.75		4.70	
MSA-DMW-11I	4/20/2022	0903	9.15	36.65	6.10		3.05	
MSA-DMW-11S	4/20/2022	0900	9.20	15.65	2.80		6.40	
MSA-DMW-2A	4/21/2022	1005	21.65	62.41	21.80		-0.15	
MSA-DMW-2B	4/21/2022	1007	21.66	95.65	21.85		-0.19	
MSA-MW-14D	4/21/2022	1117	11.56	118.00	6.65		4.91	
MSA-MW-14I	4/21/2022	1115	11.72	50.81	10.62		1.10	
MSA-MW-15D	4/21/2022	0923	8.77	63.02	4.25		4.52	
MSA-MW-15I	4/21/2022	0922	8.79	46.07	4.25		4.54	
MSA-MW-16D	4/21/2022	1054	10.22	71.11	7.90		2.32	
MSA-MW-16I	4/21/2022	1052	10.06	47.89	7.70		2.36	
MSA-MW-16S	4/21/2022	1050	10.20	22.35	7.95		2.25	
MSA-MW-17D	4/21/2022	1109	7.56	69.61	0.85		6.71	
MSA-MW-17I	4/21/2022	1107	7.68	46.73	5.76		1.92	
MSA-MW-17S	4/21/2022	1105	7.61	19.79	5.50		2.11	
MSA-MW-18D	4/21/2022	1034	8.88	75.19	10.42		-1.54	
MSA-MW-18I	4/21/2022	1032	8.91	48.73	8.15		0.76	
MSA-MW-18S	4/21/2022	1030	8.89	24.85	8.05		0.84	
MSA-MW-19D	4/20/2022	1045	7.94	81.05	6.35		1.59	
MSA-MW-20D	4/21/2022	0949	12.40	71.81	9.15		3.25	
MSA-MW-20I	4/21/2022	0947	12.39	45.91	7.65		4.74	

Tetra Tech

GROUNDWATER LEVEL MEASUREMENT SHEET

Project Name: MSA Annual GW 2022
Location: Martin State Airport

Weather Conditions: 4/20 (Clear 65 deg F) 4/21 (Clear 59 deg F)

Tidally Influenced:

Project No.: <u>112IC09567</u>

Personnel: Walt Pryor

Measuring Device: Solinst WL Meter Remarks:

Tidally Influence	dally Influenced: Yes _x No				Remarks:			
Well or Piezometer Number	Date	Time	Elevation of Reference Point (feet)*	Total Well Depth (feet)*	Water Level Indicator Reading (feet)*	Thickness of Free Product (feet)*	Groundwater Elevation (feet)*	Comments
MSA-MW-20S	4/21/2022	0945	12.44	20.48	7.61		4.83	
MSA-MW-21D	4/20/2022	1117	10.78	79.91	8.95		1.83	
MSA-MW-21I	4/20/2022	1115	10.83	39.75	8		2.83	
MSA-MW-22D	4/20/2022	0930	11.02	80.07	8.72		2.3	
MSA-MW-23D	4/20/2022	0942	10.03	86.9	7.8		2.23	
MSA-MW-23S	4/20/2022	0940	10.01	26.95	7.03		2.98	
MSA-MW-24I	4/20/2022	0954	7.68	45.51	4.7		2.98	
MSA-MW-24S	4/20/2022	0952	7.72	25.05	3.55		4.17	
MSA-MW-25I	4/20/2022	0852	9.72	44.21	6.57		3.15	
MSA-MW-25S	4/20/2022	0850	9.69	19.83	4.52		5.17	
MSA-MW-26D	4/20/2022	1130	11.66	68.66	8.97		2.69	
MSA-MW-27D	4/20/2022	0915	8.39	185	0.75		7.64	
MSA-MW-29D	4/20/2022	1510	11.43	160	9.95		1.48	
MSA-MW-30D	4/20/2022	1010	8.26	208	2.1		6.16	
MSA-MW-30I	4/20/2022	1002	7.52	43.13	4.85		2.67	
MSA-MW-31D	4/20/2022	1020	6.95	200	1.55		5.4	
MSA-MW-32I	4/20/2022	1037	7.28	65.31	5.75		1.53	
MSA-MW-32S	4/20/2022	1035	7.27	33.93	1.8		5.47	
MSA-MW-33I	4/21/2022	1137	10.02	70.62	6.72		3.3	
MSA-MW-33S	4/21/2022	1135	9.97	45.13	6.63		3.34	
MSA-MW-34S	4/21/2022	1150	7.89	37.21	4.9		2.99	
MSA-MW-34I	4/21/2022	1153	7.88	56.45	4.92		2.96	
MSA-MW-35S	4/21/2022	0910	12.63	34.77	8.8		3.83	
MSA-MW-36S	4/20/2022	0840	11.88	35.05	6.35		5.53	
MSA-MW-37S	4/20/2022	0910	10.7	25.02	5.78		4.92	
MSA-MW-4	4/21/2022	0928	10.34	25.93	4.14		6.2	
MSA-MW-40I	4/20/2022	1618	17.59	43.62	15.95		1.64	
MSA-MW-40S	4/20/2022	1615	17.48	27.91	15.42		2.06	
MSA-MW-41I	4/20/2022	1055	10.23	54.42	7.33		2.9	
MSA-MW-41S	4/20/2022	1053	10.23	35.03	7.3		2.93	

Tetra Tech

GROUNDWATER LEVEL MEASUREMENT SHEET

Project Name: MSA Annual GW 2022 Project No.: 112IC09567

Location: Martin State Airport Personnel: Walt Pryor

Weather Conditions:4/20 (Clear 65 deg F) 4/21 (Clear 59 deg F)Measuring Device:Solinst WL MeterTidally Influenced:Yes _x_ No ___Remarks:

Well or			Elevation of	Total	Water Level	Thickness of	Groundwater	
Piezometer Number	Date	Time	Reference Point (feet)*	Well Depth (feet)*	Indicator Reading (feet)*	Free Product (feet)*	Elevation (feet)*	Comments
MSA-MW-42I	4/21/2022	1127	8.87	33.2	6.25		2.62	
MSA-MW-42S	4/21/2022	1125	8.88	11.82	5.92		2.96	
MSA-MW-43S	4/21/2022	1025	18.08	16.71	13.35		4.73	
MSA-MW-44S	4/21/2022	1040	9.21	15.06	0.87		8.34	
MSA-MW-45S	4/20/2022	1100	10.03	24.95	7.06		2.97	
MSA-MW-46D	4/20/2022	1250	11.67	63.65	11.75		-0.08	
MSA-MW-46I	4/20/2022	1248	11.19	48.13	11.16		0.03	
MSA-MW-46S	4/20/2022	1245	11.26	28.04	10.63		0.63	
MSA-MW-47D	4/20/2022	1306	12.04	58.62	12.2		-0.16	
MSA-MW-47I	4/20/2022	1303	11.94	35.34	12.2		-0.26	
MSA-MW-47S	4/20/2022	1300	11.96	22.75	11.76		0.2	
MSA-MW-48D	4/20/2022	1345	20.12	53.55	20.28		-0.16	
MSA-MW-48I	4/20/2022	1343	19.94	38.08	20.7		-0.76	
MSA-MW-48S	4/20/2022	1340	19.92	22.75	19.76		0.16	
MSA-MW-49D	4/20/2022	1404	19.6	63.71	19.9		-0.3	
MSA-MW-49I	4/20/2022	1402	19.59	48.22	19.75		-0.16	
MSA-MW-49S	4/20/2022	1400	19.84	33.02	19.95		-0.11	
MSA-MW-50D	4/20/2022	1531	13.12	63.52	12.09		1.03	
MSA-MW-50I	4/20/2022	1528	12.64	48.14	11.5		1.14	
MSA-MW-50S	4/20/2022	1525	12.55	32.88	11.76		0.79	
MSA-MW-51D	4/20/2022	1547	9.55	63.46	8.45		1.1	
MSA-MW-51I	4/20/2022	1543	9.61	42.12	8.35		1.26	
MSA-MW-51S	4/20/2022	1540	9.69	22.97	8.41		1.28	
MSA-MW-52D	4/20/2022	1318	13.04	53.04	13.44		-0.4	
MSA-MW-52I	4/20/2022	1315	13.27	37.88	13.7		-0.43	
MSA-MW-52S	4/20/2022	1312	13.24	22.99	9.6		3.64	
MSA-MW-53I	4/21/2022	0957	14.39	42.73	11.62		2.77	
MSA-MW-53S	4/21/2022	0955	14.37	12.15	9.75		4.62	
MSA-MW-54I	4/20/2022	0920	10.83	45.24	7.9		2.93	
MSA-MW-54S	4/20/2022	0917	10.75	21.73	5.49		5.26	
MSA-MW-6	4/20/2022	1555	15.72	32.69	13.9		1.82	

^{*}All measurements are from top of casing.

APPENDIX B—MONITORING WELL PURGING AND SAMPLING RECORDS

9062 Tetra Tech • Lockheed Martin, Martin State Airport 2022 Groundwater Monitoring Report

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-2A-051822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-18
Sample Time:	12:00:00

WELL INFORMATION:

Well ID:	MSA-DMW-2A
Well Diameter (in):	2
Top Screen (ft-BTOR):	50
Bottom Screen (ft-BTOR):	60
Total Well Depth (ft-BTOR):	60

Purge Date:	2022-05-18
Static Water Level (ft-BTOR):	19.98
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity ppt	Other
11:55:00	21.31	300	Clear	4.21	0.722	0	12.4	20.65	266	0.4	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

	Sampled ID:	MSA-DMW-2A-051822
	QA/QC Duplicate ID:	NA
MS/MSD Collected:		NO

Sampled By:	Zach Musser
Sample Date:	2022-05-18
Sample Time:	12:00:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:10:00	21.25	300	Clear	4.87	0.743	2.12	70.9	21.78	154	0.4	
11:15:00	21.28	300	Clear	4.22	0.75	0.35	21.6	21.3	226	0.4	
11:20:00	21.28	300	Clear	4.25	0.741	0.17	22.6	20.97	242	0.4	
11:25:00	21.29	300	Clear	4.23	0.726	0.1	16.8	20.79	254	0.4	
11:30:00	21.3	300	Clear	4.23	0.718	0	13.8	20.78	259	0.3	
11:35:00	21.31	300	Clear	4.23	0.722	0	14.6	20.76	257	0.4	
11:40:00	21.31	300	Clear	4.22	0.725	0	11.73	20.65	263	0.4	
11:45:00	21.31	300	Clear	4.21	0.731	0	11.2	20.5	263	0.4	
11:50:00	21.31	300	Clear	4.21	0.729	0	11.2	20.64	265	0.4	
11:55:00	21.31	300	Clear	4.21	0.722	0	12.4	20.65	266	0.4	

Sampled ID:	MSA-DMW-2A-051822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-05-18
Sample Time:	12:00:00

PHOTOS:

Photo ID 1798
Photo Date 2022-05-18

Photo Description:

Project No

Sample Time:

		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-DMW-2B-051822	Sampled By:	Zach Musser
QA/QC Duplicate ID:	NA	Sample Date:	2022-05-18

WELL INFORMATION:

MS/MSD Collected:

Well ID:	MSA-DMW-2B
Well Diameter (in):	2
Top Screen (ft-BTOR):	85
Bottom Screen (ft-BTOR):	95
Total Well Depth (ft-BTOR):	95

NO

Purge Date:	2022-05-18
Static Water Level (ft-BTOR):	20.08
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

112IC09567-02-GW Field

13:20:00

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:15:00	21.84	300	Clear	4.92	0.016	4.75	6.89	21.25	243	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-2B-051822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-18
Sample Time:	13:20:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:30:00	21.98	300	Clear	5.43	0.029	3.4	68.3	24.58	196	0	
12:35:00	21.98	300	Clear	5.4	0.02	5.01	29.5	22.92	207	0	
12:40:00	21.78	300	Clear	5.38	0.019	5.44	17.2	22.24	214	0	
12:45:00	21.72	300	Clear	5.36	0.019	4.61	13.6	21.71	217	0	
12:50:00	21.7	300	Clear	5.25	0.017	4.59	12.8	21.8	218	0	
12:55:00	21.71	300	Clear	5.16	0.017	4.56	11.6	21.62	229	0	
13:00:00	21.74	300	Clear	4.99	0.017	4.63	12.48	21.32	234	0	
13:05:00	21.78	300	Clear	4.93	0.017	4.67	8.25	21.39	237	0	
13:10:00	21.78	300	Clear	4.98	0.016	4.72	8.51	21.31	242	0	
13:15:00	21.84	300	Clear	4.92	0.016	4.75	6.89	21.25	243	0	

Sampled ID:	MSA-DMW-2B-051822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-05-18
Sample Time:	13:20:00

PHOTOS:

Photo ID 1801 Photo Date 2022-05-18

Photo Description:

Sampled ID:	MSA-DMW-3I-052322
QA/QC Duplicate ID:	None
MS/MSD Collected:	no

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-23
Sample Time:	09:32:00

WELL INFORMATION:

Well ID:	MSA-DMW-3I
Well Diameter (in):	2
Top Screen (ft-BTOR):	48.26
Bottom Screen (ft-BTOR):	58.26
Total Well Depth (ft-BTOR):	58.26

Purge Date:	2022-05-23
Static Water Level (ft-BTOR):	15.5
PID Monitor Reading:	0.00
Purge Method:	low_flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	horiba_u_52
Turbidity Meter:	lamotte_2020we

	geotech_geopump_peristaltic
Pump Controller:	_pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:27:00	15.65	300	Clear	4.13	0.87	0	5.6	15.38	306	0.4	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
Total Alpha Radium	903	HNO3	1	1	Plastic	yes
Radium 228	904	HNO3	2	1	Plastic	yes

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

Latitude	Longitude
0.000000	0.00000

Walth

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-3I-052322
QA/QC Duplicate ID:	None
MS/MSD Collected:	no

Sampled By:	WP
Sample Date:	2022-05-23
Sample Time:	09:32:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:42:00	15.5	300	Clear	3.95	0.834	1.5	155	18.59	295	0.4	
08:47:00	15.65	300	Clear	3.91	0.847	0.49	50.1	16.43	315	0.4	
08:52:00	15.65	300	Clear	3.95	0.85	0.4	11	16.07	317	0.4	
09:02:00	15.65	300	Clear	4.06	0.854	0	9.27	15.68	315	0.4	
09:12:00	15.65	300	Clear	4.1	0.866	0	8.61	15.46	311	0.4	
09:17:00	15.65	300	Clear	4.11	0.867	0	5.65	15.41	309	0.4	
09:22:00	15.65	300	Clear	4.12	0.871	0	5.63	15.29	307	0.4	
09:27:00	15.65	300	Clear	4.13	0.87	0	5.6	15.38	306	0.4	

MSA-DMW-3S-051922

NO

MSA-DMW-3S

16.96 26.96

26.96

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID: MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

Turbidity Meter:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR):

EQUIPMENT INFORMATION:

Water Quality Instrument:

OBSERVATIONS/NOTES:

Project No		112IC09567-02-GW Field			
Project Site:		Lockheed-MSA			
Event:	M	ISA-Annual Groundwater 2022			
Sampled By:		Zach Musser			
Sample Date:		2022-05-19			
Sample Time:		11:25:00			
Purge Date:		2022-05-19			
Static Water Level (ft-l	BTOR):	13.41			
PID Monitor Reading:					
Purge Method:		Low Flow			
Sample Method:		Low Flow			
		Geotech Geopump Peristaltic			

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:20:00	19.44	150	Clear	9.54	4.1	0	5.84	22.51	-310	2.2	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		

Sampled ID:	MSA-DMW-3S-051922		
QA/QC Duplicate ID:	NA		
MS/MSD Collected:	NO		

Sampled By:	Zach Musser
Sample Date:	2022-05-19
Sample Time:	11:25:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:00:00	9.88	300	Clear	7	4.59	0.25	10.93	18.01	-3	2.5	
10:05:00	-9999	300	Clear	8.31	4.46	0	7.04	18.01	-119	2.4	
10:10:00	14.09	300	Clear	8.92	4.38	0	12	19.43	-73	2.4	
10:20:00	15.3	300	Clear	8.48	4.32	0	16.2	19.27	-100	2.3	
10:25:00	16.29	300	Clear	8.73	4.32	0	12.4	19.06	-148	2.3	
10:30:00	17.06	300	Clear	8.8	4.35	0	8.41	19.08	-176	2.3	
10:35:00	17.42	150	Clear	8.89	4.33	0	8.94	19.21	-196	2.3	
10:40:00	17.69	150	Clear	8.94	4.35	0	12.04	19.36	-212	2.3	
10:45:00	18.02	150	Clear	9.06	4.32	0	11.9	19.62	-231	2.3	
10:50:00	18.31	150	Clear	9.17	4.31	0	8.01	19.84	-247	2.3	
10:55:00	18.55	150	Clear	9.22	4.3	0	8.72	20.09	-257	2.3	
11:00:00	18.74	150	Clear	9.29	4.28	0	6.62	20.8	-269	2.3	
11:05:00	18.9	150	Clear	9.37	4.25	0	7.83	20.98	-278	2.3	
11:10:00	19.03	150	Clear	9.44	4.2	0	6.03	21.44	-290	2.2	
11:15:00	19.17	150	Clear	9.51	4.07	0	4.64	21.99	-301	2.2	
11:20:00	19.44	150	Clear	9.54	4.1	0	5.84	22.51	-310	2.2	

		LVei
Sampled ID:	MSA-DMW-3S-051922	Sam
QA/QC Duplicate ID:	NA	Sam
MS/MSD Collected:	NO	Sam

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-05-19
Sample Time:	11:25:00

PHOTOS:

Photo ID 1795
Photo Date 2022-05-19

Photo Description:

Project No	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		
Sampled By:	Zach Musser		

Sampled ID:	MSA-DMW-4D-051922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	YES

Sampled By:	Zach Musser
Sample Date:	2022-05-19
Sample Time:	13:05:00

WELL INFORMATION:

Well ID:	MSA-DMW-4D
Well Diameter (in):	2
Top Screen (ft-BTOR):	70.52
Bottom Screen (ft-BTOR):	80.52
Total Well Depth (ft-BTOR):	80.52

Purge Date:	2022-05-19
Static Water Level (ft-BTOR):	19.51
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52				
Turbidity Meter:	LaMotte 2020WE				

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:00:00	19.68	300	Clear	4.29	0.442	0	1.46	22.16	266	0.2	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Method Preservative Numb		Volume	Bottle Type	Collected
VOCs	VOCs 8260C		3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury 6020B, 7470A		HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-4D-051922				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	YES				

Sampled By:	Zach Musser
Sample Date:	2022-05-19
Sample Time:	13:05:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:10:00	19.6	300	Clear	9.33	0.306	1.15	4.34	27.81	6	0.1	
12:15:00	19.61	300	Clear	6.04	0.233	0.39	2.37	25.62	157	0.1	
12:20:00	19.62	300	Clear	4.86	0.238	0.33	2.2	23.9	204	0	
12:25:00	19.61	300	Clear	4.67	0.243	0.32	1.55	23.21	216	0.1	
12:30:00	19.61	300	Clear	4.58	0.247	0.32	1.4	22.93	227	0.1	
12:35:00	19.63	300	Clear	4.55	0.249	0.31	1.68	22.91	234	0.1	
12:40:00	19.64	300	Clear	4.48	0.257	0.29	1.69	22.71	244	0.1	
12:45:00	19.65	300	Clear	4.35	0.367	0	2.13	22.29	252	0.2	
12:50:00	19.65	300	Clear	4.3	0.432	0	1.67	22.6	257	0.2	
12:55:00	19.66	300	Clear	4.31	0.434	0	1.56	22.43	264	0.2	
13:00:00	19.68	300	Clear	4.29	0.442	0	1.46	22.16	266	0.2	

16		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-DMW-4D-051922	Sampled By:	Zach Musser

Project No:

Sampled By:	Zach Musser
Sample Date:	2022-05-19
Sample Time:	13:05:00

112IC09567-02-GW Field

PHOTOS:

QA/QC Duplicate ID: MS/MSD Collected:

Photo ID 1789
Photo Date 2022-05-19

YES

Photo Description:

Project No

Sample Time:

			Project Site:	Lockheed-MSA
			Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-DMW-4I-051922		Sampled By:	Zach Musser
QA/QC Duplicate ID:	NA		Sample Date:	2022-05-19

WELL INFORMATION:

MS/MSD Collected:

Well ID:	MSA-DMW-4I
Well Diameter (in):	2
Top Screen (ft-BTOR):	46.63
Bottom Screen (ft-BTOR):	56.63
Total Well Depth (ft-BTOR):	56.63

NO

Purge Date:	2022-05-19
Static Water Level (ft-BTOR):	19.51
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

112IC09567-02-GW Field

14:38:00

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:33:00	19.59	300	Clear	3.98	1.04	0	4.69	19.31	277	0.5	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-4I-051922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-19
Sample Time:	14:38:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:48:00	19.52	300	Clear	3.79	0.651	7.48	8.94	26.32	310	0.3	
13:53:00	19.54	300	Clear	3.85	0.666	0.58	7.37	26.12	304	0.3	
13:58:00	19.55	300	Clear	4.02	0.729	0	7.03	20.92	290	0.4	
14:03:00	19.55	300	Clear	4.08	0.76	0	9.16	19.33	282	0.4	
14:08:00	19.56	300	Clear	4.07	0.824	0	11.05	18.67	279	0.4	
14:13:00	19.56	300	Clear	4.02	0.861	0	7.66	18.82	280	0.4	
14:18:00	19.57	300	Clear	3.94	0.888	0	4.42	18.88	281	0.4	
14:23:00	19.57	300	Clear	3.91	1.05	0	7.8	19.31	283	0.5	
14:28:00	19.58	300	Clear	3.93	1.04	0	8.51	19.4	281	0.5	
14:33:00	19.59	300	Clear	3.98	1.04	0	4.69	19.31	277	0.5	

		Event:
Sampled ID:	MSA-DMW-4I-051922	Sampled By
QA/QC Duplicate ID:	NA	Sample Date
MS/MSD Collected:	NO	Sample Time

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-05-19
Sample Time:	14:38:00

PHOTOS:

Photo ID 1792 Photo Date 2022-05-19

Photo Description:

Sampled ID:

Well ID:

QA/QC Duplicate ID: MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR):

Project No		112IC09567-02-GW Field		
Project Site:		Lockheed-MSA		
Event:	M	SA-Annual Groundwater 2022		
Sampled By:		Zach Musser		
Sample Date:		2022-05-19		
Sample Time:		08:27:00		
Purge Date:		2022-05-18		
Static Water Level (ft-	BTOR):	20.21		
PID Monitor Reading:				
Purge Method:		Low Flow		
Sample Method:		Low Flow		
		Geotoch Geonum Peristaltic		

EQUIPMENT INFORMATION:	

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

MSA-DMW-5S-051922

NO

MSA-DMW-5S

20.45

30.45

30.45

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:22:00	21.19	300	Clear	6.38	0.849	0	11.7	16.51	-22	0.4	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		

Sampled ID:	MSA-DMW-5S-051922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-19
Sample Time:	08:27:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
07:27:00	20.69	300	Clear	6.14	0.786	2.84	83	20.42	88	0.4	
07:32:00	20.89	300	Clear	6.42	0.805	0.39	87.5	19.09	-17	0.4	
07:37:00	21.03	300	Clear	6.4	0.806	0	71.1	17.91	-14	0.4	
07:42:00	21.09	300	Clear	6.28	0.807	0	56.3	17.12	-3	0.4	
07:47:00	21.15	300	Clear	6.18	0.812	0	38.3	16.65	2	0.4	
07:52:00	21.16	300	Clear	6.17	0.819	0	27.4	16.46	-1	0.4	
07:57:00	21.17	300	Clear	6.17	0.826	0	20.6	16.3	-4	0.4	
08:02:00	21.17	300	Clear	6.19	0.833	0	19.5	16.25	-8	0.4	
08:07:00	21.18	300	Clear	6.23	0.842	0	15.8	16.26	-12	0.4	
08:12:00	21.19	300	Clear	6.28	0.844	0	14.1	16.37	-15	0.4	
08:17:00	21.19	300	Clear	6.32	0.846	0	13.3	16.46	-19	0.4	
08:22:00	21.19	300	Clear	6.38	0.849	0	11.7	16.51	-22	0.4	

Sampled ID:

QA/QC Duplicate ID: MS/MSD Collected:

WELL INFORMATION:

Project No		112IC09567-02-GW Field		
Project Site:		Lockheed-MSA		
Event:	M	SA-Annual Groundwater 2022		
Sampled By:		WP		
Sample Date:		2022-06-06		
Sample Time:		10:24:00		
Purge Date:		2022-06-06		
Static Water Level (ft	-BTOR):	17.1		
PID Monitor Reading	:	0.0		
Purge Method:		Low Flow		
Sample Method:		Low Flow		

Well ID:	MSA-DMW-6D
Well Diameter (in):	2
Top Screen (ft-BTOR):	60.05
Bottom Screen (ft-BTOR):	70.05
Total Well Depth (ft-BTOR):	70.05

MSA-DMW-6D-060622

NO

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52			
Turbidity Meter:	LaMotte 2020WE			

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:19:00	17.35	200	Clear	5.19	0.378	0.11	6.85	14.53	252	0.2	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
Total Alpha Radium	903	HNO3	1	1	Plastic	yes
Radium 228	904	HNO3	2	1	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Watth

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-6D-060622		
QA/QC Duplicate ID:	NA		
MS/MSD Collected:	NO		

Sampled By:	WP
Sample Date:	2022-06-06
Sample Time:	10:24:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:34:00	17.1	300	Clear	6	0.376	1.93	272	15.36	62	0.2	
09:39:00	17.4	200	Clear	5.28	0.374	0.68	60.1	14.55	169	0.2	
09:44:00	17.35	200	Clear	5.17	0.373	0.44	28.8	14.55	193	0.2	
09:54:00	17.35	200	Clear	5.14	0.375	0.26	20.1	14.58	218	0.2	
10:04:00	17.35	200	Clear	5.14	0.377	0.19	12.8	14.58	236	0.2	
10:09:00	17.35	200	Clear	5.15	0.377	0.13	6.99	14.56	242	0.2	
10:14:00	17.35	200	Clear	5.16	0.377	0.12	6.89	14.54	248	0.2	
10:19:00	17.35	200	Clear	5.19	0.378	0.11	6.85	14.53	252	0.2	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

MSA-DMW-6D-060622	Sampled By:	WP
NA	Sample Date:	2022-06-06
NO	Sample Time:	10:24:00

PHOTOS:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 2249
Photo Date 2022-06-06

Photo Description:

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP

Sampled ID:	MSA-DMW-6I-060622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-06
Sample Time:	12:02:00

WELL INFORMATION:

Well ID:	MSA-DMW-6I
Well Diameter (in):	2
Top Screen (ft-BTOR):	41.28
Bottom Screen (ft-BTOR):	51.28
Total Well Depth (ft-BTOR):	51.28

Purge Date:	2022-06-06
Static Water Level (ft-BTOR):	17.05
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52				
Turbidity Meter:	LaMotte 2020WE				

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:57:00	17.1	200	Clear	4.24	0.384	0	9.9	15.29	405	0.2	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
PP Metals + Mercury	6020B, 7470A	HNO3	HNO3 1 500 Plastic		yes	
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
Total Alpha Radium	903	HNO3	1	1	Plastic	yes
Radium 228	904	HNO3	2	1	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-6I-060622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-06
Sample Time:	12:02:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:52:00	17.05	300	Clear	5.01	0.354	3.5	100	15.02	294	0.2	
10:57:00	17.1	200	Clear	4.46	0.372	0.3	672	14.67	345	0.2	
11:02:00	17.1	200	Clear	4.32	0.38	0	320	14.72	372	0.2	
11:12:00	17.1	200	Clear	4.23	0.381	0	48	14.96	393	0.2	
11:22:00	17.1	200	Clear	4.16	0.383	0	35.7	14.88	400	0.2	
11:32:00	17.1	200	Clear	4.11	0.384	0	24.5	14.94	409	0.2	
11:42:00	17.1	200	Clear	4.18	0.384	0	14.3	15.17	408	0.2	
11:52:00	17.1	200	Clear	4.19	0.384	0	9.95	15.2	406	0.2	
11:57:00	17.1	200	Clear	4.24	0.384	0	9.9	15.29	405	0.2	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-6I-060622	Sa
QA/QC Duplicate ID:	NA	Sa
MS/MSD Collected:	NO	Sa

Sampled By:	WP
Sample Date:	2022-06-06
Sample Time:	12:02:00

PHOTOS:

Photo ID 2252
Photo Date 2022-06-06

Project No

112IC09567-02-GW Field

		Project Site:		Lockheed-MSA
		Event:	M	SA-Annual Groundwater 2022
Sampled ID:	MSA-DMW-6S-060622	Sampled By:		WP
QA/QC Duplicate ID:	NA	Sample Date:		2022-06-06
MS/MSD Collected:	NO	Sample Time:		14:28:00
WELL INFORMATION:				
Well ID:	MSA-DMW-6S	Purge Date:		2022-06-06
Well Diameter (in):	2	Static Water Level (f	t-BTOR):	17.4
Top Screen (ft-BTOR):	15.54	PID Monitor Reading	j:	0.0
Bottom Screen (ft-BTOR):	25.54	Purge Method:		Low Flow
Total Well Depth (ft-BTOR):	25.54	Sample Method:		Low Flow
EQUIPMENT INFORMATION:				
Water Quality Instrument:	Horiba U 52			Geotech Geopump Peristaltic Pump
Turbidity Meter:	LaMotte 2020WF	Pump Controller:	Pump Controller:	

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:23:00	17.5	200	Clear	7.37	0.691	0	4.95	17.72	-99	0.3	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Total Alpha Radium	903	HNO3	1	1	Plastic	yes
Radium 228	904	HNO3	2	1	Plastic	yes

OBSERVATIONS/NOTES:		

COORDINATES:	SIGNATURE:	

Latitude	Longitude		
0.000000	0.000000		

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:		MSA-DMW-6S-060622		
QA/QC Duplicate ID:		NA		
	MS/MSD Collected:	NO		

Sampled By:	WP
Sample Date:	2022-06-06
Sample Time:	14:28:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:38:00	17.4	300	Clear	5.9	0.576	1	500	26.5	6	0.3	
13:43:00	17.5	200	Clear	6.41	0.623	0.5	252	22	-46	0.3	
13:48:00	17.5	200	Clear	6.98	0.68	0	122	18.22	-74	0.3	
13:58:00	17.5	200	Clear	7.26	0.688	0	13.5	17.99	-90	0.3	
14:08:00	17.5	200	Clear	7.33	0.693	0	5.16	17.55	-96	0.3	
14:18:00	17.5	200	Clear	7.34	0.693	0	5	17.6	-97	0.3	
14:23:00	17.5	200	Clear	7.37	0.691	0	4.95	17.72	-99	0.3	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-6S-060622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-06
Sample Time:	14:28:00

PHOTOS:

Photo ID 2255
Photo Date 2022-06-06

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	Zach Musser

Sampled ID:	MSA-DMW-7D-052022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-20
Sample Time:	07:25:00

WELL INFORMATION:

Well ID:	MSA-DMW-7D
Well Diameter (in):	2
Top Screen (ft-BTOR):	69.15
Bottom Screen (ft-BTOR):	79.15
Total Well Depth (ft-BTOR):	79.15

Purge Date:	2022-05-20		
Static Water Level (ft-BTOR):	20.63		
PID Monitor Reading:			
Purge Method:	Low Flow		
Sample Method:	Low Flow		

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:50:00	20.58	300	Clear	4.56	0.482	0	4.99	20.56	268	0.2	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

IGNATURE:		

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-7D-052022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-20
Sample Time:	07:25:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:00:00	20.64	300	Clear	4.85	0.515	2.22	50.4	19.75	182	0.2	
09:05:00	20.64	300	Clear	4.57	0.526	0.15	61.9	19.47	218	0.3	
09:10:00	20.64	300	Clear	4.56	0.511	0	35.2	19.36	231	0.2	
09:15:00	20.63	300	Clear	4.55	0.501	0	18.7	19.36	242	0.2	
09:20:00	20.63	300	Clear	4.54	0.498	0	12.6	19.27	247	0.2	
09:25:00	20.62	300	Clear	4.54	0.492	0	12.28	19.41	252	0.2	
09:30:00	20.6	300	Clear	4.54	0.487	0	8.83	19.67	256	0.2	
09:35:00	20.6	300	Clear	4.55	0.486	0	9.05	19.76	259	0.2	
09:40:00	20.59	300	Clear	4.55	0.486	0	7.92	19.8	262	0.2	
09:45:00	20.58	300	Clear	4.55	0.484	0	4.57	20.21	265	0.2	
09:50:00	20.58	300	Clear	4.56	0.482	0	4.99	20.56	268	0.2	

Sampled ID:	MSA-DMW-7D-052022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-05-20
Sample Time:	07:25:00

PHOTOS:

Photo ID 1783
Photo Date 2022-05-20

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
011-D	71-M

Sampled ID:	MSA-DMW-7I-052022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-20
Sample Time:	08:30:00

WELL INFORMATION:

Well ID:	MSA-DMW-7I
Well Diameter (in):	2
Top Screen (ft-BTOR):	44.11
Bottom Screen (ft-BTOR):	54.11
Total Well Depth (ft-BTOR):	54.11

Purge Date:	2022-05-19
Static Water Level (ft-BTOR):	20.71
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:25:00	20.65	300	Clear	5.14	0.611	0	8.03	16.78	157	0.3	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Zachory Musser

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-7I-052022				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

Sampled By:	Zach Musser
Sample Date:	2022-05-20
Sample Time:	08:30:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
07:30:00	20.72	300	Clear	5.05	0.581	0.71	106	19.03	228	0.3	
07:35:00	20.71	300	Clear	4.9	0.614	0	82	16.72	191	0.3	
07:40:00	20.71	300	Clear	4.9	0.615	0	77	16.88	180	0.3	
07:45:00	20.71	300	Clear	4.89	0.615	0	46.5	16.76	174	0.3	
07:50:00	20.71	300	Clear	4.91	0.619	0	31.4	16.35	172	0.3	
07:55:00	20.71	300	Clear	4.94	0.612	0	24.5	16.95	169	0.3	
08:00:00	20.7	300	Clear	4.97	0.618	0	29.6	16.92	168	0.3	
08:05:00	20.72	300	Clear	5.02	0.619	0	15.2	17.05	165	0.3	
08:10:00	20.7	300	Clear	5.03	0.614	0	12.4	17.23	165	0.3	
08:15:00	20.68	300	Clear	5.1	0.613	0	11.73	16.71	160	0.3	
08:20:00	20.66	300	Clear	5.16	0.616	0	8.27	16.56	158	0.3	
08:25:00	20.65	300	Clear	5.14	0.611	0	8.03	16.78	157	0.3	

Sampled ID:	MSA-DMW-7I-052022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-05-20
Sample Time:	08:30:00

PHOTOS:

Photo ID 1786
Photo Date 2022-05-20

Project No		112IC09567-02-GW Field	
Project Site:	Lockheed-MSA		
Event:	MS	SA-Annual Groundwater 2022	
Sampled By:		Zach Musser	
Sample Date:		2022-05-20	
Sample Time:		11:15:00	
Purge Date:		2022-05-20	
Static Water Level (ft-BTOR):		20.23	
PID Monitor Reading:			
Purge Method:		Low Flow	
Sample Method:		Low Flow	

Sampled ID:	MSA-DMW-7S-052022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

WELL INFORMATION:

Well ID:	MSA-DMW-7S
Well Diameter (in):	2
Top Screen (ft-BTOR):	19.77
Bottom Screen (ft-BTOR):	29.77
Total Well Depth (ft-BTOR):	29.77

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:10:00	20.34	300	Clear	6.39	1.04	0	12.26	21.19	51	0.5	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected	
VOCs	8260C		3	40	Glass Vials	yes	
1,4-dioxane	oxane 8270D		1,4-dioxane 8270D None 2 2		250	Amber	yes
Dissolved PP Metals + Mercury	PP Metals + Mercury 6020B, 7470A HNO3 1		500	Plastic - Field Filtered	yes		
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes	
DRO	8015C	None	2	250	Amber	yes	
GRO	8015C	HCI	3	40	Glass Vials	yes	

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field	
Project Site:	Lockheed-MSA	
Event:	MSA-Annual Groundwater 2022	

Sampled ID:	MSA-DMW-7S-052022		
QA/QC Duplicate ID:	NA		
MS/MSD Collected:	NO		

Sampled By:	Zach Musser
Sample Date:	2022-05-20
Sample Time:	11:15:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:15:00	20.34	300	Clear	6.34	0.834	0	119	23.03	35	0.4	
10:20:00	20.34	300	Clear	6.42	0.843	0	113	22.34	25	0.4	
10:25:00	20.34	300	Clear	6.42	0.863	0	72.6	21.23	30	0.4	
10:30:00	20.34	300	Clear	6.42	0.875	0	53.8	20.9	34	0.4	
10:35:00	20.34	300	Clear	6.42	0.872	0	39.3	21.13	38	0.4	
10:40:00	20.34	300	Clear	6.41	0.88	0	28.4	21.04	41	0.4	
10:45:00	20.34	300	Clear	6.4	1.06	0	22.1	20.39	44	0.5	
10:50:00	20.34	300	Clear	6.41	1.06	0	17.1	20.49	45	0.5	
10:55:00	20.34	300	Clear	6.41	1.04	0	14.6	20.99	46	0.5	
11:00:00	20.34	300	Clear	6.41	1.03	0	13.5	21.39	48	0.5	
11:05:00	20.34	300	Clear	6.4	1.05	0	12	20.88	50	0.5	
11:10:00	20.34	300	Clear	6.39	1.04	0	12.26	21.19	51	0.5	

Project No:	112IC09567-02-GW Field	
Project Site:	Lockheed-MSA	
Event:	MSA-Annual Groundwater 2022	

Sampled By:	Zach Musser
Sample Date:	2022-05-20
Sample Time:	11:15:00

Sampled ID:	MSA-DMW-7S-052022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

PHOTOS:

Photo ID 1780
Photo Date 2022-05-20

Project No	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		
Sampled By:	Zach Musser		
Sample Date:	2022-05-17		

10:32:00

Sampled ID:	MSA-DMW-9D-051722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sample Time:

WELL INFORMATION:

Well ID:	MSA-DMW-9D
Well Diameter (in):	2
Top Screen (ft-BTOR):	60.2
Bottom Screen (ft-BTOR):	70.2
Total Well Depth (ft-BTOR):	70.2

Purge Date:	2022-05-17		
Static Water Level (ft-BTOR):	7.18		
PID Monitor Reading:			
Purge Method:	Low Flow		
Sample Method:	Low Flow		

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:27:00	7.23	300	Clear	4.58	0.348	0	26	15.54	99	0.2	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C HCI 3		3	40	40 Glass Vials	
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:	SIGNATURE:

	Latitude	Longitude
ſ	0.000000	0.000000

Jul Muer

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-9D-051722			
QA/QC Duplicate ID:	NA			
MS/MSD Collected:	NO			

Sampled By:	Zach Musser
Sample Date:	2022-05-17
Sample Time:	10:32:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:32:00	7.23	300	Clear	5.01	0.233	6.07	16.4	15.81	277	0.1	
09:32:00	7.24	300	Cloudy	4.87	0.281	1.3	107	15.69	183	0.1	
09:37:00	7.24	300	Cloudy	4.72	0.302	0.35	-9999	15.82	124	0.1	
09:42:00	7.22	300	Cloudy	4.59	0.325	0.15	-9999	15.51	117	0.2	
09:47:00	7.22	300	Cloudy	4.52	0.333	0.18	674	15.48	113	0.2	
09:52:00	7.22	300	Clear	4.48	0.338	0.17	87.7	15.43	112	0.2	
09:57:00	7.23	300	Clear	4.44	0.34	0.25	43.7	15.42	110	0.2	
10:02:00	7.23	300	Clear	4.42	0.343	1.26	33.3	15.43	110	0.2	
10:07:00	7.23	300	Clear	4.43	0.344	1.26	30.8	15.53	108	0.2	
10:12:00	7.23	300	Clear	4.45	0.345	0.96	22.2	15.57	106	0.2	
10:17:00	7.23	300	Clear	4.48	0.347	0	29.3	15.58	104	0.2	
10:22:00	7.23	300	Clear	4.54	0.348	0	29.7	15.55	101	0.2	
10:27:00	7.23	300	Clear	4.58	0.348	0	26	15.54	99	0.2	

TETRA TEC	CH C		Project No:	112IC09567-02-GW Field		
IC			Project Site:	Lockheed-MSA		
			Event:	MSA-Annual Groundwater 2022		
		_				
Sampled ID:	MSA-DMW-9D-051722		Sampled By:	Zach Musser		

Sampled By:	Zach Musser
Sample Date:	2022-05-17
Sample Time:	10:32:00

PHOTOS:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 2030 Photo Date 2022-05-17

Photo Description:

NA

NO

Sampled ID:	MSA-DMW-9I-051722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-05-17
Sample Time:	11:58:00

WELL INFORMATION:

Well ID:	MSA-DMW-9I
Well Diameter (in):	2
Top Screen (ft-BTOR):	34.7
Bottom Screen (ft-BTOR):	44.7
Total Well Depth (ft-BTOR):	44.7

Purge Date:	2022-05-17
Static Water Level (ft-BTOR):	6.4
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:53:00	6.53	300	Clear	5.8	0.782	0	16.5	18.44	85	0.4	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

20		INIA.	TFS:
	URI	IINA	IFO:

Latitude	Longitude
0.00000	0.00000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-9I-051722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-17
Sample Time:	11:58:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:53:00	6.5	300	Cloudy	5.98	0.722	4.81	43.4	19.36	23	0.4	
10:58:00	6.53	300	Clear	6.2	0.819	1.3	30.5	19.17	19	0.4	
11:03:00	6.52	300	Clear	6.23	0.832	0.08	22	18.12	26	0.4	
11:08:00	6.53	300	Clear	6.17	0.825	0.27	14.9	18.56	37	0.4	
11:13:00	6.53	300	Clear	6.07	0.79	0.37	9.63	19.51	53	0.4	
11:18:00	6.53	300	Clear	6.07	0.79	0.37	9.63	19.51	53	0.4	
11:23:00	6.53	300	Clear	6.03	0.786	0.27	11.18	19.5	59	0.4	
11:28:00	6.52	300	Clear	6.01	0.776	0	11.92	19.77	62	0.4	
11:33:00	6.52	300	Clear	5.96	0.768	0	13.2	19.87	68	0.4	
11:38:00	6.53	300	Clear	5.9	0.802	0	15	17.91	73	0.4	
11:43:00	6.53	300	Clear	5.85	0.801	0	15.9	17.84	78	0.4	
11:48:00	6.53	300	Clear	5.82	0.789	0	16.1	18.34	82	0.4	
11:53:00	6.53	300	Clear	5.8	0.782	0	16.5	18.44	85	0.4	

Project No:	112IC09567-02-GW Field	
Project Site:	Lockheed-MSA	
Event:	MSA-Annual Groundwater 2022	

Sampled ID:	MSA-DMW-9I-051722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-17
Sample Time:	11:58:00

PHOTOS:

Project No		112IC09567-02-GW Field	
Project Site:		Lockheed-MSA	
Event:	M	SA-Annual Groundwater 2022	
Sampled By:		Zach Musser	
Sample Date:		2022-05-17	
Sample Time:		13:20:00	
Purge Date:		2022-05-17	
Static Water Level (ft-BTOR):		5.98	
PID Monitor Reading:			
Purge Method:		Low Flow	
Sample Method:		Low Flow	
		Geotech Geopump Peristaltic	

MS/MSD Collected:
WELL INFORMATION:

QA/QC Duplicate ID:

Sampled ID:

Well ID:	MSA-DMW-9S
Well Diameter (in):	2
Top Screen (ft-BTOR):	9.45
Bottom Screen (ft-BTOR):	19.45
Total Well Depth (ft-BTOR):	19.45

MSA-DMW-9S-051722

NO

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:15:00	6.22	300	Clear	7.08	0.862	0	4.39	16.92	-125	0.4	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

OBSERVATIONS/NOTES:

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled ID:		MSA-DMW-9S-051722			
	QA/QC Duplicate ID:	NA			
	MS/MSD Collected:	NO			

Sampled By:	Zach Musser
Sample Date:	2022-05-17
Sample Time:	13:20:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:30:00	6.24	300	Clear	6.91	1.11	1.47	15.3	22.65	-62	0.6	
12:35:00	6.22	300	Clear	6.96	1.2	0.55	7.09	18.23	-86	0.6	
12:40:00	6.22	300	Clear	7.04	1.15	0	6.12	17.89	-101	0.6	
12:45:00	6.23	300	Clear	7.05	1.11	0	11.8	17.48	-105	0.5	
12:50:00	6.24	300	Clear	7.04	1.07	0	9.64	17.07	-114	0.4	
12:55:00	6.23	300	Clear	7.04	0.899	0	7.66	17.19	-114	0.4	
13:00:00	6.22	300	Clear	7.01	0.833	0	4.99	16.83	-116	0.4	
13:05:00	6.23	300	Clear	6.98	0.87	0	4.25	16.87	-118	0.4	
13:10:00	6.22	300	Clear	7.15	0.869	0	6.15	16.88	-127	0.4	
13:15:00	6.22	300	Clear	7.08	0.862	0	4.39	16.92	-125	0.4	

Sampled ID:	MSA-DMW-11I-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-08
Sample Time:	09:40:00

WELL INFORMATION:

Well ID:	MSA-DMW-11I
Well Diameter (in):	2
Top Screen (ft-BTOR):	30.56
Bottom Screen (ft-BTOR):	40.56
Total Well Depth (ft-BTOR):	40.56

Purge Date:	2022-06-08
Static Water Level (ft-BTOR):	6.1
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:35:00	6.43	300	Clear	5.81	0.048	0	2.46	15.94	47	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.00000	0.000000

3 cm/Mser

Project No:	112IC09567-02-GW Field			
Project Site:	Lockheed-MSA			
Event:	MSA-Annual Groundwater 2022			

Sampled ID:	MSA-DMW-11I-060922				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

Sampled By:	Zach Musser
Sample Date:	2022-06-08
Sample Time:	09:40:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:25:00	6.34	300	Clear	6.53	0.029	3.17	8.27	19.37	306	0	
08:30:00	6.37	300	Clear	5.46	0.046	0.61	4.44	16.42	96	0	
08:35:00	6.38	300	Clear	5.47	0.055	0.25	5.52	16.01	74	0	
08:40:00	6.39	300	Clear	5.41	0.055	0.09	4.33	15.89	71	0	
08:45:00	6.4	300	Clear	5.41	0.052	0.03	2.96	15.97	68	0	
08:50:00	6.4	300	Clear	5.31	0.05	0	3.48	15.96	77	0	
08:55:00	6.4	300	Clear	5.19	0	0	3.48	15.9	77	0	
09:00:00	6.4	300	Clear	4.99	0.048	0	2.88	15.89	85	0	
09:05:00	6.41	300	Clear	5	0.048	0	3.47	15.89	83	0	
09:10:00	6.41	300	Clear	5.26	0.047	0	3.39	15.82	71	0	
09:15:00	4.62	300	Clear	5.34	0.047	0	3.76	15.87	68	0	
09:20:00	6.42	300	Clear	5.59	0.047	0	3.45	15.9	55	0	
09:25:00	6.42	300	Clear	5.86	0.047	0	3	15.93	46	0	
09:30:00	6.42	300	Clear	5.81	0.048	0	2.52	15.96	48	0	
09:35:00	6.43	300	Clear	5.81	0.048	0	2.46	15.94	47	0	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-11I-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-08
Sample Time:	09:40:00

PHOTOS:

Photo ID 2183
Photo Date 2022-06-09

MSA-DMW-11S-060922

NO

MSA-DMW-11S

10.01

20.01

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID: MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

Turbidity Meter:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR):

EQUIPMENT INFORMATION:

Water Quality Instrument:

OBSERVATIONS/NOTES:

Project No		112IC09567-02-GW Field
Project Site:		Lockheed-MSA
Event:	M	SA-Annual Groundwater 2022
Sampled By:		Zach Musser
Sample Date:		2022-06-09
Sample Time:		10:55:00
Purge Date:		2022-06-09
Static Water Level (ft-E	BTOR):	3.39
PID Monitor Reading:		
Purge Method:		Low Flow
Sample Method:		Low Flow
		Geotech Geopump Peristaltic

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:50:00	4.15	300	Clear	6.8	0.492	0	1.51	16.1	3	0.02	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-DMW-11S-060922		
QA/QC Duplicate ID:	NA		
MS/MSD Collected:	NO		

Sampled By:	Zach Musser
Sample Date:	2022-06-09
Sample Time:	10:55:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:00:00	3.81	300	Clear	6.85	0.448	6.85	3.38	17.16	74	0.02	
10:05:00	3.98	300	Clear	6.77	0.419	0.73	5.51	16.77	45	0.02	
10:10:00	4.06	300	Clear	6.67	0.389	0.12	7.07	16.45	36	0.02	
10:15:00	4.08	300	Clear	6.74	0.38	0.02	6.93	16.36	28	0.02	
10:20:00	4.1	300	Clear	6.8	0.409	0	5.07	16.38	20	0.02	
10:25:00	4.12	300	Clear	6.81	0.435	0	3.76	15.98	16	0.02	
10:30:00	4.15	300	Clear	6.8	0.448	0	2.8	16.06	13	0.02	
10:35:00	4.13	300	Clear	6.79	0.46	0	2.49	15.97	11	0.02	
10:40:00	4.13	300	Clear	6.78	0.462	0	2.28	16.22	9	0.02	
10:45:00	4.13	300	Clear	6.77	0.483	0	1.73	16.17	6	0.02	
10:50:00	4.15	300	Clear	6.8	0.492	0	1.51	16.1	3	0.02	

Sampled ID:	MSA-DMW-11S-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-09
Sample Time:	10:55:00

PHOTOS:

Photo ID 2180
Photo Date 2022-06-09

Project No

112IC09567-02-GW Field

	LCII			
IE ILINA		Project Site:		Lockheed-MSA
		Event:	М	SA-Annual Groundwater 2022
Sampled ID:	MSA-MW-4-051322	Sampled By:		WP
QA/QC Duplicate ID:	NA	Sample Date:		2022-05-13
MS/MSD Collected:	NO	Sample Time:		14:50:00
WELL INFORMATION:				
Well ID:	MSA-MW-4	Purge Date:		2022-05-13
Well Diameter (in):	4	Static Water Level (f	t-BTOR):	3.98
Top Screen (ft-BTOR):	3	PID Monitor Reading	j :	0.0
Bottom Screen (ft-BTOR):	30	30 Purge Method:		Low Flow
Total Well Depth (ft-BTOR): 30		Sample Method:		Low Flow
EQUIPMENT INFORMATION:				
Water Quality Instrument:	Horiba U 52			Geotech Geopump Peristaltic
Turbidity Meter: LaMotte 2020WE		Pump Controller:	Pump Controller:	

FINAL PURGE / SAMPLE DATA:

OBSERVATIONS/NOTES:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:45:00	4.1	200	Clear	8.05	1.21	0	1.7	17.07	-162	0.6	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Walt Br

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-4-051322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-13
Sample Time:	14:50:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:00:00	3.98	300	Clear	6.59	0.938	1.26	35.7	19.17	-10	0.5	
14:05:00	4.1	200	Clear	7.39	1.01	0	8.9	17.1	-110	0.5	
14:10:00	4.1	200	Clear	7.63	1.02	0	8.5	16.94	-133	0.5	
14:20:00	4.1	200	Clear	7.78	1.03	0	8.01	16.94	-147	0.5	
14:30:00	4.1	200	Clear	7.86	1.22	0	5.6	16.8	-152	0.5	
14:35:00	4.1	200	Clear	7.95	1.21	0	1.6	17.01	-156	0.6	
14:40:00	4.1	200	Clear	8	1.21	0	1.6	16.94	-159	0.6	
14:45:00	4.1	200	Clear	8.05	1.21	0	1.7	17.07	-162	0.6	

Project No:	112IC09567-02-GW Field			
Project Site:	Lockheed-MSA			
Event:	MSA-Annual Groundwater 2022			

Sampled ID:	MSA-MW-4-051322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-13
Sample Time:	14:50:00

PHOTOS:

Photo ID 1171
Photo Date 2022-05-13

Project No

112IC09567-02-GW Field

IE ILINA ILE		Project Site:		Lockheed-MSA	
		Event:	М	SA-Annual Groundwater 2022	
Sampled ID:	MSA-MW-6-060622	Sampled By:		WP	
QA/QC Duplicate ID:	NA	Sample Date:		2022-06-06	
MS/MSD Collected:	NO	Sample Time:		08:57:00	
WELL INFORMATION:					
Well ID:	MSA-MW-6	Purge Date:		2022-06-06	
Well Diameter (in):	4	Static Water Level (ft-	BTOR):	14.11	
Top Screen (ft-BTOR):	14	PID Monitor Reading:		0.0	
Bottom Screen (ft-BTOR):	34	Purge Method:		Low Flow	
Total Well Depth (ft-BTOR):	34	Sample Method:		Low Flow	
EQUIPMENT INFORMATION:					
Water Quality Instrument:	Horiba U 52			Geotech Geopump Peristaltic Pump	
Turbidity Meter: LaMotte 2020WF		Pump Controller:	Pump Controller:		

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:52:00	14.18	200	Clear	6.47	0.695	0	4.83	14.97	-20	0.3	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes

OBSERVATIONS/NOTES:		

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Wart P-

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-6-060622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-06
Sample Time:	08:57:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:02:00	14.11	300	Clear	5.13	0.702	2.34	165	18.31	73	0.3	
08:07:00	14.18	200	Clear	5.74	0.696	0.57	126	16.25	17	0.3	
08:12:00	14.18	200	Clear	5.93	0.692	0.12	13.9	15.85	6	0.3	
08:22:00	14.18	200	Clear	6.12	0.695	0	5.56	15.37	-4	0.3	
08:32:00	14.18	200	Clear	6.2	0.697	0	5	15.08	-8	0.3	
08:37:00	14.18	200	Clear	6.21	0.697	0	4.95	15.03	-9	0.3	
08:42:00	14.18	200	Clear	6.39	0.697	0	4.9	14.96	-17	0.3	
08:47:00	14.18	200	Clear	6.44	0.696	0	4.85	14.94	-19	0.3	
08:52:00	14.18	200	Clear	6.47	0.695	0	4.83	14.97	-20	0.3	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-6-060622	Sampled By:
QA/QC Duplicate ID:	NA	Sample Date:
MS/MSD Collected:	NO	Sample Time:

Sampled By:	WP
Sample Date:	2022-06-06
Sample Time:	08:57:00

PHOTOS:

Photo ID 2246
Photo Date 2022-06-06

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP
Sample Date:	2022-05-26
Sample Time:	12:30:00

Sampled ID:	MSA-MW-14D-052622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

WELL INFORMATION:

Well ID:	MSA-MW-14D
Well Diameter (in):	2
Top Screen (ft-BTOR):	108
Bottom Screen (ft-BTOR):	118
Total Well Depth (ft-BTOR):	118

Purge Date:	2022-05-26
Static Water Level (ft-BTOR):	6.32
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:25:00	7.3	150	Clear	7.55	0.169	1.17	5.54	15.69	25	0.1	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

Hex chrome 1245Missing bolt.

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Wart

Project No:	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		

Sampled ID:	MSA-MW-14D-052622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP			
Sample Date:	2022-05-26			
Sample Time:	12:30:00			

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:40:00	6.32	300	Clear	7.53	0.183	1.39	10.5	15.53	-56	0.1	
11:45:00	7.23	150	Clear	7.55	0.176	1.29	8.75	15.53	-38	0.1	
11:50:00	7.3	150	Clear	7.54	0.171	1.24	6.09	15.4	-21	0.1	
12:00:00	7.3	150	Clear	7.53	0.17	1.19	6.07	15.35	-1	0.1	
12:10:00	7.3	150	Clear	7.55	0.169	1.25	6.03	15.38	13	0.1	
12:15:00	7.3	150	Clear	7.54	0.169	1.2	6	15.4	18	0.1	
12:20:00	7.3	150	Clear	7.53	0.169	1.17	5.56	15.46	23	0.1	
12:25:00	7.3	150	Clear	7.55	0.169	1.17	5.54	15.69	25	0.1	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-26
Sample Time:	12:30:00

Sampled ID: MSA-MW-14D-052622 QA/QC Duplicate ID: NA MS/MSD Collected: NO

PHOTOS:

Photo ID 2297
Photo Date 2022-05-26

WELL INFORMATION:

Project No	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		
Sampled By:	WP		
Sample Date:	2022-05-26		
Sample Time:	11:05:00		
Purge Date:	2022-05-26		
Static Water Level (ft-B	BTOR): 10.25		
	· · · · · · · · · · · · · · · · · · ·		

Sampled ID:	MSA-MW-14I-052622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Well ID:	MSA-MW-14I
Well Diameter (in):	2
Top Screen (ft-BTOR):	40
Dalla a Garage (fi DTOD)	50

Well Diameter (in):	2
Top Screen (ft-BTOR):	40
Bottom Screen (ft-BTOR):	50
Total Well Depth (ft-BTOR):	50

EQUIPMENT INFORMATION:					
Water Quality Instrument:	Horiba U 52				
Turbidity Meter:	LaMotte 2020WE				

Static Water Level (ft-BTOR):	10.25
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:00:00	10.35	200	Clear	6.73	1.53	0	5.16	14.79	-82	0.8	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

	-		
N Ai	aaina	, ha	I+
IVII	ssinc	1 ()()	н.

COORDINATES:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-14I-052622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-26
Sample Time:	11:05:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:15:00	10.25	300	Clear	6.2	1.45	2.77	45.7	16.37	18	0.7	
10:20:00	10.35	200	Clear	6.69	1.46	0.46	15.6	15.35	-60	0.7	
10:25:00	10.35	200	Clear	6.77	1.48	0	9.96	15.04	-74	0.7	
10:35:00	10.35	200	Clear	6.75	1.49	0	5.75	14.82	-79	0.7	
10:45:00	10.35	200	Clear	6.72	1.52	0	5.7	14.81	-80	0.8	
10:50:00	10.35	200	Clear	6.72	1.52	0	5.25	14.78	-80	0.8	
10:55:00	10.35	200	Clear	6.72	1.53	0	5.2	14.78	-81	0.8	
11:00:00	10.35	200	Clear	6.73	1.53	0	5.16	14.79	-82	0.8	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP	
Sample Date:	2022-05-26	
Sample Time:	11:05:00	

PHOTOS:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 2294
Photo Date 2022-05-26

MSA-MW-14I-052622

NA

NO

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP

Sampled ID:	MSA-MW-15D-052622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-26
Sample Time:	14:56:00

WELL INFORMATION:

Well ID:	MSA-MW-15D
Well Diameter (in):	2
Top Screen (ft-BTOR):	57
Bottom Screen (ft-BTOR):	62
Total Well Depth (ft-BTOR):	62

Purge Date:	2022-05-26
Static Water Level (ft-BTOR):	4.1
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:51:00	4.12	200	Clear	5.62	0.047	0.15	5.36	19.03	204	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Wer an

Sampled ID:	MSA-MW-15D-052622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled By:	WP
Sample Date:	2022-05-26
Sample Time:	14:56:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:46:00	4.1	300	Clear	7.31	0.066	3.14	74.4	21.39	63	0	
13:51:00	4.12	200	Clear	6.49	0.089	1.78	54.5	19.62	21	0	
13:56:00	4.12	200	Clear	6.44	0.104	1.49	12	19.09	64	0	
14:06:00	4.12	200	Clear	6.12	0.073	0.8	10.1	18.64	133	0	
14:16:00	4.12	200	Clear	5.7	0.059	0.47	5.91	18.67	173	0	
14:26:00	4.12	200	Clear	5.52	0.053	0.3	5.75	18.79	185	0	
14:36:00	4.12	200	Clear	5.57	0.049	0.22	5.5	18.9	197	0	
14:41:00	4.12	200	Clear	5.58	0.047	0.17	5.48	18.96	199	0	
14:46:00	4.12	200	Clear	5.6	0.047	0.16	5.4	19.01	201	0	
14:51:00	4.12	200	Clear	5.62	0.047	0.15	5.36	19.03	204	0	

112IC09567-02-GW Field			
Lockheed-MSA			
MSA-Annual Groundwater 2022			

Sampled ID:	MSA-MW-15D-052622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-26
Sample Time:	14:56:00

PHOTOS:

 Photo ID
 2300

 Photo Date
 2022-05-26

Project No	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				
Sampled By:	WP				
Sample Date:	2022-05-25				
Sample Time:	12:40:00				
Purge Date:	2022-05-25				
Static Water Level (ft-E	BTOR): 7.55				
PID Monitor Reading:	0.0				
Purge Method:	Low Flow				
Sample Method:	Low Flow				

Sampled ID:	MSA-MW-16D-052522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

WELL INFORMATION:

Well ID:	MSA-MW-16D
Well Diameter (in):	2
Top Screen (ft-BTOR):	56
Bottom Screen (ft-BTOR):	66
Total Well Depth (ft-BTOR):	66

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52				
Turbidity Meter:	LaMotte 2020WE				

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:35:00	7.75	200	Clear	4.39	0.024	0	2.36	14.22	321	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Total Alpha Radium	903	HNO3	1	1	Plastic	yes
Radium 228	904	HNO3	2	1	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Hex chrome 1255			

Latitude	Longitude
0.000000	0.000000

Walt Pu

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled ID:	MSA-MW-16D-052522				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

Sampled By:	WP
Sample Date:	2022-05-25
Sample Time:	12:40:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:50:00	7.55	300	Clear	7.71	0.067	8.2	19.6	14.86	-55	0	
11:55:00	7.8	300	Clear	5.54	0.029	0.35	4.3	14.31	189	0	
12:00:00	7.75	200	Clear	4.89	0.026	0	2.3	4.29	229	0	
12:10:00	7.75	200	Clear	4.54	0.025	0	2.4	14.24	281	0	
12:20:00	7.75	200	Clear	4.39	0.024	0	2.3	14.22	308	0	
12:25:00	7.75	200	Clear	4.36	0.024	0	2.3	14.21	314	0	
12:30:00	7.75	200	Clear	4.34	0.024	0	2.32	14.15	320	0	
12:35:00	7.75	200	Clear	4.39	0.024	0	2.36	14.22	321	0	

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled ID:	MSA-MW-16D-052522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-25
Sample Time:	12:40:00

PHOTOS:

Photo ID 1762
Photo Date 2022-05-25

Project No	112IC09567-02-GW Field			
Project Site:	Lockheed-MSA			
Event:	MSA-Annual Groundwater 2022			
Sampled By:	WP			

Sampled ID:	MSA-MW-16I-052522			
QA/QC Duplicate ID:	NA			
MS/MSD Collected:	NO			

Sampled By:	WP
Sample Date:	2022-05-25
Sample Time:	10:06:00

WELL INFORMATION:

Well ID:	MSA-MW-16I
Well Diameter (in):	2
Top Screen (ft-BTOR):	35
Bottom Screen (ft-BTOR):	45
Total Well Depth (ft-BTOR):	45

Purge Date:	2022-05-25
Static Water Level (ft-BTOR):	7.25
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:01:00	7.8	200	Clear	3.98	0.086	0.77	3.2	14.12	281	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C		3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury 6020B, 7470A		HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Watt P

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-16I-052522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-25
Sample Time:	10:06:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:16:00	7.25	300	Clear	4.11	0.121	4.05	26.9	14.86	288	0.1	
09:21:00	7.8	200	Clear	3.86	0.092	3.29	10.1	14.29	315	0	
09:26:00	7.8	200	Clear	3.82	0.088	3.15	8.65	14.21	332	0	
09:36:00	7.8	200	Clear	3.79	0.086	3	7.1	14.11	346	0	
09:46:00	7.8	200	Clear	3.88	0.086	1.27	4.4	14.09	301	0	
09:51:00	7.8	200	Clear	3.92	0.086	0.75	3.1	14.12	0	-9999	
09:56:00	7.8	200	Clear	3.96	0.086	0.77	3.15	14.13	285	0	
10:01:00	7.8	200	Clear	3.98	0.086	0.77	3.2	14.12	281	0	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-16I-052522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-25
Sample Time:	10:06:00

PHOTOS:

Photo ID 1756
Photo Date 2022-05-25

WELL INFORMATION:

Project No	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				
Sampled By:	WP				
Sample Date:	2022-05-25				
Sample Time:	11:19:00				
Purge Date:	2022-05-25				
Static Water Level (ft-BT	OR): 8.2				
PID Monitor Reading:	0.0				

Sampled ID:	MSA-MW-16S-052522		
QA/QC Duplicate ID:	NA		
MS/MSD Collected:	NO		

Well ID:	MSA-MW-16S
Well Diameter (in):	2
Top Screen (ft-BTOR):	10
Bottom Screen (ft-BTOR):	20
Total Well Depth (ff-BTOR)	20

Total Well Depth (ft-BTOR):	20	Sample Method:
EQUIPMENT INFORMATION:		
Water Quality Instrument:	Horiba U 52	
Turbidity Meter:	LaMotte 2020WE	Pump Controller:

	Geotech Geopump Peristaltic
Pump Controller:	Pump

Low Flow

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:14:00	8.27	200	Clear	6.63	1.88	0	5.18	13.54	-80	0.9	

Purge Method:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	40 Glass Vials	
1,4-dioxane	8270D	None	2	250	250 Amber	
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	250 Amber	
Total Alpha Radium	903	HNO3	1	1 Plastic		yes
Radium 228	904	HNO3	2	1 Plastic		yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Walt Pr

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Sampled ID:	MSA-MW-16S-052522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-25
Sample Time:	11:19:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:29:00	8.2	300	Clear	5.69	1.76	1.91	25.6	14.54	25	0.9	
10:34:00	8.27	200	Clear	6.47	1.84	0	19.3	13.7	-60	0.9	
10:39:00	8.27	200	Clear	6.53	1.86	0	10.2	13.59	-69	0.9	
10:49:00	8.27	200	Clear	6.52	1.87	0	7.61	13.57	-71	0.9	
10:59:00	8.27	200	Clear	6.54	1.87	0	5.45	13.56	-75	0.9	
11:04:00	8.27	200	Clear	6.57	1.88	0	5.25	13.54	-77	1	
11:09:00	8.27	200	Clear	6.6	1.88	0	5.2	13.54	-79	0.9	
11:14:00	8.27	200	Clear	6.63	1.88	0	5.18	13.54	-80	0.9	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-16S-052522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-25
Sample Time:	11:19:00

PHOTOS:

Photo ID 1759
Photo Date 2022-05-25

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Compled Dur	Zoch Musser

Sampled ID:	MSA-MW-17I-061022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-09
Sample Time:	09:50:00

WELL INFORMATION:

Well ID:	MSA-MW-17I
Well Diameter (in):	2
Top Screen (ft-BTOR):	36
Bottom Screen (ft-BTOR):	46
Total Well Depth (ft-BTOR):	46

Purge Date:	2022-06-09
Static Water Level (ft-BTOR):	5.82
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:45:00	6.71	300	Clear	4.25	0.059	0	3.17	14.81	327	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

P	Project No:	112IC09567-02-GW Field			
F	Project Site:	Lockheed-MSA			
E	Event:	MSA-Annual Groundwater 2022			

Sampled ID:	MSA-MW-17I-061022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser			
Sample Date:	2022-06-09			
Sample Time:	09:50:00			

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:40:00	6.34	300	Clear	4.95	0.062	0.67	14	18.69	326	0	
08:45:00	6.46	300	Clear	4.3	0.062	0.11	6.17	17	352	0	
08:50:00	6.58	300	Clear	4.03	0.061	0	3.85	16.43	365	0	
08:55:00	6.61	300	Clear	4.02	0.061	0	2.5	16.01	368	0	
09:00:00	6.63	300	Clear	4.25	0.06	0	2.52	15.87	362	0	
09:05:00	6.65	300	Clear	4.31	0.06	0	2.57	15.79	361	0	
09:10:00	6.65	300	Clear	4.32	0.06	0	3.22	15.41	359	0	
09:15:00	6.65	300	Clear	4.27	0.06	0	3.06	15.46	358	0	
09:20:00	6.65	300	Clear	4.21	0.06	0	2.9	15.4	350	0	
09:25:00	6.67	300	Clear	4.18	0.061	0	3.45	15.18	340	0	
09:30:00	6.69	300	Clear	4.18	0.061	0	3.29	14.9	337	0	
09:35:00	6.71	300	Clear	4.21	0.061	0	2.16	14.66	335	0	
09:40:00	6.71	300	Clear	4.16	0.06	0	4.06	14.75	332	0	
09:45:00	6.71	300	Clear	4.25	0.059	0	3.17	14.81	327	0	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-17I-061022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser		
Sample Date:	2022-06-09		
Sample Time:	09:50:00		

PHOTOS:

Photo ID 2171
Photo Date 2022-06-10

MSA-MW-17S-061022

NA

NO

MSA-MW-17S

9

19

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

Turbidity Meter:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

OBSERVATIONS/NOTES:

COORDINATES:

Project No		112IC09567-02-GW Field		
Project Site:		Lockheed-MSA		
Event:	М	SA-Annual Groundwater 2022		
Sampled By:		Zach Musser		
Sample Date:		2022-06-10		
Sample Time:		11:15:00		
Purge Date:		2022-06-10		
Static Water Level (ft-	BTOR):	5.85		
PID Monitor Reading:				
Purge Method:		Low Flow		
Sample Method:		Low Flow		
		Geotech Geopump Peristaltic		

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:10:00	8.4	300	Clear	7.66	0.166	0.1	5.12	15.86	23	0.01	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

1

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-17S-061022	
QA/QC Duplicate ID:	NA	
MS/MSD Collected:	NO	

Sampled By:	Zach Musser
Sample Date:	2022-06-10
Sample Time:	11:15:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:10:00	6.38	300	Clear	5.89	0.091	0	20.1	15.58	270	0	
10:15:00	7.08	300	Clear	6.18	0.09	1.93	17.6	15.09	233	0	
10:20:00	7.6	300	Clear	6.45	0.091	1.63	14.8	15.42	216	0	
10:25:00	7.91	300	Clear	6.57	0.096	1.4	16.3	15.3	182	0	
10:30:00	8.12	300	Clear	6.68	0.101	1.17	13	15.37	161	0	
10:35:00	8.3	300	Clear	6.77	0.11	0.94	10.25	15.26	140	0	
10:40:00	8.45	300	Clear	6.85	0.122	0.7	10.63	15.11	116	0.01	
10:45:00	8.5	300	Clear	7.06	0.133	1.46	9.69	15.43	86	0.01	
10:50:00	8.51	300	Clear	7.17	0.139	0.4	7.79	15.36	72	0.01	
10:55:00	8.49	300	Clear	7.41	0.147	0.28	5.91	15.66	54	0.01	
11:00:00	8.44	300	Clear	7.59	0.153	0.21	7.05	15.62	38	0.01	
11:05:00	8.44	300	Clear	7.59	0.161	0.14	6.06	15.64	30	0.01	
11:10:00	8.4	300	Clear	7.66	0.166	0.1	5.12	15.86	23	0.01	

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
	İ

Sampled ID:	MSA-MW-18I-051822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-18
Sample Time:	10:30:00

WELL INFORMATION:

Well ID:	MSA-MW-18I
Well Diameter (in):	2
Top Screen (ft-BTOR):	40
Bottom Screen (ft-BTOR):	50
Total Well Depth (ft-BTOR):	50

Purge Date:	2022-05-18
Static Water Level (ft-BTOR):	9.54
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:25:00	10.34	300	Clear	6.64	0.847	0	27.8	18.34	-5	0.4	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-18I-051822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-18
Sample Time:	10:30:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:35:00	10.09	300	Clear	7.17	0.517	2.76	764	17.88	-44	0.3	
09:40:00	10.27	300	Clear	6.71	0.852	0.51	86.3	18.25	-5	0.4	
09:45:00	10.3	300	Clear	6.67	1.05	0	48.5	18.41	-1	0.5	
09:50:00	10.28	300	Clear	6.65	1.05	0	41.6	18.45	-1	0.5	
09:55:00	10.23	300	Clear	6.64	1.05	0	32.3	18.48	-1	0.5	
10:00:00	10.21	300	Clear	6.64	1.04	0	31.1	18.46	-2	0.5	
10:05:00	10.24	300	Clear	6.63	0.888	0	28.2	18.41	-2	0.4	
10:10:00	10.27	300	Clear	6.63	0.883	0	30	18.39	-3	0.4	
10:15:00	10.31	300	Clear	6.62	0.87	0	26.8	18.35	-4	0.4	
10:20:00	10.33	300	Clear	6.63	0.857	0	26.6	18.33	-4	0.4	
10:25:00	10.34	300	Clear	6.64	0.847	0	27.8	18.34	-5	0.4	

TETRA	TECH	Project No	112IC09567-02-GW Field
10		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-MW-18S-051822	Sampled By:	Zach Musser
QA/QC Duplicate ID:	NA	Sample Date:	2022-05-18

Sample Time:

WELL INFORMATION:

MS/MSD Collected:

Well ID:	MSA-MW-18S
Well Diameter (in):	2
Top Screen (ft-BTOR):	15
Bottom Screen (ft-BTOR):	25
Total Well Depth (ft-BTOR):	25

NO

Purge Date:	2022-05-17
Static Water Level (ft-BTOR):	9.54
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

09:15:00

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:05:00	14.17	150	Clear	6.94	1.61	0	42.7	15.69	-67	0.8	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250 Amber		yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:		MSA-MW-18S-051822
	QA/QC Duplicate ID:	NA
	MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-18
Sample Time:	09:15:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
07:55:00	7.88	300	Brown	8.12	0.87	2.6	-9999	17.95	-73	0.4	
08:00:00	8.96	300	Brown	7.36	0.498	0.06	-9999	16.67	-52	0.3	
08:05:00	9.64	150	Brown	7	0.712	0	-9999	15.82	-51	0.3	
08:10:00	10.3	150	Light brown	6.85	0.737	0	-9999	15.75	-43	0.4	
08:15:00	10.84	150	Clear	6.79	0.773	0	-9999	15.77	-41	0.4	
08:20:00	11.38	150	Clear	6.78	0.808	0	-9999	15.62	-43	0.4	
08:25:00	11.88	150	Clear	6.78	0.855	0	77.4	15.45	-46	0.4	
08:30:00	12.28	150	Clear	6.79	0.897	0	67.5	15.47	-47	0.4	
08:35:00	12.66	150	Clear	6.79	0.941	0	637	15.45	-50	0.5	
08:40:00	12.99	150	Clear	6.81	1.2	0	690	15.4	-53	0.6	
08:45:00	13.3	150	Clear	6.82	1.27	0	57.5	15.41	-55	0.6	
08:50:00	13.57	150	Clear	6.85	1.36	0	45.9	15.42	-58	0.7	
08:55:00	13.78	150	Clear	6.9	1.5	0	45.5	15.5	-61	0.7	
09:00:00	13.97	150	Clear	6.9	1.5	0	34.4	15.69	-64	0.8	
09:05:00	14.17	150	Clear	6.94	1.61	0	42.7	15.69	-67	0.8	

Sampled ID:	MSA-MW-18S-051822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-05-18
Sample Time:	09:15:00

PHOTOS:

Photo ID 2033
Photo Date 2022-05-18

	Project No	112IC09567-02-GW Field
	Project Site:	Lockheed-MSA
	Event:	MSA-Annual Groundwater 2022
)-060722	Sampled By:	WP
	Cample Date:	2022.06.07

Sampled ID:	MSA-MW-19D-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	YES

Sampled By:	WP
Sample Date:	2022-06-07
Sample Time:	10:02:00

WELL INFORMATION:

Well ID:	MSA-MW-19D
Well Diameter (in):	2
Top Screen (ft-BTOR):	70
Bottom Screen (ft-BTOR):	80
Total Well Depth (ft-BTOR):	80

Purge Date:	2022-06-07
Static Water Level (ft-BTOR):	5.95
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:57:00	6.2	200	Clear	5.58	0.25	0	2.35	15.74	-26	0.1	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	9	40	Glass Vials	yes
1,4-dioxane	8270D	None	6	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	3	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	3	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

Missing 2 bolts.

COORDINATES:

Latitude	Longitude
0.00000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-19D-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	YES

Sampled By:	WP
Sample Date:	2022-06-07
Sample Time:	10:02:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:27:00	5.95	300	Clear	4.11	0.328	1.59	32.6	18.1	122	0.1	
08:32:00	6.3	200	Clear	5.21	0.179	0.19	16.1	16.94	-2	0.1	
08:37:00	6.2	200	Clear	5.61	0.164	0	13.6	16.34	-36	0.1	
08:47:00	6.2	200	Clear	5.83	0.162	0	8.65	15.91	-50	0.1	
08:57:00	6.2	200	Clear	5.87	0.178	0	8.35	15.69	-51	0.1	
09:02:00	6.2	200	Clear	5.9	0.191	0	8.15	15.66	-52	0.1	
09:12:00	6.2	200	Clear	5.8	0.212	0	7.87	15.55	-46	0.1	
09:22:00	6.2	200	Clear	5.69	0.228	0	6.9	15.59	-39	0.1	
09:32:00	6.2	200	Clear	5.65	0.236	0	5.72	15.6	-35	0.1	
09:42:00	6.2	200	Clear	5.61	0.245	0	2.4	15.73	-30	0.1	
09:52:00	6.2	200	Clear	5.59	0.248	0	2.38	15.73	-28	0.1	
09:57:00	6.2	200	Clear	5.58	0.25	0	2.35	15.74	-26	0.1	

TETRA TEC	:H		Project No:	112IC09567-02-GW Field
ic .			Project Site:	Lockheed-MSA
			Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-MW-19D-060722		Sampled By:	WP

Sampled By:	WP		
Sample Date:	2022-06-07		
Sample Time:	10:02:00		

PHOTOS:

QA/QC Duplicate ID: MS/MSD Collected:

Photo ID 2258 Photo Date 2022-06-07

YES

Project No

		Project Site:	Project Site:		
		Event:	MS	SA-Annual Groundwater 2022	
Sampled ID:	MSA-MW-20D-051322	Sampled By:		WP	
QA/QC Duplicate ID:	NA	Sample Date:	2022-05-13		
MS/MSD Collected:	NO	Sample Time:	Sample Time: 12:17:00		
WELL INFORMATION:					
Well ID:	MSA-MW-20D	Purge Date:		2022-05-13	
Well Diameter (in):	2	Static Water Level (ft-BTOR): 8.5		8.55	٦

Well ID:	MSA-MW-20D
Well Diameter (in):	2
Top Screen (ft-BTOR):	60
Bottom Screen (ft-BTOR):	70
Total Well Depth (ft-BTOR):	70

Purge Date:	2022-05-13
Static Water Level (ft-BTOR):	8.55
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

112IC09567-02-GW Field

EQUIPMENT INFORMATION:						
Water Quality Instrument:	Horiba U 52					
Turbidity Meter:	LaMotte 2020WE					

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:12:00	8.6	180	Clear	5.35	0.232	0	2.75	18.1	260	0.1	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-20D-051322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-13
Sample Time:	12:17:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:27:00	8.55	300	Clear	7.49	0.221	5.58	8.07	17.97	181	0.1	
11:32:00	8.6	180	Clear	6.16	0.224	2.16	6.09	17.57	208	0.1	
11:37:00	8.6	180	Clear	6	0.225	1.67	5.03	17.53	220	0.1	
11:47:00	8.6	180	Clear	5.67	0.23	0.59	3.78	17.74	238	0.1	
11:57:00	8.6	180	Clear	5.48	0.232	0.34	2.91	18.05	252	0.1	
12:02:00	8.6	180	Clear	5.41	0.232	0	2.85	18.07	255	0.1	
12:07:00	8.6	180	Clear	5.38	0.232	0	2.8	18.1	257	0.1	
12:12:00	8.6	180	Clear	5.35	0.232	0	2.75	18.1	260	0.1	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-20D-051322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-13
Sample Time:	12:17:00

PHOTOS:

Photo ID 1168
Photo Date 2022-05-13

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP

Sampled ID:	MSA-MW-20I-051322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-13
Sample Time:	11:07:00

WELL INFORMATION:

Well ID:	MSA-MW-20I
Well Diameter (in):	2
Top Screen (ft-BTOR):	35
Bottom Screen (ft-BTOR):	45
Total Well Depth (ft-BTOR):	45

Purge Date:	2022-05-13
Static Water Level (ft-BTOR):	7.11
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:02:00	7.72	180	Clear	7.7	0.136	0.95	5.18	17.47	83	0.1	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Walt Te

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-20I-051322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-13
Sample Time:	11:07:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:12:00	7.11	300	Clear	7.37	0.215	3.92	22	19.12	162	0.1	
10:17:00	7.7	250	Clear	7.66	0.161	3.21	14.4	18.45	155	0.1	
10:22:00	7.72	180	Clear	7.77	0.141	2.69	10.05	18.18	147	0.1	
10:32:00	7.72	180	Clear	7.82	0.134	2	7.45	18.02	126	0.1	
10:42:00	7.72	180	Clear	7.8	0.134	1.67	5.39	17.8	107	0.1	
10:52:00	7.72	180	Clear	7.76	0.135	0.96	5.27	17.59	93	0.1	
10:57:00	7.72	180	Clear	7.72	0.135	0.96	5.2	17.48	86	0.1	
11:02:00	7.72	180	Clear	7.7	0.136	0.95	5.18	17.47	83	0.1	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP			
Sample Date:	2022-05-13			
Sample Time:	11:07:00			

Sampled ID:	MSA-MW-20I-051322				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

PHOTOS:

Photo ID 1165
Photo Date 2022-05-13

MSA-MW-20S-051322

NO

MSA-MW-20S

10 20

20

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID: MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

Turbidity Meter:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

	Project No		112IC09567-02-GW Field		
	Project Site:		Lockheed-MSA		
	Event:	M	SA-Annual Groundwater 2022		
	Sampled By:		WP		
	Sample Date:		2022-05-13		
	Sample Time:		09:39:00		
	Purge Date:		2022-05-13		
	Static Water Level (ft-	BTOR):	7.05		
	PID Monitor Reading:		0.0		
	Purge Method:		Low Flow		
	Sample Method:		Low Flow		
			Geotech Geopump Peristaltic		

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:34:00	7.5	180	Clear	6.41	0.223	0	9.76	17.04	70	0.1	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI 3		40	40 Glass Vials	
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:		

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Walt Pry

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled ID:	MSA-MW-20S-051322				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

Sampled By:	WP
Sample Date:	2022-05-13
Sample Time:	09:39:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:29:00	7.5	180	Clear	6.41	0.223	0	9.95	17.04	74	0.1	
08:49:00	7.05	300	Clear	5.64	0.289	1.17	92.5	18.58	269	0.1	
08:54:00	7.5	180	Clear	6.17	0.273	0.39	68.3	17.84	88	0.1	
08:59:00	7.5	180	Clear	6.35	0.261	0.12	55.1	17.46	72	0.1	
09:09:00	7.5	180	Clear	6.35	0.245	0	18.8	17.22	75	0.1	
09:19:00	7.5	180	Clear	6.37	0.23	0	11	17.15	80	0.1	
09:24:00	7.5	180	Clear	6.39	0.225	0	9.98	17.15	79	0.1	
09:34:00	7.5	180	Clear	6.41	0.223	0	9.76	17.04	70	0.1	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-13
Sample Time:	09:39:00

PHOTOS:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 1162
Photo Date 2022-05-13

MSA-MW-20S-051322

NA

NO

		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-MW-21D-060322	Sampled By:	WP
QA/QC Duplicate ID:	NA	Sample Date:	2022-06-03
MS/MSD Collected:	NO	Sample Time:	10:47:00

Project No

WELL INFORMATION:

Well ID:	MSA-MW-21D
Well Diameter (in):	2
Top Screen (ft-BTOR):	70
Bottom Screen (ft-BTOR):	80
Total Well Depth (ft-BTOR):	80

Purge Date:	2022-06-03
Static Water Level (ft-BTOR):	9
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

112IC09567-02-GW Field

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:42:00	9.5	200	Clear	6.39	0.094	0	9.9	17.33	3	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Wast Pu

Project No:	112IC09567-02-GW Field			
Project Site:	Lockheed-MSA			
Event:	MSA-Annual Groundwater 2022			

Sampled ID:	MSA-MW-21D-060322				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

Sampled By:	WP
Sample Date:	2022-06-03
Sample Time:	10:47:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:27:00	9	300	Clear	7.13	0.25	1.08	135	17.59	-67	0.1	
09:32:00	9.55	200	Clear	7.02	0.176	0	10.5	16.78	-96	0.1	
09:37:00	9.5	200	Clear	6.88	0.136	0	10.1	16.82	-75	0.1	
09:47:00	9.5	200	Clear	6.53	0.105	0	37.2	17.14	-35	0	
09:57:00	9.5	200	Clear	6.45	0.103	0	20.4	17.26	-19	0	
10:07:00	9.5	200	Clear	6.36	0.1	0	19.2	17.1	-7	0	
10:17:00	9.5	200	Clear	6.34	0.099	0	13.2	17.21	-2	0	
10:22:00	9.5	200	Clear	6.33	0.097	0	12.5	17.32	1	0	
10:32:00	9.5	200	Clear	6.37	0.096	0	9.98	17.24	1	0	
10:37:00	9.5	200	Clear	6.39	0.095	0	9.95	17.31	2	0	
10:42:00	9.5	200	Clear	6.39	0.094	0	9.9	17.33	3	0	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-06-03
Sample Time:	10:47:00

Sampled ID:	MSA-MW-21D-060322			
QA/QC Duplicate ID:	NA			
MS/MSD Collected:	NO			

PHOTOS:

Photo ID 2243
Photo Date 2022-06-03

		Project Site:	Lockheed-MSA		
		Event:	MSA-Annual Groundwater 2022		
Sampled ID:	MSA-MW-21I-060322	Sampled By:	WP		
QA/QC Duplicate ID:	NA	Sample Date:	2022-06-03		
MS/MSD Collected:	NO	Sample Time:	09:04:00		
WELL INFORMATION:					

Project No

WELL

Well ID:	MSA-MW-21I
Well Diameter (in):	2
Top Screen (ft-BTOR):	30
Bottom Screen (ft-BTOR):	40
Total Well Depth (ft-BTOR):	40

Purge Date:	2022-06-03
Static Water Level (ft-BTOR):	8.3
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

112IC09567-02-GW Field

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:59:00	8.31	200	Clear	6.87	1.11	0	5.07	16.96	-73	0.5	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Walt Re

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-21I-060322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-03
Sample Time:	09:04:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:14:00	8.3	300	Clear	5.73	0.961	2.96	31.3	18.9	31	0.5	
08:19:00	8.31	200	Clear	6.26	0.953	0.43	20.4	17.49	-35	0.5	
08:24:00	8.31	200	Clear	6.48	0.955	0	6.51	16.89	-50	0.5	
08:34:00	8.31	200	Clear	6.74	0.952	0	6.3	16.74	-65	0.5	
08:44:00	8.31	200	Clear	6.83	1.11	0	6.25	16.91	-70	0.5	
08:49:00	8.31	200	Clear	6.86	1.11	0	5.15	16.82	-72	0.5	
08:54:00	8.31	200	Clear	6.86	1.11	0	5.1	16.9	-72	0.5	
08:59:00	8.31	200	Clear	6.87	1.11	0	5.07	16.96	-73	0.5	

TRA TECH		Project No:	112IC09567-02-GW Field	
		Project Site:	Lockheed-MSA	
		Event:	MSA-Annual Groundwater 2022	
	MSA-MW-21I-060322	Sampled By:	WP	

Sampled By:	WP
Sample Date:	2022-06-03
Sample Time:	09:04:00

PHOTOS:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 2240
Photo Date 2022-06-03

NA

NO

Sample Time:

Project No	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		
Sampled By:	Zachary Musser		
Sample Date:	2022-06-03		

09:45:00

Sampled ID:	MSA-MW-22D-060322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

WELL INFORMATION:

Well ID:	MSA-MW-22D
Well Diameter (in):	2
Top Screen (ft-BTOR):	70
Bottom Screen (ft-BTOR):	80
Total Well Depth (ft-BTOR):	80

Purge Date:	2022-06-03
Static Water Level (ft-BTOR):	8.87
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:40:00	8.96	300	Clear	6.56	0.161	1.85	9.6	18.47	14	0.01	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sa	mpled ID:	MSA-MW-22D-060322				
QA	/QC Duplicate ID:	NA				
MS	S/MSD Collected:	NO				

Sampled By:	Zachary Musser
Sample Date:	2022-06-03
Sample Time:	09:45:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:40:00	9.02	300	Clear	7.73	0.072	3.9	57.2	23.67	153	0	
08:45:00	9.05	300	Clear	7.19	0	2.9	45.6	23.47	193	0	
08:50:00	9.06	300	Clear	7.12	0	9.53	42.8	23.42	210	0	
08:55:00	9.07	300	Clear	8.79	0.145	2.56	44.7	23.52	-33	0.01	
09:00:00	9.06	300	Clear	8.18	0.151	2.04	38.5	22.67	-44	0.01	
09:05:00	9.03	300	Clear	7.2	0.152	1.4	34.3	22.05	-28	0.01	
09:10:00	9.03	300	Clear	7.05	0.158	1.68	30.9	19.78	-10	0.01	
09:15:00	9.01	300	Clear	6.89	0.156	1.73	25.4	19.39	-8	0.01	
09:20:00	9	300	Clear	6.86	0.157	1.79	18.1	18.84	-6	0.01	
09:25:00	8.98	300	Clear	6.8	0.159	1.76	13.7	18.21	-1	0.01	
09:30:00	8.96	300	Clear	6.64	0.157	1.68	10.9	18.75	7	0.01	
09:35:00	8.98	300	Clear	6.63	0.159	1.75	10.2	18.65	10	0.01	
09:40:00	8.96	300	Clear	6.56	0.161	1.85	9.6	18.47	14	0.01	

Sampled ID:	MSA-MW-22D-060322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zachary Musser
Sample Date:	2022-06-03
Sample Time:	09:45:00

PHOTOS:

Photo ID 2036
Photo Date 2022-06-03

Project No
Project Site:

		Event:	
Sampled ID:	MSA-MW-23D-060322	Sampled By:	
QA/QC Duplicate ID:	NA	Sample Date:	
MS/MSD Collected:	NO	Sample Time:	
WELL INFORMATION:			

Event: MSA-Annual Groundwater 2022 Sampled By: Zachary Musser Sample Date: 2022-06-03 Sample Time: 13:00:00

112IC09567-02-GW Field

Lockheed-MSA

Well ID:	MSA-MW-23D
Well Diameter (in):	2
Top Screen (ft-BTOR):	76
Bottom Screen (ft-BTOR):	86
Total Well Depth (ft-BTOR):	86

Purge Date:	2022-06-03
Static Water Level (ft-BTOR):	7.77
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:55:00	7.9	300	Clear	6.92	0.146	0	11.8	18.97	-66	0.01	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-23D-060322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zachary Musser
Sample Date:	2022-06-03
Sample Time:	13:00:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:50:00	7.9	300	Clear	7.73	0.148	1.18	1000	18.28	-18	0.01	
11:55:00	7.9	300	Clear	7.32	0.147	1.4	118	18.83	-53	0.01	
12:00:00	7.9	300	Clear	7.18	0.146	0.37	72.8	17.72	-65	0.01	
12:05:00	7.9	300	Clear	7.16	0.143	0.28	61.5	18.14	-71	0.01	
12:10:00	7.9	300	Clear	7.14	0.143	0.22	59.8	18.02	-74	0.01	
12:15:00	7.9	300	Clear	7.25	0.145	0.2	54.6	17.95	-82	0.01	
12:20:00	7.9	300	Clear	7.23	0.144	0.05	48.9	17.67	-82	0.01	
12:25:00	7.9	300	Clear	7.16	0.144	0	45.2	17.92	-84	0.01	
12:30:00	7.9	300	Clear	7.15	0.148	0	41.7	16.66	-85	0.01	
12:35:00	7.9	300	Clear	7.12	0.139	0	28.6	18.97	-42	0.01	
12:40:00	7.9	300	Clear	7.11	0.14	0	23.4	19.04	-49	0.01	
12:45:00	7.9	300	Clear	6.97	0.14	0	13.3	19.1	-60	0.01	
12:50:00	7.9	300	Clear	6.92	0.141	0	12.4	19.05	-65	0.01	
12:55:00	7.9	300	Clear	6.92	0.146	0	11.8	18.97	-66	0.01	

Project No:

10		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-MW-23D-060322	Sampled By:	Zachary Musser
QA/QC Duplicate ID:	NA	Sample Date:	2022-06-03

NO

Sampled By:	Zachary Musser
Sample Date:	2022-06-03
Sample Time:	13:00:00

112IC09567-02-GW Field

PHOTOS:

MS/MSD Collected:

Photo ID 2042 Photo Date 2022-06-03

MSA-MW-23S-060322

NA

NO

MSA-MW-23S

17 27

27

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

Turbidity Meter:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

OBSERVATIONS/NOTES:

Project No	Project No		
Project Site:		Lockheed-MSA	
Event:	MS	SA-Annual Groundwater 2022	
Sampled By:		Zachary Musser	
Sample Date:		2022-06-03	
Sample Time:		11:15:00	
Purge Date:		2022-06-03	
Static Water Level (ft-BTOR):		7.25	
PID Monitor Reading:			
Purge Method:		Low Flow	
Sample Method:		Low Flow	

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:10:00	7.42	300	Clear	7.31	0.331	0.78	20.9	19.08	-60	0.02	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field			
Project Site:	Lockheed-MSA			
Event:	MSA-Annual Groundwater 2022			

Sampled ID:	MSA-MW-23S-060322				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

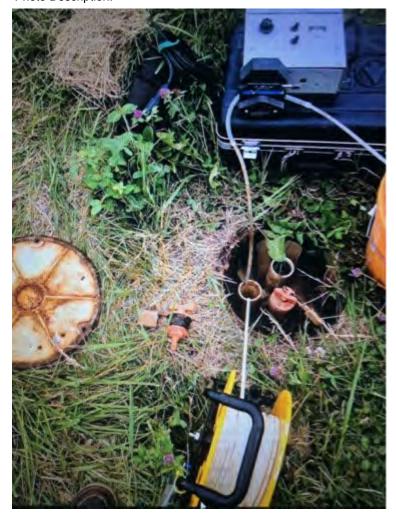
Sampled By:	Zachary Musser
Sample Date:	2022-06-03
Sample Time:	11:15:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:20:00	7.45	300	Clear	7.2	0.238	2.1	78.3	18.95	-36	0.01	
10:25:00	7.41	300	Clear	7.21	0.251	0.97	69.2	18.07	-48	0.01	
10:30:00	7.44	300	Clear	7.21	0.278	0.98	58.9	17.46	-50	0.01	
10:35:00	7.44	300	Clear	7.22	0.296	0.72	50.2	16.76	-54	0.01	
10:40:00	7.45	300	Clear	7.22	0.309	0.6	44.8	16.75	-58	0.01	
10:45:00	7.42	300	Clear	7.21	0.301	1.25	35.6	18.54	-54	0.01	
10:50:00	7.42	300	Clear	7.19	0.309	1.02	31.4	18.97	-54	0.01	
10:55:00	7.42	300	Clear	7.21	0.314	0.98	25.3	19.11	-57	0.01	
11:00:00	7.43	300	Clear	7.27	0.324	0.87	20.8	9.14	-60	0.02	
11:05:00	7.42	300	Clear	7.28	0.33	0.91	21.4	19.15	-60	0.02	
11:10:00	7.42	300	Clear	7.31	0.331	0.78	20.9	19.08	-60	0.02	

Project No:

		Project Site:	Lockneed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-MW-23S-060322	Sampled By:	Zachary Musser
QA/QC Duplicate ID:	NA	Sample Date:	2022-06-03

NO


Sampled By:	Zachary Musser
Sample Date:	2022-06-03
Sample Time:	11:15:00

112IC09567-02-GW Field

PHOTOS:

MS/MSD Collected:

Photo ID 2039 Photo Date 2022-06-03

TRA TECH		Project No	112IC09567-02-GW Field	
		Project Site:	Lockheed-MSA	
		Event:	MSA-Annual Groundwater 2022	
	MSA-MW-24I-060822	Sampled By:	Zach Musser	
:	NA	Sample Date:	2022-06-08	
	NO	Sample Time:	14:15:00	

WELL INFORMATION:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well ID:	MSA-MW-24I
Well Diameter (in):	2
Top Screen (ft-BTOR):	35
Bottom Screen (ft-BTOR):	45
Total Well Depth (ft-BTOR):	45

Purge Date:	2022-06-08
Static Water Level (ft-BTOR):	4.81
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52				
Turbidity Meter:	LaMotte 2020WE				

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:10:00	5.22	300	Clear	7.23	0.189	0	4.39	16.58	-44	0.01	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-24I-060822			
QA/QC Duplicate ID:	NA			
MS/MSD Collected:	NO			

Sampled By:	Zach Musser
Sample Date:	2022-06-08
Sample Time:	14:15:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:20:00	5.29	300	Clear	6.61	0.268	0.25	-9999	18.2	35	0.01	
13:25:00	5.2	300	Clear	7.3	0.276	0	14.6	17.6	-17	0.01	
13:30:00	5.2	300	Clear	7.42	0.265	0	15.7	17.27	-31	0.01	
13:35:00	5.2	300	Clear	7.4	0.25	0	11.09	17.41	-35	0.01	
13:40:00	5.2	300	Clear	7.36	0.241	0	8.14	17.18	-38	0.01	
13:45:00	5.2	300	Clear	7.34	0.232	0	8.84	17.12	-40	0.01	
13:55:00	5.22	300	Clear	7.31	0.211	0	6.03	17.45	-44	0.01	
14:00:00	5.22	300	Clear	7.3	0.204	0	4.83	16.78	-45	0.01	
14:05:00	5.22	300	Clear	7.27	0.189	0	4.84	16.68	-44	0.01	
14:10:00	5.22	300	Clear	7.23	0.189	0	4.39	16.58	-44	0.01	

Project No:

		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-MW-24I-060822	Sampled By:	Zach Musser
QA/QC Duplicate ID:	NA	Sample Date:	2022-06-08

NO

Sampled By:	Zach Musser
Sample Date:	2022-06-08
Sample Time:	14:15:00

112IC09567-02-GW Field

PHOTOS:

MS/MSD Collected:

Photo ID 2060 Photo Date 2022-06-08

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Project No		112IC09567-02-GW Field	
Project Site:		Lockheed-MSA	
Event:	M	SA-Annual Groundwater 2022	
Sampled By:		Zach Musser	
Sample Date:		2022-06-08	
Sample Time:		12:55:00	
		2022-06-08	
Purge Date:	Purge Date:		
Static Water Level (ft-BTOR):		4.01	
PID Monitor Reading:			
Purge Method:		Low Flow	
Sample Method:		Low Flow	

Water Quality Instrument:	Horiba U 52		
Turbidity Meter:	LaMotte 2020WE		

MSA-MW-24S-060822

NA

NO

MSA-MW-24S

15 25

25

	Geotech Geopump Peristaltic	
Pump Controller:	Pump	

FINAL PURGE / SAMPLE DATA:

OBSERVATIONS/NOTES:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:50:00	5.15	300	Clear	4.05	3.05	0	11.2	18	235	0.16	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

COORDINATES:	SIGNATURE:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:20:00	4.6	300	Clear	3.81	2.57	0.61	94	22.32	282	0.13	
11:25:00	4.98	300	Clear	3.81	2.75	0.12	133	18.71	265	0.14	
11:30:00	5.19	300	Clear	3.87	2.91	0	108.8	17.87	255	0.15	
11:35:00	5.15	300	Clear	3.91	3.03	0	70.7	17.43	246	0.16	
11:40:00	5.14	300	Clear	3.96	3.06	0	78.2	17.77	241	0.16	
11:45:00	5.13	300	Clear	3.98	3.11	0	58.3	17.11	239	0.16	
11:50:00	5.16	300	Clear	3.98	3.14	0	44.6	17.06	239	0.16	
11:55:00	5.18	300	Clear	3.97	3.14	0	25.6	17.24	240	0.16	
12:05:00	5.17	300	Clear	3.95	3.12	0	13.8	17.46	239	0.16	
12:10:00	5.15	300	Clear	3.95	3.12	0	17	17.16	237	0.16	
12:15:00	5.15	300	Clear	3.95	3.14	0	9.41	17.35	237	0.16	
12:20:00	5.15	300	Clear	3.99	3.13	0	12.5	17.66	238	0.16	
12:25:00	5.15	300	Clear	3.96	3.12	0	19	17.83	236	0.16	
12:30:00	5.15	300	Clear	3.96	3.1	0	9.78	18.06	235	0.16	
12:35:00	5.17	300	Clear	3.97	3.07	0	15.1	18.16	235	0.16	
12:40:00	5.16	300	Clear	3.97	3.06	0	11.7	18.26	235	0.15	
12:45:00	5.17	300	Clear	3.98	3.05	0	12.5	18.59	233	0.16	
12:50:00	5.15	300	Clear	4.05	3.05	0	11.2	18	235	0.16	

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	Zach Musser

Sampled ID:	MSA-MW-25I-060622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-06
Sample Time:	09:40:00

WELL INFORMATION:

Well ID:	MSA-MW-25I
Well Diameter (in):	2
Top Screen (ft-BTOR):	34
Bottom Screen (ft-BTOR):	44
Total Well Depth (ft-BTOR):	44

Purge Date:	2022-06-06
Static Water Level (ft-BTOR):	6.54
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:35:00	6.93	150	Clear	7.34	0.49	0	27.5	15.97	-52	0.01	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Q1	CN	ГЛІ	E.

Latitude	Longitude
0.000000	0.000000

P	Project No:	112IC09567-02-GW Field
F	Project Site:	Lockheed-MSA
E	Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-25I-060622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-06
Sample Time:	09:40:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:25:00	6.83	150	Cloudy	7.27	0.194	3.05	614	17.38	73	0.01	
08:30:00	6.9	150	Clear	7.34	0.17	0.91	43	15.82	22	0.01	
08:35:00	6.9	150	Clear	7.31	0.162	0.31	67.2	15.7	-2	0.01	
08:40:00	6.92	150	Clear	7.32	0.16	0.17	62.9	15.53	-15	0.01	
08:45:00	6.92	150	Clear	7.35	0.158	0.1	51.5	15.58	-25	0.01	
08:50:00	6.91	150	Clear	7.34	0.156	0.03	51	15.68	-31	0.01	
08:55:00	6.92	150	Clear	7.37	0.155	0	46.8	15.77	-36	0.01	
09:00:00	6.92	150	Clear	7.36	0.153	0	46.9	15.82	-40	0.01	
09:05:00	6.92	150	Clear	7.34	0.53	0	49.8	15.87	-42	0.01	
09:10:00	6.92	150	Clear	7.35	0.152	0	39.3	15.86	-45	0.01	
09:15:00	6.92	150	Clear	7.33	0.151	0	40.3	15.88	-47	0.01	
09:20:00	6.93	150	Clear	7.35	0.151	0	33.6	15.91	-48	0.01	
09:25:00	6.93	150	Clear	7.35	0.15	0	33.9	15.95	-50	0.01	
09:30:00	6.93	150	Clear	7.34	0.15	0	28.9	15.92	-51	0.01	
09:35:00	6.93	150	Clear	7.34	0.49	0	27.5	15.97	-52	0.01	

MSA-MW-25S-060622

NA

NO

MSA-MW-25S

10 20

20

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

OBSERVATIONS/NOTES:

COORDINATES:

Turbidity Meter:

	112IC09567-02-GW Field		
	Lockheed-MSA		
M	SA-Annual Groundwater 2022		
	Zach Musser		
	2022-06-06		
	10:55:00		
	2022-06-06		
BTOR):	5.17		
	Low Flow		
	Low Flow		
	Geotech Geopump Peristaltic		

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:50:00	7.4	150	Clear	7.19	0.173	0	4.97	15.16	-61	0.01	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

Latitude	Longitude
0.000000	0.000000

3ul Moser

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		

	Sampled ID:	MSA-MW-25S-060622		
QA/QC Duplicate ID:		NA		
	MS/MSD Collected:	NO		

Sampled By:	Zach Musser
Sample Date:	2022-06-06
Sample Time:	10:55:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:00:00	6.3	150	Clear	7.5	0.163	1.45	8.44	16.78	-32	0.01	
10:05:00	7.14	150	Clear	7.43	0.163	0.12	8.04	16.78	-47	0.01	
10:10:00	7.45	150	Clear	7.37	0.162	0	6.67	15.41	-53	0.01	
10:15:00	7.5	150	Clear	7.35	0.163	0	4.98	15.29	-57	0.01	
10:20:00	7.47	150	Clear	7.33	0.163	0	3.73	15.21	-59	0.01	
10:25:00	7.42	150	Clear	7.3	0.163	0	3.85	15.18	-60	0.01	
10:30:00	7.45	150	Clear	7.34	0.165	0	3.71	14.98	-58	0.01	
10:35:00	7.46	150	Clear	7.19	0.166	0	4.67	15.01	-58	0.01	
10:40:00	7.41	150	Clear	7.23	0.167	0	5.37	15.12	-61	0.01	
10:45:00	7.35	150	Clear	7.23	0.169	0	4.14	15.16	-62	0.01	
10:50:00	7.4	150	Clear	7.19	0.173	0	4.97	15.16	-61	0.01	

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-27D-051722		
QA/QC Duplicate ID:	NA		
MS/MSD Collected:	NO		

Sampled By:	Zach Musser
Sample Date:	2022-05-17
Sample Time:	08:35:00

WELL INFORMATION:

Well ID:	MSA-MW-27D
Well Diameter (in):	2.5
Top Screen (ft-BTOR):	175
Bottom Screen (ft-BTOR):	185
Total Well Depth (ft-BTOR):	185

Purge Date:	2022-05-17
Static Water Level (ft-BTOR):	0
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:30:00	0	300	Clear	4.2	0.014	1.81	1.68	14.66	345	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-27D-051722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-17
Sample Time:	08:35:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
07:45:00	0	300	Clear	6.15	0.014	5.16	11.9	19.96	269	0	
07:50:00	0	300	Clear	4.58	0.015	2.39	4.54	15.07	316	0	
07:55:00	0	300	Clear	4.45	0.015	1.96	1.96	14.77	321	0	
08:00:00	0	300	Clear	4.39	0.015	1.79	1.52	14.69	326	0	
08:05:00	0	300	Clear	4.37	0.015	1.74	1.68	14.69	328	0	
08:10:00	0	300	Clear	4.34	0.015	1.72	1.47	14.65	332	0	
08:15:00	0	300	Clear	4.3	0.014	1.98	1.58	14.65	336	0	
08:20:00	0	300	Clear	4.27	0.015	1.72	2.48	14.65	338	0	
08:25:00	0	300	Clear	4.23	0.014	1.74	1.6	14.63	342	0	
08:30:00	0	300	Clear	4.2	0.014	1.81	1.68	14.66	345	0	

Sampled ID:	MSA-MW-27D-051722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-05-17
Sample Time:	08:35:00

PHOTOS:

Photo ID 2027
Photo Date 2022-05-17

MSA-MW-29D-061522

NA

NO

MSA-MW-29D 2.5

> 150 160

> 160

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

OBSERVATIONS/NOTES:

Turbidity Meter:

	112IC09567-02-GW Field		
	Lockheed-MSA		
M	SA-Annual Groundwater 2022		
	Zach Musser		
	2022-06-14		
	11:47:00		
	2022-06-14		
BTOR):	4.6		
· · ·			
	Low Flow		
	Low Flow		
	M: BTOR):		

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:42:00	4.7	300	Clear	4.49	0.012	4.76	4.38	16.29	304	0	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
Total Alpha Radium	903	HNO3	1	1	Plastic	yes
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-29D-061522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	11:47:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:57:00	4.66	300	Clear	7.58	0.03	459	3.96	25.31	135	0	
11:02:00	4.64	300	Clear	5.76	0.018	4.88	4.64	19.69	215	0	
11:07:00	4.67	300	Clear	4.94	0.013	4.74	5.48	19.02	253	0	
11:12:00	4.69	300	Clear	4.56	0.013	4.95	6.75	17.71	275	0	
11:17:00	4.7	300	Clear	4.33	0.013	5.02	7.02	16.78	289	0	
11:22:00	4.7	300	Clear	4.21	0.013	6.26	7.91	16.63	299	0	
11:27:00	4.7	300	Clear	4.48	0.012	4.99	8.82	16.44	294	0	
11:32:00	4.7	300	Clear	4.43	0.012	4.89	7.4	16.34	295	0	
11:37:00	4.7	300	Clear	4.53	0.012	4.82	7.32	16.28	300	0	
11:42:00	4.7	300	Clear	4.49	0.012	4.76	4.38	16.29	304	0	

Sampled ID:	MSA-MW-29D-061522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	11:47:00

PHOTOS:

Photo ID 2213
Photo Date 2022-06-15

Project No	112IC09567-02-GW Field			
Project Site:	Lockheed-MSA			
Event:	MSA-Annual Groundwater 2022			
Sampled By:	Zach Musser			

Sampled ID:	MSA-MW-30D-061522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-15
Sample Time:	14:30:00

WELL INFORMATION:

Well ID:	MSA-MW-30D
Well Diameter (in):	2.5
Top Screen (ft-BTOR):	198
Bottom Screen (ft-BTOR):	208
Total Well Depth (ft-BTOR):	208

Purge Date:	2022-06-15
Static Water Level (ft-BTOR):	2.16
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52			
Turbidity Meter:	LaMotte 2020WE			

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:25:00	2.21	300	Clear	5.58	0.021	1.34	3.76	18.18	196	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

301			
701			2
1			joi
l l			- /
			- 1

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-30D-061522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser			
Sample Date:	: 2022-06-15			
Sample Time:	14:30:00			

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:40:00	2.17	300	Clear	7.35	0.024	1.74	4	21.03	110	0	
13:45:00	2.18	300	Clear	6.15	0.027	1.55	3.75	19.81	146	0	
13:50:00	2.19	300	Clear	5.95	0.021	1.56	5.17	18.7	163	0	
13:55:00	2.19	300	Clear	5.91	0.021	1.51	3.7	18.58	168	0	
14:00:00	2.2	300	Clear	5.84	0.021	1.48	7.28	18.42	173	0	
14:05:00	2.2	300	Clear	5.69	0.021	1.45	4.14	18.4	180	0	
14:10:00	2.2	300	Clear	5.74	0.021	1.52	3.82	18.27	178	0	
14:15:00	2.21	300	Clear	5.62	0.021	1.41	4.43	18.29	184	0	
14:20:00	2.21	300	Clear	5.68	0.021	1.37	3.82	18.28	190	0	
14:25:00	2.21	300	Clear	5.58	0.021	1.34	3.76	18.18	196	0	

TETRA TEC	н		Project No:	112IC09567-02-GW Field
10			Project Site:	Lockheed-MSA
			Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-MW-30D-061522		Sampled By:	Zach Musser

Sampled By:	Zach Musser
Sample Date:	2022-06-15
Sample Time:	14:30:00

PHOTOS:

QA/QC Duplicate ID: MS/MSD Collected:

Photo ID 2219 Photo Date 2022-06-15

NO

Project No

Sample Method:

		Project Site:		Lockheed-MSA
		Event:	M	SA-Annual Groundwater 2022
Sampled ID:	MSA-MW-30I-060822	Sampled By:		Zach Musser
QA/QC Duplicate ID:	NA	Sample Date:		2022-06-07
MS/MSD Collected: NO		Sample Time:		09:33:00
WELL INFORMATION:				
Well ID:	MSA-MW-30I	Purge Date:		2022-06-07
Well Diameter (in):	2	Static Water Level	(ft-BTOR):	4.86
Top Screen (ft-BTOR):	35	PID Monitor Reading	ng:	
Bottom Screen (ft-BTOR):	45	Purge Method:		Low Flow

EQUIPMENT INFORMATION:

Total Well Depth (ft-BTOR):

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

45 45

	Geotech Geopump Peristaltic
Pump Controller:	Pump

112IC09567-02-GW Field

Low Flow

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:28:00	5.06	300	Clear	5.77	0.081	0	0.05	2.63	233	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude				
0.000000	0.00000				

Project No:	112IC09567-02-GW Field					
Project Site:	Lockheed-MSA					
Event:	MSA-Annual Groundwater 2022					

Sampled ID:	MSA-MW-30I-060822				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

Sampled By:	Zach Musser					
Sample Date:	2022-06-07					
Sample Time:	09:33:00					

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:43:00	5.05	300	Clear	6.03	0.101	0.57	1.99	17.79	276	0	
08:48:00	5.05	300	Clear	6.08	0.097	0.44	2.36	16.7	271	0	
08:53:00	5.05	300	Clear	6.11	0.096	0.39	2.46	15.88	266	0	
08:58:00	5.05	300	Clear	6.07	0.095	0.34	3.07	15.69	263	0	
09:03:00	5.05	300	Clear	5.96	0.092	0.27	2.83	15.6	260	0	
09:08:00	5.05	300	Clear	5.9	0.087	0.27	2.51	15.43	260	0	
09:13:00	5.05	300	Clear	5.87	0.087	0.18	3.95	15.45	256	0	
09:18:00	5.05	300	Clear	5.79	0.083	0.11	2.54	15.35	251	0	
09:23:00	5.06	300	Clear	5.79	0.082	0.08	2.28	15.42	243	0	
09:28:00	5.06	300	Clear	5.77	0.081	0	0.05	2.63	233	0	
14:37:00	5.05	300	Clear	5.52	0.131	1.2	3.74	18.86	288	0.01	

		Event:
0	MOA MW 201 000000	01-1-1
Sampled ID:	MSA-MW-30I-060822	Sampled By:
QA/QC Duplicate ID:	NA	Sample Date:

NO

Project No:	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		

Sampled By:	Zach Musser
Sample Date:	2022-06-07
Sample Time:	09:33:00

PHOTOS:

MS/MSD Collected:

Photo ID 2063
Photo Date 2022-06-08

Project No	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		
	Morris and Groundwater 2022		

Sampled ID:	MSA-MW-31D-061522		
QA/QC Duplicate ID:	NA		
MS/MSD Collected:	NO		

Sampled By:	Zach Musser
Sample Date:	2022-06-15
Sample Time:	13:17:00

WELL INFORMATION:

Well ID:	MSA-MW-31D
Well Diameter (in):	2.5
Top Screen (ft-BTOR):	190
Bottom Screen (ft-BTOR):	200
Total Well Depth (ft-BTOR):	200

Purge Date:	2022-06-15
Static Water Level (ft-BTOR):	1.55
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:12:00	2.02	300	Clear	8.1	0.311	0	5.39	18.61	-79	0.01	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Analysis Method		Number	Volume	Bottle Type	Collected
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

CI	CN	ΛTI	IRF:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-31D-061522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-15
Sample Time:	13:17:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:22:00	1.81	300	Clear	6.24	0.173	0.35	6.78	20.97	107	0.01	
12:27:00	1.97	300	Clear	6.91	0.257	0	6.7	19.05	22	0.01	
12:32:00	2.02	300	Clear	7.24	0.301	0	6.22	18.33	-7	0.01	
12:37:00	2.02	300	Clear	7.36	0.305	0	5.72	18.12	-20	0.01	
12:42:00	2.02	300	Clear	7.49	0.308	0	5.98	18.12	-32	0.01	
12:47:00	2.02	300	Clear	7.59	0.31	0	11.5	18.21	-43	0.01	
12:57:00	2.02	300	Clear	7.89	0.311	0	6.93	18.34	-63	0.01	
13:02:00	2.02	300	Clear	8.03	0.311	0	6.65	18.48	-71	0.01	
13:07:00	2.02	300	Clear	8.06	0.311	0	5.48	18.58	-75	0.01	
13:12:00	2.02	300	Clear	8.1	0.311	0	5.39	18.61	-79	0.01	

Sampled ID:	MSA-MW-31D-061522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field	
Project Site:	Lockheed-MSA	
Event:	MSA-Annual Groundwater 2022	

Sampled By:	Zach Musser
Sample Date:	2022-06-15
Sample Time:	13:17:00

PHOTOS:

Photo ID 2216
Photo Date 2022-06-15

Sample Time:

Project No	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		
Sampled By:	WP		
Sample Date:	2022-06-10		

11:30:00

Sampled ID:	MSA-MW-32I-061022		
QA/QC Duplicate ID:	NA		
MS/MSD Collected:	NO		

WELL INFORMATION:

Well ID:	MSA-MW-32I
Well Diameter (in):	2
Top Screen (ft-BTOR):	55
Bottom Screen (ft-BTOR):	65
Total Well Depth (ft-BTOR):	65

Purge Date:	2022-06-10
Static Water Level (ft-BTOR):	5.6
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:25:00	7.65	100	Clear	6.89	0.312	0	4.9	19.64	-90	0.1	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Walt R_

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-32I-061022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-10
Sample Time:	11:30:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:35:00	5.6	300	Clear	6.01	0.308	1.05	42	17.46	-32	0.1	
10:40:00	6.4	300	Clear	6.22	0.313	0	9.4	17.21	-50	0.1	
10:45:00	7.35	150	Clear	6.49	0.311	0	9.1	18.13	-67	0.1	
10:55:00	7.7	100	Clear	6.69	0.313	0	5.2	18.75	-83	0.1	
11:05:00	7.65	150	Clear	6.91	0.311	0	4.99	19.5	-96	0.1	
11:15:00	7.65	100	Clear	6.9	0.312	0	4.95	19.52	-97	0.1	
11:20:00	7.65	100	Clear	6.92	0.31	0	4.92	19.66	-92	0.1	
11:25:00	7.65	100	Clear	6.89	0.312	0	4.9	19.64	-90	0.1	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-06-10
Sample Time:	11:30:00

Sampled ID:	MSA-MW-32I-061022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

PHOTOS:

Photo ID 2288
Photo Date 2022-06-10

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	Zach Musser

Sampled ID:	MSA-MW-32S-061522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	YES

Sampled By:	Zach Musser
Sample Date:	2022-06-15
Sample Time:	08:43:00

WELL INFORMATION:

Well ID:	MSA-MW-32S
Well Diameter (in):	2
Top Screen (ft-BTOR):	25
Bottom Screen (ft-BTOR):	35
Total Well Depth (ft-BTOR):	35

Purge Date:	2022-06-14
Static Water Level (ft-BTOR):	5.66
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:38:00	7.72	300	Clear	7.07	0.46	0	5.07	20.98	-7	0.02	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled ID:	MSA-MW-32S-061522				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	YES				

Sampled By:	Zach Musser
Sample Date:	2022-06-15
Sample Time:	08:43:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
07:53:00	6.3	300	Clear	7.33	0.437	0.67	6.85	21.45	85	0.02	
07:58:00	6.82	300	Clear	7.3	0.437	0.09	5.06	23.24	3	0.02	
08:03:00	7.13	300	Clear	7.43	0.44	0	3.94	22.31	-10	0.02	
08:08:00	7.25	300	Clear	7.44	0.443	0	5.01	21.74	-13	0.02	
08:13:00	7.37	300	Clear	7.48	0.447	0	5.09	21.31	-16	0.02	
08:18:00	7.46	300	Clear	7.49	0.449	0	4.34	21.07	-15	0.02	
08:23:00	7.57	300	Clear	7.42	0.453	0	4.61	20.9	-14	0.02	
08:28:00	7.7	300	Clear	7.26	0.456	0	4.94	20.88	-9	0.02	
08:33:00	7.7	300	Clear	7.14	0.459	0	5.13	20.96	-7	0.02	
08:38:00	7.72	300	Clear	7.07	0.46	0	5.07	20.98	-7	0.02	

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP

Sampled ID:	MSA-MW-33I-060822				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

Sampled By:	WP
Sample Date:	2022-06-08
Sample Time:	14:32:00

WELL INFORMATION:

Well ID:	MSA-MW-33I
Well Diameter (in):	2
Top Screen (ft-BTOR):	60
Bottom Screen (ft-BTOR):	70
Total Well Depth (ft-BTOR):	70

Purge Date:	2022-06-08
Static Water Level (ft-BTOR):	6.6
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:17:00	6.7	200	Clear	7.42	0.131	0	5.38	17.19	-155	0.1	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Walt R

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled ID:	MSA-MW-33I-060822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP			
Sample Date:	2022-06-08			
Sample Time:	14:32:00			

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:57:00	6.6	300	Clear	6.86	0.125	0.93	18.9	19.82	-33	0.1	
13:02:00	6.75	200	Clear	8.75	0.124	0	7.2	18.52	-105	0.1	
13:07:00	6.7	200	Clear	9.34	0.124	0	6.4	18.2	-101	0.1	
13:17:00	6.7	200	Clear	9.31	0.126	0	6.2	17.99	-171	0.1	
13:27:00	6.7	200	Clear	8.57	0.131	0	6.01	17.92	-222	0.1	
13:37:00	6.7	200	Clear	8.13	0.13	0	5.86	17.86	-201	0.1	
13:47:00	6.7	200	Clear	7.84	0.13	0	5.62	18.06	-181	0.1	
13:57:00	6.7	200	Clear	7.65	0.13	0	5.5	17.65	-166	0.1	
14:07:00	6.7	200	Clear	7.86	0.13	0	5.42	17.37	-159	0	
14:17:00	6.7	200	Clear	7.42	0.131	0	5.38	17.19	-155	0.1	

Project No:	112IC09567-02-GW Field					
Project Site:	Lockheed-MSA					
Event:	MSA-Annual Groundwater 2022					

Sampled ID:	MSA-MW-33I-060822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP		
Sample Date:	2022-06-08		
Sample Time:	14:32:00		

PHOTOS:

Photo ID 2276
Photo Date 2022-06-08

MSA-MW-33S-060822

NO

MSA-MW-33S

34.5 44.5

44.5

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID: MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

Turbidity Meter:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

Project No		112IC09567-02-GW Field		
Project Site:		Lockheed-MSA		
Event:	M	SA-Annual Groundwater 2022		
Sampled By:		WP		
Sample Date:		2022-06-08		
Sample Time:		12:32:00		
Purge Date:		2022-06-08		
Static Water Level (ft-	BTOR):	6.5		
PID Monitor Reading:		0.0		
Purge Method:		Low Flow		
Sample Method:	·	Low Flow		
		_		
		Geotech Geopump Peristaltic		

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:27:00	7.85	100	Clear	6.25	0.08	0	5.09	19.58	-21	0	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Preservative Number		Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	GRO 8015C HCI		2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes

OBSERVATIONS/NOTES:		

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Walt A

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-33S-060822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-08
Sample Time:	12:32:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:12:00	6.5	300	Clear	5.69	0.08	3.51	13.2	22.59	82	0	
11:17:00	7.15	200	Clear	5.93	0.077	1.05	10.15	21.36	25	0	
11:22:00	7.55	150	Clear	5.71	0.077	0	8.65	20.95	26	0	
11:32:00	7.7	100	Clear	5.54	0.077	0	5.49	19.86	25	0	
11:42:00	7.83	100	Clear	6	0.077	0	5.45	19.35	8	0	
11:52:00	7.85	100	Clear	6.17	0.078	0	5.4	18.88	-11	0	
12:02:00	7.85	100	Clear	6.3	0.078	0	5.25	19.42	-19	0	
12:12:00	7.85	100	Clear	6.28	0.078	0	5.16	19.6	-19	0	
12:22:00	7.85	100	Clear	6.26	0.079	0	5.11	19.82	-20	0	
12:27:00	7.85	100	Clear	6.25	0.08	0	5.09	19.58	-21	0	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-06-08
Sample Time:	12:32:00

PHOTOS:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 2273
Photo Date 2022-06-08

MSA-MW-33S-060822

NA

NO

MSA-MW-34I-051622

NA

NO

MSA-MW-34I

45

55

55

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Turbidity Meter:

Top Screen (ft-BTOR):

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

OBSERVATIONS/NOTES:

WELL INFORMATION:

	112IC09567-02-GW Field				
	Lockheed-MSA				
M	SA-Annual Groundwater 2022				
	Zach Musser				
	2022-05-16				
	12:05:00				
	2022-05-16				
BTOR):	4.47				
,					
	Low Flow				
	Low Flow				
	M: BTOR):				

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:00:00	4.74	300	Clear	4.61	0.1	0	6.23	15.42	257	0	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
1,4-dioxane	8270D	None	2	250	Amber	yes
VOCs	8260C	HCI	3	40	Glass Vials	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-34I-051622			
QA/QC Duplicate ID:	NA			
MS/MSD Collected:	NO			

Sampled By:	Zach Musser
Sample Date:	2022-05-16
Sample Time:	12:05:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:05:00	4.74	300	Clear	5.14	0.111	5.12	13.1	15.33	268	0.1	
11:10:00	4.73	300	Clear	5.05	0.112	1.29	11.79	15.24	271	0.1	
11:15:00	4.73	300	Clear	5.04	0.111	1.03	11.15	14.97	271	0.1	
11:20:00	4.72	300	Clear	4.96	0.109	0.74	8.75	15.22	272	0.1	
11:25:00	4.72	300	Clear	4.88	0.107	0.55	9.09	15.21	272	0	
11:30:00	4.72	300	Clear	4.78	0.104	0.31	7.22	15.19	270	0	
11:35:00	4.73	300	Clear	4.69	0.102	0.41	6.51	15.12	261	0	
11:40:00	4.73	300	Clear	4.72	0.103	0.18	6.34	15.14	261	0	
11:45:00	4.73	300	Clear	4.68	0.102	0.07	10.76	15.43	255	0	
11:50:00	4.73	300	Clear	4.71	0.1	0.08	7.64	15.42	255	0	
11:55:00	4.73	300	Clear	4.63	0.1	0	8.2	15.38	258	0	
12:00:00	4.74	300	Clear	4.61	0.1	0	6.23	15.42	257	0	

Sampled ID:

Well ID:

QA/QC Duplicate ID: MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR):

Project No		112IC09567-02-GW Field		
Project Site:		Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022			
Sampled By:	Zach Musser 2022-05-16			
Sample Date:				
Sample Time:		10:20:00		
Purge Date:		2022-05-16		
Static Water Level (ft-E	BTOR):	4.47		
PID Monitor Reading:				
Purge Method:		Low Flow		
Sample Method:		Low Flow		
-				

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

MSA-MW-34S-051622

NO

MSA-MW-34S

27 37

37

	Geotech Geopump Peristaltic	
Pump Controller:	Pump	

FINAL PURGE / SAMPLE DATA:

OBSERVATIONS/NOTES:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:15:00	4.88	300	Clear	4.46	0.089	0.29	5.06	15.14	285	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
DRO	8015C	None	2	250	250 Amber	
GRO	8015C	HCI	3	40	Glass Vials	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	7470A HNO3 1		500	Plastic	yes
1,4-dioxane	8270D	None	2	250	Amber	yes

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-34S-051622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-16
Sample Time:	10:20:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:25:00	4.8	300	Clear	6.24	0.09	3.73	7.79	16.28	143	0	
09:30:00	4.83	300	Clear	4.7	0.089	2.31	6.22	15.65	215	0	
09:35:00	4.83	300	Clear	4.52	0.082	2.03	6.06	15.36	244	0	
09:40:00	4.83	300	Clear	4.51	0.088	1.8	7.74	15.17	259	0	
09:45:00	4.82	300	Clear	4.52	0.088	0.99	4.82	15.09	268	0	
09:50:00	4.89	300	Clear	4.5	0.088	1.01	4.66	14.82	273	0	
09:55:00	4.87	300	Clear	4.44	0.088	1.81	4.85	15.08	278	0	
10:00:00	4.87	300	Clear	4.51	0.088	0.56	5.16	15.03	278	0	
10:05:00	4.89	300	Clear	4.49	0.088	0.41	4.7	15.03	284	0	
10:10:00	4.89	300	Clear	4.46	0.089	0.32	5.64	15.16	285	0	
10:15:00	4.88	300	Clear	4.46	0.089	0.29	5.06	15.14	285	0	

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

WELL INFORMATION:

Project No Project Site: Lockheed-MSA Event: MSA-Annual Groundwater 2022 Sampled By: WP Sample Date: 2022-05-23 Sample Time: 12:08:00 Purge Date: PlD Monitor Reading: Purge Method: Sample Method: Geotech Geopump Perista						
Event: MSA-Annual Groundwater 2022 Sampled By: WP Sample Date: 2022-05-23 Sample Time: 12:08:00 Purge Date: 2022-05-23 Static Water Level (ft-BTOR): 8.51 PID Monitor Reading: 0.0 Purge Method: Low Flow Sample Method: Low Flow	Project No		112IC09567-02-GW Field			
Sampled By: Sample Date: Sample Time: Purge Date: Static Water Level (ft-BTOR): PID Monitor Reading: Purge Method: Sample Method: Low Flow Low Flow	Project Site:		Lockheed-MSA			
Sample Date: 2022-05-23 Sample Time: 12:08:00 Purge Date: 2022-05-23 Static Water Level (ft-BTOR): 8.51 PID Monitor Reading: 0.0 Purge Method: Low Flow Sample Method: Low Flow	Event:	М	SA-Annual Groundwater 2022			
Purge Date: 2022-05-23 Static Water Level (ft-BTOR): 8.51 PID Monitor Reading: 0.0 Purge Method: Low Flow Sample Method: Low Flow	Sampled By:		WP			
Purge Date: 2022-05-23 Static Water Level (ft-BTOR): 8.51 PID Monitor Reading: 0.0 Purge Method: Low Flow Sample Method: Low Flow	Sample Date:		2022-05-23			
Static Water Level (ft-BTOR): 8.51 PID Monitor Reading: 0.0 Purge Method: Low Flow Sample Method: Low Flow	Sample Time:		12:08:00			
Static Water Level (ft-BTOR): 8.51 PID Monitor Reading: 0.0 Purge Method: Low Flow Sample Method: Low Flow						
PID Monitor Reading: 0.0 Purge Method: Low Flow Sample Method: Low Flow	Purge Date:		2022-05-23			
Purge Method: Low Flow Sample Method: Low Flow	PID Monitor Reading:		8.51			
Sample Method: Low Flow			0.0			
			Low Flow			
Geotech Geopump Perista	Sample Method:		Low Flow			
Geotech Geopump Perista						
			Geotech Geopump Peristaltic			

Pump

Bottom Screen (ft-BTOR):	
Total Well Depth (ft-BTOR):	

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

MSA-MW-35S-052322

NA

NO

MSA-MW-35S

243434

FINAL PURGE / SAMPLE DATA:

EQUIPMENT INFORMATION:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:03:00	15.33	100	Clear	4.5	0.141	0	4.2	19.07	226	0.1	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes

OBSERVATIONS/NOTES:

Missing bolt.	
COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-35S-052322		
QA/QC Duplicate ID:	NA		
MS/MSD Collected:	NO		

Sampled By:	WP
Sample Date:	2022-05-23
Sample Time:	12:08:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:33:00	8.51	300	Clear	4.39	0.161	1	765	17.45	273	0.1	
10:38:00	9.21	180	Clear	4.42	0.147	0.07	250	17.02	261	0.1	
10:43:00	10.1	100	Clear	4.43	0.144	0	154	17.28	257	0.1	
10:53:00	10.8	100	Clear	4.42	0.147	0	33.7	17.62	253	0.1	
11:03:00	11.61	100	Clear	4.4	0.145	0	12.1	17.91	248	0.1	
11:13:00	12.4	100	Clear	4.35	0.143	0	9.96	18.03	251	0.1	
11:23:00	13.15	100	Clear	4.33	0.143	0	4.83	17.76	248	0.1	
11:33:00	13.82	100	Clear	4.4	0.142	0	4.5	17.85	242	0.1	
11:43:00	14.5	100	Clear	4.46	0.143	0	4.3	18.48	230	0.1	
11:53:00	15	100	Clear	4.48	0.141	0	4.25	18.71	227	0.1	
12:03:00	15.33	100	Clear	4.5	0.141	0	4.2	19.07	226	0.1	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-23
Sample Time:	12:08:00

PHOTOS:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 1771
Photo Date 2022-05-23

MSA-MW-35S-052322

NA

NO

Project No

		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-MW-36S-060622	Sampled By:	Zach Musser
QA/QC Duplicate ID:	NA	Sample Date:	2022-06-06
MS/MSD Collected:	NO	Sample Time:	12:20:00

WELL INFORMATION:

Well ID:	MSA-MW-36S
Well Diameter (in):	2
Top Screen (ft-BTOR):	25
Bottom Screen (ft-BTOR):	35
Total Well Depth (ft-BTOR):	35

Purge Date:	2022-06-06
Static Water Level (ft-BTOR):	6.39
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

112IC09567-02-GW Field

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:15:00	8.72	150	Clear	4.16	0.054	0	1.84	15.99	275	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Volume Bottle Type	
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-36S-060622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-06
Sample Time:	12:20:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:30:00	7.15	150	Clear	4.92	0.055	1.39	74.1	18.18	178	0	
11:35:00	7.58	150	Clear	4.5	0.057	0.35	13.5	16.09	223	0	
11:40:00	7.93	150	Clear	4.33	0.057	0	5.59	15.81	244	0	
11:45:00	8.16	150	Clear	4.26	0.056	0	4.47	15.82	254	0	
11:50:00	8.3	150	Clear	4.23	0.055	0	2.53	15.79	260	0	
11:55:00	8.39	150	Clear	4.2	0.055	0	1.68	15.8	265	0	
12:00:00	8.48	150	Clear	4.24	0.055	0	0.74	15.85	270	0	
12:05:00	8.6	150	Clear	4.17	0.055	0	1.45	15.87	272	0	
12:10:00	8.69	150	Clear	4.15	0.054	0	2.35	15.89	274	0	
12:15:00	8.72	150	Clear	4.16	0.054	0	1.84	15.99	275	0	

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	Zach Musser
Sample Date:	2022-06-06
Sample Time:	14:45:00
Puras Data:	2022 06 06

Sampled ID:	MSA-MW-37S-060622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

WELL INFORMATION:

Well ID:	MSA-MW-37S
Well Diameter (in):	2
Top Screen (ft-BTOR):	15
Bottom Screen (ft-BTOR):	25
Total Well Depth (ft-BTOR):	25

Purge Date:	2022-06-06
Static Water Level (ft-BTOR):	6.46
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:40:00	6.54	300	Clear	6.38	0.28	0	4.66	15.2	85	0.01	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
Dissolved PP Metals + Mercury 6020B, 7470A		HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	PP Metals + Mercury 6020B, 7470A		1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	GRO 8015C		3	40	Glass Vials	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled ID:	MSA-MW-37S-060622				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

Sampled By:	Zach Musser
Sample Date:	2022-06-06
Sample Time:	14:45:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:50:00	6.51	300	Clear	6.15	0.265	2.13	33.4	17.2	133	0.01	
13:55:00	6.53	300	Clear	6.4	0.27	0.45	29.5	16.27	114	0.01	
14:00:00	6.53	300	Clear	6.42	0.271	0	16.5	15.76	103	0.01	
14:05:00	6.53	300	Clear	6.4	0.273	0	11.8	15.78	99	0.01	
14:10:00	6.53	300	Clear	6.44	0.272	0	12.9	15.72	94	0.01	
14:15:00	6.53	300	Clear	6.4	0.274	0	8.69	15.65	93	0.01	
14:20:00	6.53	400	Clear	6.44	0.274	0	10.82	15.61	91	0.01	
14:25:00	6.53	300	Clear	6.39	0.229	0	10.8	15.43	89	0.01	
14:30:00	6.53	300	Clear	6.39	0.278	0	6.46	15.35	87	0.01	
14:35:00	6.54	300	Clear	6.38	0.279	0	4.69	15.25	85	0.01	
14:40:00	6.54	300	Clear	6.38	0.28	0	4.66	15.2	85	0.01	

TE TELLE		Project Site:	Lockheed-MSA		
		Event:	MSA-Annual Groundwater 2022		
Sampled ID:	MSA-MW-38S-060822	Sampled By:	WP		
QA/QC Duplicate ID:	NA	Sample Date:	2022-06-08		
MS/MSD Collected:	NO	Sample Time:	10:02:00		

Project No

WELL INFORMATION:

Well ID:	MSA-MW-38S
Well Diameter (in):	2
Top Screen (ft-BTOR):	11
Bottom Screen (ft-BTOR):	21
Total Well Depth (ft-BTOR):	21

Purge Date:	2022-06-08
Static Water Level (ft-BTOR):	6.83
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

112IC09567-02-GW Field

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52				
Turbidity Meter:	LaMotte 2020WE				

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:57:00	6.95	150	Clear	6.2	0.143	0	7.4	16.22	-41	0.1	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Walt Pu

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-38S-060822
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-08
Sample Time:	10:02:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:27:00	6.83	300	Clear	4.12	0.149	1.19	336	18.31	249	0.1	
08:32:00	6.95	250	Clear	4.51	0.118	0	234	17.24	210	0.1	
08:37:00	6.95	150	Clear	4.34	0.114	0	106	17.49	206	0.1	
08:47:00	6.95	150	Clear	4.43	0.107	0	54.4	16.75	192	0	
08:57:00	6.95	150	Clear	5.13	0.115	0	34.9	16.41	108	0.1	
09:07:00	6.95	150	Clear	5.53	0.127	0	20.2	16.04	45	0.1	
09:17:00	6.95	150	Clear	5.73	0.134	0	11.92	15.87	14	0.1	
09:27:00	6.95	150	Clear	5.79	0.138	0	9.35	15.74	-1	0.1	
09:37:00	6.95	150	Clear	5.85	0.14	0	7.7	16.06	-13	0.1	
09:47:00	6.95	150	Clear	6	0.142	0	7.47	16.1	-25	0.1	
09:57:00	6.95	150	Clear	6.2	0.143	0	7.4	16.22	-41	0.1	

		Event:
Sampled ID:	MSA-MW-38S-060822	Sampled By:
QA/QC Duplicate ID:	NA	Sample Date:
MS/MSD Collected:	NO	Sample Time:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-06-08
Sample Time:	10:02:00

PHOTOS:

Photo ID 2270
Photo Date 2022-06-08

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP
Sample Date:	2022-05-27
Sample Time:	09:13:00

Sampled ID:	MSA-MW-40I-052722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	YES

WELL INFORMATION:

Well ID:	MSA-MW-40I
Well Diameter (in):	2
Top Screen (ft-BTOR):	30
Bottom Screen (ft-BTOR):	40
Total Well Depth (ft-BTOR):	40

Purge Date:	2022-05-27
Static Water Level (ft-BTOR):	15.75
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:08:00	15.8	150	Clear	6.19	1.41	0	5.65	15.92	45	0.7	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	9	40	Glass Vials	yes
1,4-dioxane	8270D	None	6	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	3	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	3	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Walt of

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled ID:	MSA-MW-40I-052722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	YES

Sampled By:	WP
Sample Date:	2022-05-27
Sample Time:	09:13:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:23:00	15.75	300	Clear	6	1.12	4.17	106	17.06	150	0.6	
08:28:00	15.8	150	Clear	6	1.13	0.35	73.5	16.67	67	0.6	
08:33:00	15.8	150	Clear	5.98	1.13	0	57.9	16.66	62	0.6	
08:43:00	15.8	150	Clear	6.23	1.15	0	14.4	16.35	46	0.6	
08:53:00	15.8	150	Clear	6.14	1.39	0	7.2	16.02	49	0.6	
08:58:00	15.8	150	Clear	6.14	1.4	0	5.8	15.95	48	0.7	
09:03:00	15.8	150	Clear	6.16	1.41	0	5.7	15.91	47	0.7	
09:08:00	15.8	150	Clear	6.19	1.41	0	5.65	15.92	45	0.7	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-40I-052722				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	YES				

Sampled By:	WP
Sample Date:	2022-05-27
Sample Time:	09:13:00

PHOTOS:

Photo ID 2222
Photo Date 2022-05-27

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well ID:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR):

Well Diameter (in):

Top Screen (ft-BTOR):

Project No		112IC09567-02-GW Field		
Project Site:		Lockheed-MSA		
Event:	M	SA-Annual Groundwater 2022		
Sampled By:		WP		
Sample Date:		2022-05-27		
Sample Time:		10:40:00		
Purge Date:		2022-05-27 15.25		
Static Water Level (ft	:-BTOR):			
PID Monitor Reading	:	0.0		
Purge Method:		Low Flow		
Sample Method:		Low Flow		
		Geotech Geonumn Peristaltic		

	TIATA	INICADI	MATION:
FWIN	vi – Ni i	INFURI	MAIICIN'

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

MSA-MW-40S-052722

NO

MSA-MW-40S

15

25

25

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

OBSERVATIONS/NOTES:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:35:00	16.5	150	Clear	6.96	1.29	0	3.45	15.5	-22	0.6	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes

COORDINATES:	SIG	GNATURE:

Latitude	Longitude
0.000000	0.000000

Walt R

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field	
Project Site:	Lockheed-MSA	
Event:	MSA-Annual Groundwater 2022	

Sampled ID:	MSA-MW-40S-052722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-27
Sample Time:	10:40:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:50:00	15.25	300	Clear	6.96	1.31	1.31	36.1	16.52	-10	0.5	
09:55:00	15.9	250	Clear	6.99	1.11	0	23	15.6	-18	0.5	
10:00:00	16.4	150	Clear	7.02	1.11	0	14.9	15.67	-21	0.5	
10:10:00	16.5	150	Clear	6.99	1.29	0	7.8	15.55	-21	0.6	
10:20:00	16.5	150	Clear	6.98	1.29	0	4.1	15.49	-21	0.6	
10:25:00	16.5	150	Clear	6.94	1.29	0	3.42	15.48	-21	0.6	
10:30:00	16.5	150	Clear	6.94	1.29	0	3.4	15.51	-21	0.6	
10:35:00	16.5	150	Clear	6.96	1.29	0	3.45	15.5	-22	0.6	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID: MSA-MW-40S-052722		Sampled By:
QA/QC Duplicate ID:	NA	Sample Date:
MS/MSD Collected:	NO	Sample Time:

Sampled By:	WP
Sample Date:	2022-05-27
Sample Time:	10:40:00

PHOTOS:

Photo ID 2225 Photo Date 2022-05-27

н	Project No	112IC09567-02-GW Field
	Project Site:	Lockheed-MSA
	Event:	MSA-Annual Groundwater 2022
MSA-MW-41I-060222	Sampled By:	WP
MRC-DUP01-060222	Sample Date:	2022-06-02
NO	Sample Time:	13:29:00

WELL INFORMATION:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well ID:	MSA-MW-41I
Well Diameter (in):	2
Top Screen (ft-BTOR):	44
Bottom Screen (ft-BTOR):	54
Total Well Depth (ft-BTOR):	54

Purge Date:	2022-06-02
Static Water Level (ft-BTOR):	7.43
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:24:00	7.5	200	Clear	7.04	0.834	0	5.45	19.74	-54	0.4	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	6	40	Glass Vials	yes
1,4-dioxane	8270D	None	4	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	2	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	2	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

WOUTH

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled ID:	MSA-MW-41I-060222
QA/QC Duplicate ID:	MRC-DUP01-060222
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-02
Sample Time:	13:29:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:39:00	7.43	300	Clear	7.27	0.292	1.74	12.9	27.72	58	0.1	
12:44:00	7.5	200	Clear	7.52	0.23	0.64	8.85	22.61	56	0.1	
12:49:00	7.5	200	Clear	7.35	0.29	0	5.61	22.29	-28	0.1	
12:59:00	7.5	200	Clear	7.06	0.765	0	5.6	19.99	-52	0.1	
13:09:00	7.5	200	Clear	6.97	0.819	0	5.57	19.79	-49	0.4	
13:14:00	7.5	200	Clear	6.99	0.831	0	5.55	19.9	-51	0.4	
13:19:00	7.5	200	Clear	7.02	0.833	0	5.5	19.45	-53	0.4	
13:24:00	7.5	200	Clear	7.04	0.834	0	5.45	19.74	-54	0.4	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-41I-060222
QA/QC Duplicate ID:	MRC-DUP01-060222
MS/MSD Collected:	NO

Sampled By:	WP			
Sample Date:	2022-06-02			
Sample Time:	13:29:00			

PHOTOS:

Photo ID 2234
Photo Date 2022-06-03

MSA-MW-41S-060222

NA

NO

MSA-MW-41S

28 35

35

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

Turbidity Meter:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

OBSERVATIONS/NOTES:

	112IC09567-02-GW Field		
	Lockheed-MSA		
M	SA-Annual Groundwater 2022		
	WP		
	2022-06-02		
	15:02:00		
	2022-06-02		
BTOR):	7.56		
	0.0		
	Low Flow		
	Low Flow		
	BTOR):		

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:57:00	8.05	200	Clear	6.56	0.659	0	6.27	18.97	157	0.3	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Wer B

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-41S-060222
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-02
Sample Time:	15:02:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:02:00	7.56	300	Clear	7.19	0.518	6.5	60.4	23.9	35	0.3	
14:07:00	8.05	200	Clear	6.94	0.516	1.02	30.1	19.67	90	0.2	
14:12:00	8.05	200	Clear	6.95	0.534	50.1	22	19.33	104	0.2	
14:22:00	8.05	200	Clear	7.04	0.555	0	7.85	19.01	113	0.3	
14:32:00	8.05	200	Clear	6.95	0.585	0	7.8	18.98	135	0.3	
14:37:00	8.05	200	Clear	6.71	0.6	0	7.45	18.92	148	0.3	
14:42:00	8.05	200	Clear	6.69	0.645	0	6.95	18.86	150	0.3	
14:47:00	8.05	200	Clear	6.62	0.656	0	6.35	18.84	151	0.3	
14:52:00	8.05	200	Clear	6.58	0.658	0	6.3	18.98	156	0.3	
14:57:00	8.05	200	Clear	6.56	0.659	0	6.27	18.97	157	0.3	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-41S-060222
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-02
Sample Time:	15:02:00

PHOTOS:

Photo ID 2237
Photo Date 2022-06-03

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP
Sample Date:	2022-05-27

Sampled ID:	MSA-MW-42I-060222
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-27
Sample Time:	10:15:00

WELL INFORMATION:

Well ID:	MSA-MW-42I
Well Diameter (in):	2
Top Screen (ft-BTOR):	28
Bottom Screen (ft-BTOR):	33
Total Well Depth (ft-BTOR):	33

Purge Date:	2022-06-02
Static Water Level (ft-BTOR):	6.01
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:10:00	11.1	100	Clear	5.71	0.199	0	1.22	17.98	30	0.1	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Walt Par

	Project No:	112IC09567-02-GW Field				
Project Site: Lockheed-MSA						
	Event:	MSA-Annual Groundwater 2022				

Sampled ID:	MSA-MW-42I-060222
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-27
Sample Time:	10:15:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:00:00	6.01	300	Clear	6.96	0.219	0.46	62.4	16.66	-105	0.1	
09:05:00	7.1	150	Clear	6.38	0.192	0	8.9	16.02	-28	0.1	
09:10:00	8.1	150	Clear	6.27	0.179	0	7.65	16.34	0	0.1	
09:20:00	9.05	100	Clear	6.19	0.176	0	2.5	16.51	7	0.1	
09:30:00	10.4	100	Clear	5.71	0.17	0	8.55	17.36	38	0.1	
09:40:00	10.7	100	Clear	5.69	0.178	0	8.2	17.7	36	0.1	
09:50:00	10.95	100	Clear	5.7	0.191	0	1.2	17.76	33	0.1	
10:00:00	11	100	Clear	5.7	0.196	0	1.25	17.84	31	0.1	
10:05:00	11.05	100	Clear	5.7	0.197	0	1.23	17.88	31	0.1	
10:10:00	11.1	100	Clear	5.71	0.199	0	1.22	17.98	30	0.1	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-42I-060222
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-27
Sample Time:	10:15:00

PHOTOS:

Photo ID 2228
Photo Date 2022-06-02

Project No		112IC09567-02-GW Field	
Project Site:		Lockheed-MSA	
Event:	M	SA-Annual Groundwater 2022	
Sampled By:		WP	
Sample Date:		2022-06-02	
Sample Time:		11:34:00	
Purge Date:		2022-06-02	
Static Water Level (ft-BTOR):		6.02	
PID Monitor Reading:		0.0	
Purge Method:		Low Flow	
Sample Method:		Low Flow	

WELL	INF	ORN	ΛΑΤ	ION:
------	-----	-----	-----	------

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well ID:	MSA-MW-42S
Well Diameter (in):	2
Top Screen (ft-BTOR):	5
Bottom Screen (ft-BTOR):	12
Total Well Depth (ft-BTOR):	12

MSA-MW-42S-060222

NA

NO

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:29:00	7.15	100	Clear	6	0.149	0	9.81	23.22	-9	0.1	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes

OBSERVATIONS/NOTES:			

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Wall P

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-42S-060222	
QA/QC Duplicate ID:	NA	
MS/MSD Collected:	NO	

Sampled By:	WP
Sample Date:	2022-06-02
Sample Time:	11:34:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:34:00	6.02	300	Clear	6.13	0.137	0.8	32.4	19.96	45	0.1	
10:39:00	6.2	150	Clear	5.65	0.138	0	19.4	19.85	39	0.1	
10:44:00	6.4	120	Clear	5.71	0.138	0	7.68	20.55	30	0.1	
10:54:00	6.57	100	Clear	5.79	0.143	0	14.6	21.55	14	0.1	
11:04:00	6.9	100	Clear	5.85	0.143	0	12.4	22.22	5	0.1	
11:14:00	7.05	100	Clear	5.91	0.15	0	12.4	23.06	-1	0.1	
11:19:00	7.1	100	Clear	5.95	0.149	0	9.95	23.04	-5	0.1	
11:24:00	7.15	100	Clear	5.99	0.15	0	9.85	23.18	-8	0.1	
11:29:00	7.15	100	Clear	6	0.149	0	9.81	23.22	-9	0.1	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-42S-060222
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-02
Sample Time:	11:34:00

PHOTOS:

Photo ID 2231
Photo Date 2022-06-02

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-43S-061322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-13
Sample Time:	11:20:00

WELL INFORMATION:

Well ID:	MSA-MW-43S
Well Diameter (in):	2
Top Screen (ft-BTOR):	9
Bottom Screen (ft-BTOR):	14
Total Well Depth (ft-BTOR):	14

Purge Date:	2022-06-14
Static Water Level (ft-BTOR):	10.8
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:15:00	15.95	150	Clear	7.62	0.516	0.01	9.48	19.7	153	0.02	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Preservative Number		Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude				
0.000000	0.000000				

SIGNATURE:

<u>C</u>		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
nnled ID:	MSA_MM/./3S_061322	Sampled By:	Zach Musser

Project No:

Sampled ID:	MSA-MW-43S-061322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-13
Sample Time:	11:20:00

112IC09567-02-GW Field

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:30:00	13.4	300	Clear	7.03	0.503	1.26	10.09	21.28	201	0.02	
10:35:00	13.59	300	Clear	6.81	0.502	0.3	13.54	21.28	201	0.02	
10:40:00	13.97	300	Clear	7.06	0.521	0.05	8.93	17.75	172	0.03	
10:45:00	14.28	150	Clear	7.2	0.513	0.47	7.78	18.42	173	0.02	
10:50:00	14.63	150	Clear	7.53	0.513	0.4	11.32	19.17	166	0.02	
10:55:00	14.13	150	Clear	7.6	0.512	0.29	8.35	19.57	166	0.02	
11:00:00	15.17	150	Clear	7.65	0.516	0.26	7.09	19.64	162	0.02	
11:05:00	15.45	150	Clear	7.72	0.512	0.17	12.24	19.69	158	0.02	
11:10:00	15.7	150	Clear	7.72	0.516	0.08	7.21	19.67	154	0.02	
11:15:00	15.95	150	Clear	7.62	0.516	0.01	9.48	19.7	153	0.02	

MSA-MW-44S-052022

NA

NO

MSA-MW-44S

5

15

15

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Turbidity Meter:

Top Screen (ft-BTOR):

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

OBSERVATIONS/NOTES:

WELL INFORMATION:

	112IC09567-02-GW Field				
	Lockheed-MSA				
M	SA-Annual Groundwater 2022				
	Zach Musser				
	2022-05-20				
	13:20:00				
	2022-05-20				
BTOR):	1.14				
	Low Flow				
	Low Flow				
	Geotech Geopump Peristaltic				

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:15:00	1.19	300	Clear	7.38	1.29	0	4.01	26.28	-251	0.6	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

COORDINATES:	SIGI	NATURE:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-44S-052022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-05-20
Sample Time:	13:20:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:15:00	1.15	300	Clear	6.81	4.49	7.11	20.3	31.24	-85	2.4	
12:20:00	1.17	300	Clear	6.99	4.76	0	26.5	30.44	-115	2.5	
12:25:00	1.18	300	Clear	7.05	4.51	0	14.1	29.57	-121	2.4	
12:30:00	1.19	300	Clear	7.1	4.13	0	28.4	28.89	-121	2.2	
12:35:00	1.18	300	Clear	7.13	3.53	0	13.8	28.3	-115	1.8	
12:40:00	1.18	300	Clear	7.14	3.02	0	8	27.89	-114	1.6	
12:45:00	1.18	300	Clear	7.15	2.43	0	15.5	27.45	-117	1.2	
12:50:00	1.18	300	Clear	7.2	1.99	0	7.82	27.13	-133	1	
12:55:00	1.19	300	Clear	7.26	1.71	0	5.29	26.91	-163	0.8	
13:00:00	1.19	300	Clear	7.33	1.47	0	5.97	26.64	-214	0.7	
13:05:00	1.19	300	Clear	7.34	1.39	0	6.52	26.47	-232	0.7	
13:10:00	1.19	300	Clear	7.35	1.33	0	7.71	26.37	-242	0.7	
13:15:00	1.19	300	Clear	7.38	1.29	0	4.01	26.28	-251	0.6	

Sampled ID:	MSA-MW-44S-052022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-05-20
Sample Time:	13:20:00

PHOTOS:

Photo ID 1774
Photo Date 2022-05-20

Photo ID 1777
Photo Date 2022-05-20

MSA-MW-45S-060722

NA

NO

MSA-MW-45S

15 25

25

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

OBSERVATIONS/NOTES:

Turbidity Meter:

Project No		112IC09567-02-GW Field	
Project Site:		Lockheed-MSA	
Event:	М	SA-Annual Groundwater 2022	
Sampled By:		Zach Musser	
Sample Date:		2022-06-07	
Sample Time:		09:25:00	
Purge Date:		2022-06-07	
Static Water Level (ft-	BTOR):	7.42	
PID Monitor Reading:			
Purge Method:		Low Flow	
Sample Method:		Low Flow	
		Geotech Geopump Peristaltic	

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
09:20:00	7.84	300	Clear	6.05	0.924	0	4.23	15.45	252	0.05	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
1,4-dioxane	8270D	None	2	250	Amber	yes
VOCs	8260C	HCI	3	40	Glass Vials	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	3	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-45S-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-07
Sample Time:	09:25:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:20:00	7.8	300	Clear	6.89	0.797	2.99	5.91	16.31	224	0.04	
08:25:00	7.8	300	Clear	6.61	0.791	0.53	5.99	15.53	229	0.04	
08:30:00	7.8	300	Clear	6.51	0.83	0.18	6.99	15.41	234	0.04	
08:35:00	7.8	300	Clear	6.48	0.857	0.02	2.28	15.39	237	0.04	
08:40:00	7.8	300	Clear	6.36	0.876	0	2.57	15.37	243	0.04	
08:45:00	7.84	300	Clear	6.55	0.888	0	3.35	15.24	234	0.04	
08:50:00	7.84	300	Clear	6.62	0.89	0	3.78	15.2	231	0.04	
08:55:00	7.84	300	Clear	6.56	0.895	0	1.35	15.21	234	0.04	
09:00:00	7.84	300	Clear	6.48	0.898	0	2.91	15.23	235	0.04	
09:05:00	7.84	300	Clear	6.33	0.904	0	1.47	15.23	241	0.04	
09:10:00	7.84	300	Clear	6.19	0.908	0	1.01	15.41	247	0.04	
09:15:00	7.8	300	Clear	6.09	0.916	0	3.55	15.45	250	0.04	
09:20:00	7.84	300	Clear	6.05	0.924	0	4.23	15.45	252	0.05	

Sampled ID:	MSA-MW-45S-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-07
Sample Time:	09:25:00

PHOTOS:

Photo ID 2195
Photo Date 2022-06-07

Project No	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		
Sampled By:	Zach Musser		

Sampled ID:	MSA-MW-46D-061322			
QA/QC Duplicate ID:	NA			
MS/MSD Collected:	NO			

Sampled By:	Zach Musser
Sample Date:	2022-06-13
Sample Time:	13:22:00

WELL INFORMATION:

Well ID:	MSA-MW-46D
Well Diameter (in):	2
Top Screen (ft-BTOR):	50
Bottom Screen (ft-BTOR):	60
Total Well Depth (ft-BTOR):	60

Purge Date:	2022-06-13
Static Water Level (ft-BTOR):	11.55
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)		Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:17:00	11.73	300	Clear	4.63	0.029	0	6.96	18.01	212	0	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-46D-061322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-13
Sample Time:	13:22:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:27:00	11.61	300	Clear	7.03	0.05	0.6	20.2	22.75	0.58	0	
12:32:00	11.62	300	Clear	5.04	0.045	0.34	13.4	20.84	143	0	
12:37:00	11.63	300	Clear	5.13	0.038	0.17	12.13	20.11	186	0	
12:42:00	11.65	300	Clear	5.13	0.035	0.04	11.42	20.13	145	0	
12:47:00	11.66	300	Clear	5.17	0.031	0	9.68	19.49	181	0	
12:52:00	11.67	300	Clear	4.81	0.029	0	8.74	19.13	204	0	
12:57:00	11.69	300	Clear	4.69	0.029	0	10.64	18.26	208	0	
13:02:00	11.7	300	Clear	4.59	0.029	0	7.11	18.11	215	0	
13:07:00	11.71	300	Clear	4.63	0.029	0	6.87	17.89	212	0	
13:12:00	11.72	300	Clear	4.73	0.03	0	7.27	17.99	202	0	
13:17:00	11.73	300	Clear	4.63	0.029	0	6.96	18.01	212	0	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
	·

Sampled By:	Zach Musser	
Sample Date:	2022-06-13	
Sample Time:	13:22:00	

Sampled ID: MSA-MW-46D-061322 QA/QC Duplicate ID: NA MS/MSD Collected: NO

PHOTOS:

Photo ID 2168
Photo Date 2022-06-13

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	Zach Musser

Sampled ID:	MSA-MW-46I-061322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-13
Sample Time:	14:25:00

WELL INFORMATION:

Well ID:	MSA-MW-46I
Well Diameter (in):	2
Top Screen (ft-BTOR):	35
Bottom Screen (ft-BTOR):	45
Total Well Depth (ft-BTOR):	45

Purge Date:	2022-06-13
Static Water Level (ft-BTOR):	11.22
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:25:00	11.4	300	Clear	5.4	0.311	0	7.77	18.7	210	0.01	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.00000	0.00000

SIGNATURE:

16		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA MW 461 061322	Campled By:	Zoch Mussor

Project No:

Sampled ID:	MSA-MW-46I-061322	
QA/QC Duplicate ID:	NA	
MS/MSD Collected:	NO	

Sampled By:	Zach Musser	
Sample Date:	2022-06-13	
Sample Time:	14:25:00	

112IC09567-02-GW Field

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:40:00	11.32	300	Clear	5.08	0.251	1.2	10.37	23.55	260	0.01	
13:45:00	11.33	300	Clear	5.18	0.249	0.18	10.18	23.4	248	0.01	
13:50:00	11.35	300	Clear	5.33	0.249	0	10.18	22.23	237	0.01	
13:55:00	11.36	300	Clear	5.23	0.249	0	10.17	231	231	0.01	
14:00:00	11.37	300	Clear	5.33	0.25	0	7.1	23.29	229	0.01	
14:05:00	11.38	300	Clear	5.31	0.304	0	6.54	18.85	224	0.01	
14:10:00	11.38	300	Clear	5.23	0.309	0	11.11	18.77	228	0.01	
14:15:00	11.38	300	Clear	5.3	0.312	0	8.5	18.67	221	0.01	
14:20:00	11.39	300	Clear	5.38	0.31	0	7.15	18.73	213	0.01	
14:25:00	11.4	300	Clear	5.4	0.311	0	7.77	18.7	210	0.01	

Sampled ID:	MSA-MW-46I-061322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		

Sampled By:	Zach Musser
Sample Date:	2022-06-13
Sample Time:	14:25:00

PHOTOS:

Photo ID 2198
Photo Date 2022-06-13

Sampled ID:

Well ID:

QA/QC Duplicate ID:
MS/MSD Collected:
WELL INFORMATION:

Well Diameter (in):

Top Screen (ft-BTOR):

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR):

EQUIPMENT INFORMATION:

Water Quality Instrument:

Turbidity Meter:

	Project No	112IC09567-02-GW Field
	Project Site:	Lockheed-MSA
	Event:	MSA-Annual Groundwater 2022
MSA-MW-46S-061422	Sampled By:	Zach Musser
NA	Sample Date:	2022-06-14
NO	Sample Time:	15:05:00
MSA-MW-46S	Purge Date:	2022-06-14
2	Static Water Level (ft-BT	OR): 10.28
15	PID Monitor Reading:	
25	Purge Method:	Low Flow
25	Sample Method:	Low Flow
Horiba U 52		Geotech Geopump Peristaltic

Pump Controller:

Pump

FINAL PURGE / SAMPLE DATA:

OBSERVATIONS/NOTES:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
15:05:00	17.08	150	Clear	6.62	0.53	0	12.1	16.5	95	0.03	

LaMotte 2020WE

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		

Sampled ID:	MSA-MW-46S-061422
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	15:05:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:15:00	11.08	300	Clear	6.75	0.522	5.63	12.5	17.32	171	0.03	
14:20:00	11.56	300	Clear	6.72	0.523	2.09	12	17.06	165	0.03	
14:25:00	12.07	300	Clear	6.68	0.527	0	14.16	16.82	137	0.03	
14:30:00	13.85	300	Clear	6.7	0.528	0	13.63	16.66	123	0.01	
14:35:00	14.31	150	Clear	6.66	0.531	0	12.3	16.66	118	0.03	
14:40:00	15.07	150	Clear	6.66	0.531	0	13.39	16.57	111	0.03	
14:45:00	15.39	150	Clear	6.65	0.531	0	12.42	16.52	107	0.03	
14:50:00	15.98	150	Clear	6.63	0.531	0	12.15	16.52	104	0.03	
14:55:00	16.57	150	Clear	6.63	0.531	0	12	16.5	100	0.03	
15:05:00	17.08	150	Clear	6.62	0.53	0	12.1	16.5	95	0.03	

Sampled ID:	MSA-MW-46S-061422
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	15:05:00

PHOTOS:

Photo ID 2210
Photo Date 2022-06-14

Sampled ID:	MSA-MW-47D-061422
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	14:15:00

WELL INFORMATION:

Well ID:	MSA-MW-47D
Well Diameter (in):	2
Top Screen (ft-BTOR):	45
Bottom Screen (ft-BTOR):	55
Total Well Depth (ft-BTOR):	55

Purge Date:	2022-06-14		
Static Water Level (ft-BTOR):	12.31		
PID Monitor Reading:			
Purge Method:	Low Flow		
Sample Method:	Low Flow		

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52	
Turbidity Meter:	LaMotte 2020WE	

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:15:00	12.49	300	Clear	7.1	0.128	4.89	3.52	17.78	190	0.01	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

EJ TETRA TEC		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
	1101 1111 1=0 001 100		

Project No:

Sampled ID:	MSA-MW-47D-061422				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	14:15:00

112IC09567-02-GW Field

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:35:00	12.4	300	Clear	8.27	0.251	4.84	4.84	19	907	0.01	
13:40:00	12.41	300	Clear	7.82	0.163	4.78	4.51	18.34	132	0.01	
13:45:00	12.44	300	Clear	7.4	0.133	4.85	2.91	17.93	154	0.01	
13:50:00	12.48	300	Clear	7.18	0.128	4.89	2.99	17.64	167	0.01	
13:55:00	12.49	300	Clear	7.08	0.126	4.89	3.05	17.78	178	0.01	
14:00:00	12.51	300	Clear	7.04	0.126	4.89	2.85	17.72	183	0.01	
14:05:00	12.52	300	Clear	7.06	0.124	4.87	3.04	17.76	185	0.01	
14:10:00	12.53	300	Clear	7.15	0.124	4.81	3.85	17.85	188	0.01	
14:15:00	12.49	300	Clear	7.1	0.128	4.89	3.52	17.78	190	0.01	

Sampled ID:	MSA-MW-47D-061422
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field			
Project Site:	Lockheed-MSA			
Event:	MSA-Annual Groundwater 2022			

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	14:15:00

PHOTOS:

Photo ID 2207
Photo Date 2022-06-14

Project No

		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-MW-47I-061422	Sampled By:	Zach Musser
QA/QC Duplicate ID:	NA	Sample Date:	2022-06-14
MS/MSD Collected:	NO	Sample Time:	13:17:00
WELL INFORMATION:			

Well ID:	MSA-MW-47I
Well Diameter (in):	2
Top Screen (ft-BTOR):	25
Bottom Screen (ft-BTOR):	35
Total Well Depth (ft-BTOR):	35

Purge Date:	2022-06-14
Static Water Level (ft-BTOR):	12
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

112IC09567-02-GW Field

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:12:00	12.39	300	Clear	7.04	1.5	0	7.48	16.17	70	0.07	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative Number		Volume	Bottle Type	Collected
VOCs	8260C	HCI 3		40	Glass Vials	yes
1,4-dioxane	8270D	None	2 250		Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

TETRA TEC	н	Project No:	112IC09567-02-GW Field
		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
	MOA MINI 471 004400	OII D	7l M

Sampled ID:	MSA-MW-47I-061422			
QA/QC Duplicate ID:	NA			
MS/MSD Collected:	NO			

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	13:17:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:27:00	12.29	300	Clear	7.99	1.51	0.66	12.9	18.24	98	0.08	
12:32:00	12.31	300	Clear	7.42	1.5	0.07	12	17.11	76	0.08	
12:37:00	12.32	300	Clear	7.27	1.49	0	11.5	16.82	71	0.07	
12:42:00	12.34	300	Clear	7.2	1.48	0	11.33	16.65	70	0.07	
12:47:00	12.35	300	Clear	7.15	1.48	0	10.9	16.39	69	0.07	
12:57:00	12.37	300	Clear	7.14	1.5	0	8.39	16.38	69	0.08	
13:02:00	12.38	300	Clear	7.09	1.5	0	7	16.28	69	0.07	
13:07:00	12.38	300	Clear	7.04	1.5	0	7.6	16.17	69	0.08	
13:12:00	12.39	300	Clear	7.04	1.5	0	7.48	16.17	70	0.07	

Sampled ID:	MSA-MW-47I-061422
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	13:17:00

PHOTOS:

Photo ID 2204
Photo Date 2022-06-14

MSA-MW-47S-061422

NA

NO

MSA-MW-47S

10 20

20

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

Turbidity Meter:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

OBSERVATIONS/NOTES:

	112IC09567-02-GW Field					
	Lockheed-MSA					
M	SA-Annual Groundwater 2022					
	Zach Musser					
2022-06-14						
	12:03:00					
	2022-06-14					
BTOR):	11.17					
,						
	Low Flow					
	Low Flow					
	M: BTOR):					

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:58:00	13.81	300	Clear	7.42	2.19	0	9.15	16.49	-14	0.11	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

COORDINATES:	SIGNATURE:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-47S-061422
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	12:03:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:13:00	12.73	300	Clear	6.74	2.01	0.61	15.5	18.7	50	0.1	
11:18:00	13.05	300	Clear	7.25	1.85	0.12	9.13	17.32	4	0.09	
11:23:00	7.43	300	Clear	7.43	1.78	0	8.54	17.03	-8	0.09	
11:28:00	13.43	300	Clear	7.51	1.83	0	6.36	16.74	-14	0.09	
11:33:00	13.58	300	Clear	7.5	1.94	0	6.72	16.56	-15	0.1	
11:38:00	13.65	300	Clear	7.48	2.01	0	8.57	16.57	-15	0.1	
11:43:00	13.71	300	Clear	7.5	2.07	0	8.36	16.61	-14	0.11	
11:48:00	13.78	300	Clear	7.43	2.11	0	10.93	16.5	-13	0.11	
11:53:00	13.81	300	Clear	7.41	2.15	0	9.93	16.46	-13	0.11	
11:58:00	13.81	300	Clear	7.42	2.19	0	9.15	16.49	-14	0.11	

Sampled ID:	MSA-MW-47S-061422
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-14
Sample Time:	12:03:00

PHOTOS:

Photo ID 2201
Photo Date 2022-06-14

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP
Carrala Data	2022 05 24

Sampled ID:	MSA-MW-48D-052422
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-24
Sample Time:	14:53:00

WELL INFORMATION:

Well ID:	MSA-MW-48D
Well Diameter (in):	2
Top Screen (ft-BTOR):	40
Bottom Screen (ft-BTOR):	50
Total Well Depth (ft-BTOR):	50

Purge Date:	2022-05-24
Static Water Level (ft-BTOR):	18.43
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:38:00	18.4	200	Clear	6.35	1.46	0	3.69	16.18	13	0.8	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Wat Ru

		Lve
Sampled ID:	MSA-MW-48D-052422	San
QA/QC Duplicate ID:	NA	San
MS/MSD Collected:	NO	San

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-24
Sample Time:	14:53:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:03:00	18.37	300	Clear	7.54	1.53	1.84	91.9	16.12	-52	0.8	
14:08:00	18.4	200	Clear	6.62	1.55	0	45.6	15.74	-3	0.8	
14:13:00	18.4	200	Clear	6.54	1.54	0	3.84	15.72	2	0.8	
14:23:00	18.4	200	Clear	6.43	1.51	0	3.8	15.82	8	0.8	
14:33:00	18.4	200	Clear	6.39	1.49	0	3.78	15.88	10	0.8	
14:38:00	18.4	200	Clear	6.34	1.48	0	3.75	15.96	14	0.8	
14:38:00	18.4	200	Clear	6.35	1.46	0	3.69	16.18	13	0.8	
14:43:00	18.4	200	Clear	6.33	1.46	0	3.7	16.04	14	0.8	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-24
Sample Time:	14:53:00

Sampled ID:	MSA-MW-48D-052422				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

PHOTOS:

Photo ID 1753
Photo Date 2022-05-24

Project No	112IC09567-02-GW Field					
Project Site:	Lockheed-MSA					
Event:	MSA-Annual Groundwater 2022					
Sampled By:	WP					

Sampled ID:	MSA-MW-48I-052422
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

	<u>'</u>
Sampled By:	WP
Sample Date:	2022-05-24
Sample Time:	13:41:00

WELL INFORMATION:

Well ID:	MSA-MW-48I
Well Diameter (in):	2
Top Screen (ft-BTOR):	25
Bottom Screen (ft-BTOR):	35
Total Well Depth (ft-BTOR):	35

Purge Date:	2022-05-24
Static Water Level (ft-BTOR):	18.5
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52	
Turbidity Meter:	LaMotte 2020WE	

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:36:00	18.52	200	Clear	7.49	3.41	0	3.7	15.87	-129	1.8	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Walt Pin

Sampled ID:	MSA-MW-48I-052422
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-24
Sample Time:	13:41:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:51:00	18.5	200	Clear	7.89	2.84	1.21	110	16.34	-138	1.4	
12:56:00	18.52	200	Clear	7.66	3.25	0	80	15.97	-132	1.7	
13:01:00	18.52	200	Clear	7.6	3.44	0	21.1	15.95	-129	1.8	
13:11:00	18.52	200	Clear	7.55	3.4	0	21.1	15.95	-129	1.8	
13:21:00	18.52	200	Clear	7.51	3.37	0	7.6	15.9	-129	1.8	
13:26:00	18.52	200	Clear	7.51	3.39	0	3.8	15.9	-129	1.8	
13:31:00	18.52	200	Clear	7.5	3.42	0	3.8	15.83	-130	1.8	
13:36:00	18.52	200	Clear	7.49	3.41	0	3.7	15.87	-129	1.8	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-48I-052422	s
QA/QC Duplicate ID:	NA	s
MS/MSD Collected:	NO	s

Sampled By:	WP
Sample Date:	2022-05-24
Sample Time:	13:41:00

PHOTOS:

Photo ID 1750
Photo Date 2022-05-24

10		Project Site:		Lockheed-MSA
		Event:	М	SA-Annual Groundwater 2022
Sampled ID:	MSA-MW-48S-052422	Sampled By:		WP
QA/QC Duplicate ID:	None	Sample Date:		2022-05-24
MS/MSD Collected:	NO	Sample Time:		12:17:00
WELL INFORMATION:				
Well ID:	MSA-MW-48S	Purge Date:		2022-05-24
Well Diameter (in):	2	Static Water Level	(ft-BTOR):	18.85
Top Screen (ft-BTOR):	10	PID Monitor Readir	ng:	0.0
Bottom Screen (ft-BTOR):	20	Purge Method:		Low Flow
Total Well Depth (ft-BTOR):	20	Sample Method:		Low Flow
EQUIPMENT INFORMATION:				
Water Quality Instrument:	Horiba U 52			Geotech Geopump Peristaltic
Turbidity Meter:	LaMotte 2020WE	Pump Controller:		Pump

Project No

112IC09567-02-GW Field

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:12:00	19	200	Clear	7.54	1.25	4.25	6.9	14.33	-53	0.6	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES

Hex chrome 1235			

COORDINATES:

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-48S-052422		
QA/QC Duplicate ID:	None		
MS/MSD Collected:	NO		

Sampled By:	WP
Sample Date:	2022-05-24
Sample Time:	12:17:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:17:00	18.85	200	Clear	6.88	1.26	6.75	129	17.54	-94	0.6	
11:22:00	19	200	Clear	7.56	1.08	4.35	34.1	16.09	-116	0.5	
11:27:00	19	200	Clear	7.51	1.09	4.09	20.8	15.38	-110	0.5	
11:37:00	19	200	Clear	7.36	1.09	3.92	7.93	14.75	-76	0.5	
11:47:00	19	200	Clear	7.3	1.24	3.89	7.5	14.66	-60	0.6	
11:57:00	19	200	Clear	7.4	1.24	4.1	7.2	14.29	-56	0.6	
12:02:00	19	200	Clear	7.46	1.25	4.17	7	14.3	-56	0.6	
12:07:00	19	200	Clear	7.5	1.25	4.18	6.95	14.35	-55	0.6	
12:12:00	19	200	Clear	7.54	1.25	4.25	6.9	14.33	-53	0.6	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-24
Sample Time:	12:17:00

Sampled ID:	MSA-MW-48S-052422
QA/QC Duplicate ID:	None
MS/MSD Collected:	NO

PHOTOS:

Photo ID 1747
Photo Date 2022-05-24

Project No	112IC09567-02-GW Field
Project Site: Lockheed-MSA	
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP
Sample Date:	2022-06-09
Sample Time:	14:30:00

Sampled ID:	MSA-MW-49D-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

WELL INFORMATION:

Well ID:	MSA-MW-49D
Well Diameter (in):	2
Top Screen (ft-BTOR):	50
Bottom Screen (ft-BTOR):	60
Total Well Depth (ft-BTOR):	60

Purge Date:	2022-06-09
Static Water Level (ft-BTOR):	19.4
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:25:0	19.4	200	Clear	3.65	1.04	0	1.95	18.07	348	0.5	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	eservative Number Volume		Bottle Type	Collected
VOCs	8260C	HCI	3 40 Glass Vials		yes	
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
Hexavalent Chromium	218.6-LL	None	None 1 250 Plastic - Field Filtered		yes	

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Walt Pr

		Event:
Sampled ID:	MSA-MW-49D-060922	Sampled By
OA/OC Dunlicate ID:	NΔ	Sample Date

NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-06-09
Sample Time:	14:30:00

PURGE DATA:

MS/MSD Collected:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:40:00	19.4	300	Clear	4.34	0.696	7.73	14.1	19.12	205	0.3	
13:45:00	19.4	200	Clear	4.18	0.694	2.5	4.4	19.26	238	0.3	
13:50:00	19.4	200	Clear	4.06	0.758	0.74	2.12	17.86	258	0.4	
14:00:00	19.4	200	Clear	3.72	1.01	0	2	17.81	299	0.5	
14:10:00	19.4	200	Clear	3.66	1.04	0	1.95	17.87	328	0.5	
14:10:00	19.4	200	Clear	3.66	1.04	0	1.92	17.92	338	0.5	
14:20:00	19.4	200	Clear	3.65	1.04	0	1.92	18.04	344	0.5	
14:25:00	19.4	200	Clear	3.65	1.04	0	1.95	18.07	348	0.5	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-49D-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-09
Sample Time:	14:30:00

PHOTOS:

Photo ID 3536
Photo Date 2022-06-09

Project No	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				
Sampled By:	WP				
Sample Date:	2022-06-09				

Sampled ID:	MSA-MW-49I-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-09
Sample Time:	13:05:00

WELL INFORMATION:

Well ID:	MSA-MW-49I
Well Diameter (in):	2
Top Screen (ft-BTOR):	35
Bottom Screen (ft-BTOR):	45
Total Well Depth (ft-BTOR):	45

Purge Date:	2022-06-09
Static Water Level (ft-BTOR):	19.05
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52				
Turbidity Meter:	LaMotte 2020WE				

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:00:00	19.45	200	Clear	5.64	1.76	0	3.55	17.05	149	0.9	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane			2	250	Amber	yes
PP Metals + Mercury			1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
Hexavalent Chromium	lexavalent Chromium 218.6-LL Non-		1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Walter

Sampled ID:	MSA-MW-49I-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-06-09
Sample Time:	13:05:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:15:00	19.05	300	Clear	5.55	1.52	2.98	76.2	17.58	123	0.8	
12:20:00	19.5	200	Clear	5.45	1.66	1.05	59.6	17.14	150	0.8	
12:25:00	19.45	200	Clear	5.53	1.7	0	53.7	17.39	149	0.9	
12:35:00	19.45	200	Clear	5.58	1.71	0	11.6	17.3	149	0.9	
12:45:00	19.45	200	Clear	5.61	1.73	0	5.61	17.25	148	0.9	
12:50:00	19.45	200	Clear	5.63	1.75	0	3.68	17.22	148	0.9	
12:55:00	19.45	200	Clear	5.65	1.76	0	3.61	17.09	148	0.9	
13:00:00	19.45	200	Clear	5.64	1.76	0	3.55	17.05	149	0.9	

Project No:	112IC09567-02-GW Field			
Project Site:	Lockheed-MSA			
Event:	MSA-Annual Groundwater 2022			

Sampled ID:	MSA-MW-49I-060922			
QA/QC Duplicate ID:	NA			
MS/MSD Collected:	NO			

Sampled By:	WP
Sample Date:	2022-06-09
Sample Time:	13:05:00

PHOTOS:

Photo ID 2282
Photo Date 2022-06-09

MSA-MW-49S-060922

NO

MSA-MW-49S

20 30

30

Horiba U 52

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID: MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

Turbidity Meter:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR):

EQUIPMENT INFORMATION:

Water Quality Instrument:

Project No		112IC09567-02-GW Field				
Project Site:		Lockheed-MSA				
Event:	M	MSA-Annual Groundwater 2022				
Sampled By:		WP				
Sample Date:		2022-06-09				
Sample Time:		11:42:00				
Purge Date:		2022-06-09				
Static Water Level	(ft-BTOR):	18.9				
PID Monitor Readi	ng:	0.0				
Purge Method:		Low Flow				
Sample Method:		Low Flow				
		Geotech Geopump Peristaltic				

Pump

FINAL PURGE	/ SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:37:00	18.9	200	Clear	6.74	2.52	0	6.49	17.44	22	1.3	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES

Hex chrome 1215		

COORDINATES:	SIGNATURE:	
JOOKDINATES.	SIGNATURE.	

Latitude	Longitude
0.000000	0.000000

Was Per

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:		MSA-MW-49S-060922
QA/QC Duplicate ID:		NA
	MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-09
Sample Time:	11:42:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
10:42:00	18.9	300	Clear	5.04	2.4	2.82	9.95	22.09	187	1.2	
10:47:00	18.9	200	Clear	6.02	2.48	0.48	8.61	19.16	97	1.3	
10:52:00	18.9	200	Clear	6.4	2.53	0.02	8.23	17.84	58	1.3	
11:02:00	18.9	200	Clear	6.6	2.53	0	8.01	17.68	36	1.3	
11:12:00	18.9	200	Clear	6.68	2.51	0	6.65	17.7	30	1.3	
11:22:00	18.9	200	Clear	6.71	2.51	0	6.6	17.68	25	1.3	
11:27:00	18.9	200	Clear	6.73	2.51	0	6.55	17.72	24	1.3	
11:32:00	18.9	200	Clear	6.73	2.52	0	6.51	17.63	23	1.3	
11:37:00	18.9	200	Clear	6.74	2.52	0	6.49	17.44	22	1.3	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-49S-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-09
Sample Time:	11:42:00

PHOTOS:

Photo ID 2279
Photo Date 2022-06-09

TETRA	TECH	Project No	112IC09567-02-GW Field
		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
	MSA-MW-50D-060722	Sampled By:	WP
ıD.	NΔ	Sample Date:	2022-06-07

Sampled ID:	MSA-MW-50D-060722	
QA/QC Duplicate ID:	NA	
MS/MSD Collected:	NO	

Sampled By:	WP
Sample Date:	2022-06-07
Sample Time:	14:48:00

WELL INFORMATION:

Well ID:	MSA-MW-50D		
Well Diameter (in):	2		
Top Screen (ft-BTOR):	50		
Bottom Screen (ft-BTOR):	60		
Total Well Depth (ft-BTOR):	60		

Purge Date:	2022-06-07		
Static Water Level (ft-BTOR):	11.05		
PID Monitor Reading:	0.0		
Purge Method:	Low Flow		
Sample Method:	Low Flow		

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52		
Turbidity Meter:	LaMotte 2020WE		

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:43:00	11.1	200	Clear	3.32	0.556	0	3.85	16.41	304	0.3	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.00000	0.00000

SIGNATURE:

War P

Project No:

Sample Time:

		Event:
Sampled ID:	MSA-MW-50D-060722	Sampled By:
QA/QC Duplicate ID:	NA	Sample Date:

NO

Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP
Sample Date:	2022-06-07

112IC09567-02-GW Field

14:48:00

PURGE DATA:

MS/MSD Collected:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:58:00	11.05	300	Clear	3.01	0.596	2.52	10.5	17.75	351	0.3	
14:03:00	11.1	200	Clear	3.3	0.557	1	9.35	16.6	320	0.3	
14:08:00	11.1	200	Clear	3.34	0.553	0	4.35	16.52	314	0.3	
14:18:00	11.1	200	Clear	3.34	0.55	0	4	16.63	310	0.3	
14:28:00	11.1	200	Clear	3.29	0.556	0	3.95	16.14	309	0.3	
14:33:00	11.1	200	Clear	3.34	0.556	0	3.92	16.24	306	0.3	
14:38:00	11.1	200	Clear	3.34	0.556	0	3.89	16.37	304	0.3	
14:43:00	11.1	200	Clear	3.32	0.556	0	3.85	16.41	304	0.3	

Project No:	112IC09567-02-GW Field				
Project Site:	Lockheed-MSA				
Event:	MSA-Annual Groundwater 2022				

Sampled By:	WP
Sample Date:	2022-06-07
Sample Time:	14:48:00

PHOTOS:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 2267
Photo Date 2022-06-07

MSA-MW-50D-060722

NA

NO

		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	MSA-MW-50I-060722	Sampled By:	WP
QA/QC Duplicate ID:	NA	Sample Date:	2022-06-07

Project No

Sample Time:

WELL INFORMATION:

MS/MSD Collected:

Well ID:	MSA-MW-50I
Well Diameter (in):	2
Top Screen (ft-BTOR):	35
Bottom Screen (ft-BTOR):	45
Total Well Depth (ft-BTOR):	45

NO

Purge Date:	2022-06-07			
Static Water Level (ft-BTOR):	10.55			
PID Monitor Reading:	0.0			
Purge Method:	Low Flow			
Sample Method:	Low Flow			

112IC09567-02-GW Field

13:33:00

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:28:00	10.55	250	Clear	3.02	0.62	1.4	6.4	17.16	470	0.3	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	s Method		Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Walt Re

Project No:	112IC09567-02-GW Field Lockheed-MSA				
Project Site:					
Event:	MSA-Annual Groundwater 2022				

Sampled ID:	MSA-MW-50I-060722				
QA/QC Duplicate ID:	NA				
MS/MSD Collected:	NO				

Sampled By:	WP
Sample Date:	2022-06-07
Sample Time:	13:33:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:43:00	10.55	300	Clear	3.02	0.65	2.6	10.9	17.93	324	0.3	
12:48:00	10.55	250	Clear	3.07	0.625	1.77	9.86	17.54	430	0.3	
12:53:00	10.55	250	Clear	3.08	0.621	1.59	8.5	17.26	456	0.3	
13:03:00	10.55	250	Clear	3.06	0.62	1.45	7.02	17.28	465	0.3	
13:13:00	10.55	250	Clear	3.04	0.619	1.42	6.5	17.31	477	0.3	
13:18:00	10.55	250	Clear	3.04	0.619	0.141	6.45	17.32	475	0.3	
13:23:00	10.55	250	Clear	3.03	0.619	1.4	6.43	17.2	475	0.3	
13:28:00	10.55	250	Clear	3.02	0.62	1.4	6.4	17.16	470	0.3	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-50I-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-07
Sample Time:	13:33:00

PHOTOS:

Photo ID 2264
Photo Date 2022-06-07

Sampled ID:

Well ID:

QA/QC Duplicate ID:
MS/MSD Collected:
WELL INFORMATION:

Well Diameter (in):

Top Screen (ft-BTOR):

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR):

	Project No	112IC09567-02-GW Field	
	Project Site:	Lockheed-MSA	
	Event:	MSA-Annual Groundwater 2022	
MSA-MW-50S-060722	Sampled By:	WP	
NA	Sample Date:	2022-06-07	
NO	Sample Time:	12:23:00	
MSA-MW-50S	Purge Date:	2022-06-07	
2	Static Water Level (ft-B	TOR): 10.6	
20	PID Monitor Reading:	0.0	
30	Purge Method: Low Flow		
30	Sample Method:	Low Flow	

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52				
Turbidity Meter:	LaMotte 2020WE				

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:18:00	10.65	150	Clear	3.74	2.49	0	3.94	16.93	240	1.3	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERV	ATIC	NS/N	TO	ES:

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Walt &

GROUNDWATER SAMPLE LOGSHEET - PURGE DATA

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-50S-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-07
Sample Time:	12:23:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:03:00	10.6	300	Clear	3.47	0.833	2.82	52.9	18.37	203	0.4	
11:08:00	10.65	200	Clear	3.39	0.843	1.46	43.4	18.33	232	0.4	
11:13:00	10.65	150	Clear	3.32	0.849	1.29	20.1	17.72	247	0.4	
11:23:00	10.65	150	Clear	3.41	0.854	1.16	12.6	17.28	257	0.4	
11:33:00	10.65	150	Clear	3.65	0.856	1.1	8.95	17	256	0.4	
11:38:00	10.65	150	Clear	3.71	0.9	0.77	8.65	16.93	259	0.4	
11:43:00	10.65	150	Clear	3.74	0.988	0.12	6.61	17.29	258	0.5	
11:48:00	10.65	150	Clear	3.72	1.79	0	5.3	17.2	249	0.9	
11:58:00	10.65	150	Clear	3.73	2.29	0	4.12	16.95	242	1.2	
12:08:00	10.65	150	Clear	3.74	2.45	0	4	16.9	240	1.3	
12:13:00	10.65	150	Clear	3.74	2.47	0	3.96	16.94	240	1.3	
12:18:00	10.65	150	Clear	3.74	2.49	0	3.94	16.93	240	1.3	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-50S-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-06-07
Sample Time:	12:23:00

PHOTOS:

Photo ID 2261
Photo Date 2022-06-07

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	Zach Musser

Sampled ID:	MSA-MW-51D-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-07
Sample Time:	12:30:00

WELL INFORMATION:

Well ID:	MSA-MW-51D
Well Diameter (in):	2
Top Screen (ft-BTOR):	50
Bottom Screen (ft-BTOR):	60
Total Well Depth (ft-BTOR):	60

Purge Date:	2022-06-07
Static Water Level (ft-BTOR):	7.65
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:25:00	7.59	300	Clear	4.06	1.27	0	0.2	15.76	289	0.06	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-51D-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-07
Sample Time:	12:30:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:25:00	7.69	300	Clear	6.08	0.968	3.08	16.8	16.23	214	0.05	
11:30:00	7.69	300	Clear	6.23	0.925	2.31	17.9	15.82	164	0.05	
11:35:00	7.69	300	Clear	6.12	0.922	1.37	19.3	15.7	151	0.05	
11:40:00	7.6	300	Clear	6.05	0.927	0.66	14.9	15.62	143	0.05	
11:45:00	7.65	300	Clear	5.69	0.933	0.22	12	15.58	151	0.05	
11:50:00	7.65	300	Clear	4.9	1.12	0.22	9.44	15.58	212	0.06	
11:55:00	7.65	300	Clear	4.47	1.19	0	2.87	15.6	249	0.06	
12:00:00	7.61	300	Clear	4.29	1.24	0	1.63	15.62	268	0.06	
12:05:00	7.61	300	Clear	4.22	1.25	0	0.94	15.68	276	0.06	
12:10:00	7.6	300	Clear	4.17	1.27	0	0.23	15.64	281	0.06	
12:15:00	7.6	300	Clear	4.14	1.28	0	0.24	15.68	284	0.06	
12:20:00	7.59	300	Clear	4.14	1.26	0	0.19	15.69	289	0.06	
12:25:00	7.59	300	Clear	4.06	1.27	0	0.2	15.76	289	0.06	

			Event:
		_	
Sampled ID:	MSA-MW-51D-060722		Sampled By:
QA/QC Duplicate ID:	NA		Sample Date:
MS/MSD Collected:	NO]	Sample Time:

Project No:	112IC09567-02-GW Field			
Project Site:	Lockheed-MSA			
Event:	MSA-Annual Groundwater 2022			

Sampled By:	Zach Musser
Sample Date:	2022-06-07
Sample Time:	12:30:00

PHOTOS:

Photo ID 2192
Photo Date 2022-06-07

RA TECH		Project No	112IC09567-02-GW Field
		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
	MSA-MW-51I-060722	Sampled By:	Zach Musser
	NA	Sample Date:	2022-06-07
	NO	Sample Time:	14:00:00

WELL INFORMATION:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Well ID:	MSA-MW-51I
Well Diameter (in):	2
Top Screen (ft-BTOR):	29
Bottom Screen (ft-BTOR):	39
Total Well Depth (ft-BTOR):	39

Purge Date:	2022-06-07			
Static Water Level (ft-BTOR):	7.47			
PID Monitor Reading:				
Purge Method:	Low Flow			
Sample Method:	Low Flow			

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:55:00	7.5	300	Clear	3.69	0.568	0	0.42	17.61	312	0.03	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Sampled ID:	MSA-MW-51I-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field		
Project Site:	Lockheed-MSA		
Event:	MSA-Annual Groundwater 2022		

Sampled By:	Zach Musser
Sample Date:	2022-06-07
Sample Time:	14:00:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:05:00	7.51	300	Clear	3.48	0.781	1.69	0.49	18.31	331	0.04	
13:10:00	7.51	300	Clear	3.67	0.634	0.11	0.53	18.59	322	0.03	
13:15:00	7.5	300	Clear	3.71	0.596	0.1	1.89	18.85	317	0.03	
13:20:00	7.5	300	Clear	3.72	0.514	0.04	0.13	18.74	315	0.03	
13:25:00	7.5	300	Clear	3.71	0.579	0	0.4	18.53	315	0.03	
13:30:00	7.5	300	Clear	3.69	0.575	0	0.68	18.21	315	0.03	
13:35:00	7.51	300	Clear	3.71	0.572	0	0.24	18.04	314	0.03	
13:40:00	7.51	300	Clear	3.69	0.571	0	0.68	17.84	313	0.03	
13:45:00	7.5	300	Clear	3.69	0.571	0	0.52	17.67	312	0.03	
13:50:00	7.5	300	Clear	3.69	0.568	0	0.31	17.64	313	0.03	
13:55:00	7.5	300	Clear	3.69	0.568	0	0.42	17.61	312	0.03	

Lockheed-MSA
MSA-Annual Groundwater 2022
-

Sampled ID:	MSA-MW-51I-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-07
Sample Time:	14:00:00

PHOTOS:

Photo ID 2189
Photo Date 2022-06-07

Turbidity Meter:

TETRA TECH		Project No	112IC09567-02-GW Field
10		Project Site:	Lockheed-MSA
		Event:	MSA-Annual Groundwater 2022
Sampled ID:	mpled ID: MSA-MW-51S-060722		Zach Musser
QA/QC Duplicate ID:	NA	Sample Date:	2022-06-07
MS/MSD Collected:	NO	Sample Time:	15:10:00
WELL INFORMATION:			
Well ID:	MSA-MW-51S	Purge Date:	2022-06-07
Well Diameter (in):	2	Static Water Level (ft-BTO	PR): 7.6
Top Screen (ft-BTOR):	10	PID Monitor Reading:	
Bottom Screen (ft-BTOR):	20	Purge Method:	Low Flow
Total Well Depth (ft-BTOR):	20	Sample Method:	Low Flow
EQUIPMENT INFORMATION:			
Water Quality Instrument:	Horiba U 52		Geotech Geopump Peristaltic
Turbidity Meter:	LaMotte 2020WE	Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
15:05:00	7.95	300	Clear	5.68	1.58	0	1.09	16.1	247	0.08	

LaMotte 2020WE

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

OBSER\	/ΔΤΙ	ONS	/NO	TFS:
ODSLIV	$^{\prime}$			LJ.

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-51S-060722
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-07
Sample Time:	15:10:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:20:00	7.88	300	Clear	5.48	2.01	1.7	4.24	17.18	252	0.1	
14:25:00	7.91	300	Clear	5.82	1.9	0.08	2.61	16.42	243	0.1	
14:30:00	7.93	300	Clear	5.81	1.69	0	1.85	16.2	243	0.08	
14:35:00	7.94	300	Clear	5.8	1.63	0	1.08	16.27	242	0.08	
14:40:00	7.95	300	Clear	5.78	1.61	0	0.46	16.19	243	0.08	
14:50:00	7.94	300	Clear	5.78	1.58	0	0.69	16.14	244	0.08	
14:55:00	7.94	300	Clear	5.73	1.58	0	0.77	16.11	244	0.08	
15:00:00	7.95	300	Clear	5.72	1.59	0	1.4	16.13	245	0.08	
15:05:00	7.95	300	Clear	5.68	1.58	0	1.09	16.1	247	0.08	

16			Project Site:	Lockheed-MSA
			Event:	MSA-Annual Groundwater 2022
		_		
Sampled ID:	MSA-MW-51S-060722		Sampled By:	Zach Musser

Project No:

Sampled By:	Zach Musser
Sample Date:	2022-06-07
Sample Time:	15:10:00

112IC09567-02-GW Field

PHOTOS:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 2186
Photo Date 2022-06-07

NA

NO

	Project No	112IC09567-02-GW Field
	Project Site:	Lockheed-MSA
	Event:	MSA-Annual Groundwater 2022
-52D-061622	Sampled By:	Zach Musser
NA	Sample Date:	2022-06-16
NO	Sample Time:	14:20:00

Sampled ID:	MSA-MW-52D-061622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

WELL INFORMATION:

Well ID:	MSA-MW-52D
Well Diameter (in):	2
Top Screen (ft-BTOR):	40
Bottom Screen (ft-BTOR):	50
Total Well Depth (ft-BTOR):	50

Purge Date:	2022-06-16
Static Water Level (ft-BTOR):	12.25
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:15:00	12.44	300	Clear	4.35	2.88	0	4.56	21.07	287	0.15	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Pro	ject No:	112IC09567-02-GW Field			
Pro	ject Site:	Lockheed-MSA			
Eve	ent:	MSA-Annual Groundwater 2022			

Sampled ID:		MSA-MW-52D-061622
	QA/QC Duplicate ID:	NA
	MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-16
Sample Time:	14:20:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:30:00	12.31	300	Clear	4.97	1.42	0.88	7.29	21.82	202	0.07	
13:35:00	12.33	300	Clear	4.64	1.47	0.17	4.23	21.48	215	0.07	
13:40:00	12.35	300	Clear	4.58	1.61	0	4.3	21.34	221	0.08	
13:45:00	12.36	300	Clear	4.51	2.04	0	5.16	21.14	233	0.1	
13:50:00	12.38	300	Clear	4.46	2.39	0	4.59	21.03	243	0.12	
13:55:00	12.38	300	Clear	4.42	2.6	0	3.28	20.96	254	0.13	
14:00:00	12.42	300	Clear	4.39	2.73	0	2.59	20.97	264	0.14	
14:05:00	12.42	300	Clear	4.43	2.82	0	5.36	20.98	274	0.15	
14:10:00	12.43	300	Clear	4.37	2.86	0	4.98	21.02	281	0.15	
14:15:00	12.44	300	Clear	4.35	2.88	0	4.56	21.07	287	0.15	

Project No

16	Project Site:		Lockheed-MSA		
1		Event:	MS	SA-Annual Groundwater 2022	
Sampled ID:	MSA-MW-52I-061622	Sampled By:		Zach Musser	
QA/QC Duplicate ID:	NA	Sample Date:		2022-06-16	
MS/MSD Collected: NO		Sample Time:	13:20:00		
WELL INFORMATION:					
Well ID:	MSA-MW-52I	Purge Date:		2022-06-16	
		0 10	, D.T.O.D.\	10.01	

Well ID:	MSA-MW-52I
Well Diameter (in):	2
Top Screen (ft-BTOR):	25
Bottom Screen (ft-BTOR):	35
Total Well Depth (ft-BTOR):	35

Purge Date:	2022-06-16
Static Water Level (ft-BTOR):	12.21
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

112IC09567-02-GW Field

EQUIPMENT INFORMATION:							
Water Quality Instrument:	Horiba U 52						
Turbidity Meter:	LaMotte 2020WE						

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:15:00	12.4	300	Clear	5.9	3.09	0	18.5	19.05	140	0.16	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-52I-061622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser		
Sample Date:	2022-06-16		
Sample Time:	13:20:00		

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:30:00	12.15	300	Clear	7.64	2.93	0.69	27.1	20.77	49	0.15	
12:35:00	12.1	300	Clear	6.52	3.04	0.18	24.5	19.77	112	0.16	
12:40:00	12.08	300	Clear	6.22	3.08	0.06	24.2	19.21	123	0.16	
12:45:00	12.01	300	Clear	6.13	3.09	0.02	24.7	19.09	126	0.16	
12:50:00	12.14	300	Clear	6.04	3.1	0	22.1	19.28	129	0.16	
12:55:00	12.14	300	Clear	5.99	3.08	0	22.3	19.13	134	0.16	
13:00:00	12.32	300	Clear	5.97	3.09	0	20.4	19.24	135	0.16	
13:05:00	12.38	300	Clear	5.92	3.09	0	19.4	19.14	137	0.16	
13:10:00	12.42	300	Clear	5.91	3.09	0	18.6	19.09	139	0.16	
13:15:00	12.4	300	Clear	5.9	3.09	0	18.5	19.05	140	0.16	

Project No:

Ų				Project Site:	Lockheed-MSA
				Event:	MSA-Annual Groundwater 2022
			_		
,	Sampled ID:	MSA-MW-52I-061622		Sampled By:	Zach Musser
(QA/QC Duplicate ID:	NA		Sample Date:	2022-06-16

NO

Sampled By:	Zach Musser		
Sample Date:	2022-06-16		
Sample Time:	13:20:00		

112IC09567-02-GW Field

PHOTOS:

MS/MSD Collected:

Photo ID 2306 Photo Date 2022-06-21

Turbidity Meter:

TETRA TEC	Project No		112IC09567-02-GW Field		
10		Project Site:	Lockheed-MSA		
		Event:	М	SA-Annual Groundwater 2022	
Sampled ID:	MSA-MW-52S-061622	Sampled By:		Zach Musser	
QA/QC Duplicate ID:	NA	Sample Date:		2022-06-16	
MS/MSD Collected:	Sample Time:		12:05:00		
WELL INFORMATION:					
Well ID:	MSA-MW-52S	Purge Date:		2022-06-16	
Well Diameter (in):	2	Static Water Level (ft-	BTOR):	12.44	
Top Screen (ft-BTOR):	10	PID Monitor Reading:			
Bottom Screen (ft-BTOR):	20	Purge Method:		Low Flow	
Total Well Depth (ft-BTOR):	20	Sample Method:		Low Flow	
EQUIPMENT INFORMATION:					
Water Quality Instrument:			Geotech Geopump Peristaltic		
Turbidity Meter:	Pump Controller:		Pump		

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:00:00	18.82	150	Clear	8.15	1.59	0	5.35	16.79	-95	0.09	

LaMotte 2020WE

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

OBSERV	ATIC	NS/N	TO	ES:

COORDINATES	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-52S-061622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-16
Sample Time:	12:05:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:00:00	12.56	150	Clear	7.31	2.02	5.13	30.97	18.34	1	0.09	
11:05:00	12.74	150	Clear	7.35	2.02	1.27	25.24	18.15	0	0.09	
11:10:00	13.25	150	Clear	7.25	2.01	0.03	21.14	18.25	-1	0.09	
11:15:00	13.76	150	Clear	7.38	1.95	0	18.95	18.32	-7	0.09	
11:20:00	14.02	150	Clear	7.45	1.87	0	14.23	18.22	-15	0.09	
11:25:00	14.15	150	Clear	7.62	1.87	0	14.06	17.95	-22	0.09	
11:30:00	14.28	150	Clear	7.64	1.85	0	13.37	17.85	-58	0.09	
11:35:00	15.16	150	Clear	7.92	1.82	0	10.45	16.94	-80	0.09	
11:40:00	16.22	150	Clear	8.02	1.77	0	9.31	16.72	-91	0.09	
11:45:00	17.05	150	Clear	8.06	1.74	0	6.23	16.8	-94	0.09	
11:50:00	17.4	150	Clear	8.11	1.7	0	6.45	16.9	-93	0.09	
11:55:00	17.78	150	Clear	8.13	1.58	0	5.21	16.85	-95	0.09	
12:00:00	18.82	150	Clear	8.15	1.59	0	5.35	16.79	-95	0.09	

Sampled ID:	MSA-MW-52S-061622
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-16
Sample Time:	12:05:00

PHOTOS:

Photo ID 2303
Photo Date 2022-06-21

Project No

Sample Method:

		Project Site:		Lockheed-MSA
		Event:	M	SA-Annual Groundwater 2022
Sampled ID:	MSA-MW-53I-052522	Sampled By:		WP
QA/QC Duplicate ID:	NA	Sample Date:		2022-05-25
MS/MSD Collected:	NO	Sample Time:	14:46:00	
WELL INFORMATION:				
Well ID:	MSA-MW-53I	Purge Date:		2022-05-25
Well Diameter (in):	2	Static Water Level (ft-BTOR):	11.35
Top Screen (ft-BTOR):	30	PID Monitor Readin	g:	0.0
Bottom Screen (ft-BTOR):	40	Purge Method: Low Flow		Low Flow

EQUIPMENT INFORMATION:

Total Well Depth (ft-BTOR):

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

40

	Geotech Geopump Peristaltic
Pump Controller:	Pump

112IC09567-02-GW Field

Low Flow

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:41:00	11.95	150	Clear	4.37	0.759	0	4.2	20.56	242	0.4	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.00000

SIGNATURE:

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-53I-052522
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-25
Sample Time:	14:46:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:56:00	11.35	300	Clear	3.96	0.741	0.62	40.2	19.89	289	0.4	
14:01:00	11.9	200	Clear	4.17	0.745	0	37.5	19.46	269	0.4	
14:06:00	11.95	150	Clear	4.23	0.756	0	30.21	19.35	264	0.4	
14:16:00	11.95	150	Clear	4.3	0.761	0	20.1	19.59	255	0.4	
14:26:00	11.95	150	Clear	4.34	0.762	0	4.37	19.77	0.4	-9999	
14:31:00	11.95	150	Clear	4.35	0.76	0	4.33	20.32	245	0.4	
14:36:00	11.95	150	Clear	4.35	0.76	0	4.29	20.54	243	0.4	
14:41:00	11.95	150	Clear	4.37	0.759	0	4.2	20.56	242	0.4	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-25
Sample Time:	14:46:00

PHOTOS:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 1765
Photo Date 2022-05-25

MSA-MW-53I-052522

NA

NO

LaMotte 2020WE

Sampled ID:

Well ID:

QA/QC Duplicate ID: MS/MSD Collected:

Well Diameter (in): Top Screen (ft-BTOR):

Turbidity Meter:

WELL INFORMATION:

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR): **EQUIPMENT INFORMATION:**

Water Quality Instrument:

	Project No		112IC09567-02-GW Field
	Project Site:		Lockheed-MSA
	Event:	MSA-Annual Groundwater 2022	
MSA-MW-53S-052322	Sampled By:	Sampled By: WP	
NA	Sample Date:		2022-05-23
NO	Sample Time:		14:27:00
MSA-MW-53S	Purge Date:		2022-05-23
2	Static Water Level (ft-	BTOR):	9.7
15	PID Monitor Reading:		0.0
25	Purge Method:		Low Flow
25	Sample Method:		Low Flow
Horiba U 52			Geotech Geopump Peristaltic

Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:22:00	18.29	100	Clear	5.83	0.734	0	47	25.29	80	0.4	

Pump Controller:

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
GRO	8015C	HCI	2	40	Glass Vials	yes
DRO	8015C	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes

OBSERVATIONS/NOTES:			

COORDINATES:	SIGNATURE:	

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-53S-052322
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	WP
Sample Date:	2022-05-23
Sample Time:	14:27:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:12:00	9.7	300	Clear	5.63	0.652	0.79	974	22.85	125	0.3	
13:17:00	10.45	200	Clear	5.75	0.716	0.03	754	21.85	92	0.3	
13:22:00	11.4	150	Clear	5.77	0.729	0	610	22.33	87	0.4	
13:32:00	12.3	100	Clear	5.81	0.746	0	449	22.55	83	0.4	
13:42:00	13.63	100	Clear	5.82	0.763	0	294	22.78	82	0.4	
13:52:00	15	100	Clear	5.82	0.747	0	102	23.79	82	0.4	
14:02:00	17.3	100	Clear	5.85	0.743	0	66.2	24.29	81	0.4	
14:12:00	18.01	100	Clear	5.83	0.75	0	46.9	24.96	80	0.4	
14:22:00	18.29	100	Clear	5.83	0.734	0	47	25.29	80	0.4	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-05-23
Sample Time:	14:27:00

Sampled ID:	MSA-MW-53S-052322		
QA/QC Duplicate ID:	NA		
MS/MSD Collected:	NO		

PHOTOS:

Photo ID 1744
Photo Date 2022-05-25

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MSA-MW-54I-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-09
Sample Time:	15:03:00

WELL INFORMATION:

Well ID:	MSA-MW-54I
Well Diameter (in):	2
Top Screen (ft-BTOR):	35
Bottom Screen (ft-BTOR):	45
Total Well Depth (ft-BTOR):	45

Purge Date:	2022-06-09
Static Water Level (ft-BTOR):	7.92
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:58:00	8.2	300	Clear	5.24	0.421	0	56	18.23	170	0.02	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative Number		Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes

OBSERVATIONS/NOTES:

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Sampled ID:	MSA-MW-54I-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-09
Sample Time:	15:03:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:13:00	8.15	300	Clear	6.94	0.441	0.26	30	21.81	38	0.02	
14:18:00	8.17	300	Clear	5.73	0.45	0	65.1	19.98	107	0.02	
14:23:00	8.19	300	Clear	5.45	0.457	0	69.3	19.18	132	0.02	
14:28:00	8.2	300	Clear	5.27	0.446	0	63.6	19.06	148	0.02	
14:33:00	8.2	300	Clear	5.37	0.44	0	60.6	18.95	149	0.2	
14:38:00	8.2	300	Clear	5.73	0.436	0	69.5	18.45	141	0.02	
14:43:00	8.2	300	Clear	5.39	0.435	0	65.4	18.2	158	0.02	
14:48:00	8.2	300	Clear	5.34	0.43	0	55.9	18.3	161	0.02	
14:53:00	8.2	300	Clear	5.31	0.423	0	55	18.29	165	0.02	
14:58:00	8.2	300	Clear	5.24	0.421	0	56	18.23	170	0.02	

Sampled ID:	MSA-MW-54I-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-09
Sample Time:	15:03:00

PHOTOS:

Photo ID 2174
Photo Date 2022-06-09

Sampled ID:

Well ID:

QA/QC Duplicate ID: MS/MSD Collected:

Well Diameter (in):

Top Screen (ft-BTOR):

Bottom Screen (ft-BTOR):

Total Well Depth (ft-BTOR):

WELL INFORMATION:

	Project No		112IC09567-02-GW Field
	Project Site:		Lockheed-MSA
	Event:	M	SA-Annual Groundwater 2022
	Sampled By:		Zach Musser
	Sample Date:		2022-06-09
	Sample Time:		13:30:00
	Purge Date:		2022-06-09
	Static Water Level (ft-BTOR): PID Monitor Reading: Purge Method:		4.57
			Low Flow
	Sample Method:		Low Flow
			Cootoob Coonumon Domintaltia

EQUIPMENT INFORMATION:	

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

MSA-MW-54S-060922

NO

MSA-MW-54S

12

22

22

	Geotech Geopump Peristaltic	
Pump Controller:	Pump	

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:25:00	8.92	150	Cloudy	6.77	1.26	0	1000	18.39	-47	0.06	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
VOCs	8260C	HCI	3	40	Glass Vials	yes
1,4-dioxane	8270D	None	2	250	Amber	yes
Hexavalent Chromium	218.6-LL	None	1	250	Plastic - Field Filtered	yes
Dissolved PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic - Field Filtered	yes
PP Metals + Mercury	6020B, 7470A	HNO3	1	500	Plastic	yes
DRO	8015C	None	2	250	Amber	yes
GRO	8015C	HCI	3	40	Glass Vials	yes

OBSER\	/ΑΤΙ	ONS	NO.	TFS:

Latitude	Longitude
0.000000	0.000000

Sampled ID:	MSA-MW-54S-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-09
Sample Time:	13:30:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
11:53:00	7.28	150	Cloudy	6.55	1.35	0	1000	18.97	-7	0.07	
11:55:00	5.21	300	White	6.51	1.13	1.53	1000	21.04	29	0.06	
12:00:00	5.61	150	White	6.59	1.21	0.05	1000	20.55	16	0.06	
12:05:00	6.06	150	Cloudy	6.67	1.26	0	1000	19.69	7	0.06	
12:10:00	6.42	150	Cloudy	6.68	1.29	0	1000	19.46	1	0.06	
12:15:00	6.75	150	Cloudy	6.88	1.3	0	1000	19.21	-5	0.06	
12:20:00	7.04	150	Cloudy	6.63	1.32	0	1000	18.76	-6	0.07	
12:30:00	7.49	150	Cloudy	6.49	1.35	0	1000	19.58	-12	0.07	
12:35:00	7.67	150	Cloudy	6.55	1.35	0	1000	19.84	-17	0.07	
12:40:00	7.87	150	Cloudy	6.58	1.34	0	1000	19.85	-22	0.07	
12:45:00	8.02	150	Cloudy	6.58	1.33	0	1000	19.91	-24	0.07	
12:50:00	8.2	150	Cloudy	6.57	1.33	0	1000	19.79	-26	0.07	
12:55:00	8.35	150	Clear	6.59	1.32	0	1000	19.71	-28	0.07	
13:00:00	8.48	150	Cloudy	6.69	1.29	0	1000	20.32	-32	0.07	
13:05:00	8.55	150	Cloudy	6.66	1.29	0	1000	19.57	-35	0.06	
13:10:00	8.64	150	Cloudy	6.69	1.28	0	1000	19.6	-39	0.06	
13:15:00	8.75	150	Cloudy	6.74	1.27	0	1000	19.14	-42	0.06	
13:20:00	8.85	150	Cloudy	6.77	1.26	0	1000	18.6	-44	0.06	
13:25:00	8.92	150	Cloudy	6.77	1.26	0	1000	18.39	-47	0.06	

Sampled ID:	MSA-MW-54S-060922
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	Zach Musser
Sample Date:	2022-06-09
Sample Time:	13:30:00

PHOTOS:

Photo ID 2177
Photo Date 2022-06-09

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
Sampled By:	WP

Sampled ID:	MT-MW-01S-061022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	YES

Sampled By:	WP
Sample Date:	2022-06-10
Sample Time:	14:15:00

WELL INFORMATION:

Well ID:	MT-MW-01S
Well Diameter (in):	2
Top Screen (ft-BTOR):	8
Bottom Screen (ft-BTOR):	18
Total Well Depth (ft-BTOR):	18

Purge Date:	2022-06-10
Static Water Level (ft-BTOR):	1.8
PID Monitor Reading:	0.0
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
14:10:00	9.75	100	Clear	6.81	0.168	0	1.34	24.31	-72	0.1	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method	Preservative	Number	Volume	Bottle Type	Collected
GRO	8015C	HCI	6	40	Glass Vials	yes
DRO	8015C	None	6	250	Amber	yes

OBSERVATIONS/NOTES:

Well needs a total repair.

COORDINATES:

Latitude	Longitude
0.000000	0.000000

SIGNATURE:

Wast Prz

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MT-MW-01S-061022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	YES

Sampled By:	WP
Sample Date:	2022-06-10
Sample Time:	14:15:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
12:50:00	1.8	300	Clear	6.61	0.543	1.01	257	23	-89	0.2	
12:55:00	3	150	Clear	6.78	0.5	0.48	95.6	22.95	-92	0.2	
13:00:00	4.7	100	Clear	6.84	436	0	14.3	22.9	-94	0.2	
13:10:00	6.05	100	Clear	6.87	0.243	0	6.12	24.43	-99	0.1	
13:20:00	7.05	100	Clear	6.93	0.212	0	2.3	25.15	-95	0.1	
13:30:00	8.1	100	Clear	6.63	0.199	0	2.21	24.6	-84	0.1	
13:40:00	8.55	100	Clear	6.7	0.181	0	1.35	24.29	-78	0.1	
13:50:00	8.7	100	Clear	6.77	0.184	0	1.35	24.67	-76	0.1	
14:00:00	9.25	100	Clear	6.76	0.181	0	1.38	24.39	-73	0.1	
14:10:00	9.75	100	Clear	6.81	0.168	0	1.34	24.31	-72	0.1	

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled By:	WP
Sample Date:	2022-06-10
Sample Time:	14:15:00

PHOTOS:

Sampled ID:

QA/QC Duplicate ID:

MS/MSD Collected:

Photo ID 2291
Photo Date 2022-06-20

MT-MW-01S-061022

NA

YES

Project No	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022
0 1 10	7

Sampled ID:	MT-MW-02S-061022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-10
Sample Time:	13:35:00

WELL INFORMATION:

Well ID:	MT-MW-02S
Well Diameter (in):	2
Top Screen (ft-BTOR):	8
Bottom Screen (ft-BTOR):	20
Total Well Depth (ft-BTOR):	20

Purge Date:	2022-06-10
Static Water Level (ft-BTOR):	6.8
PID Monitor Reading:	
Purge Method:	Low Flow
Sample Method:	Low Flow

EQUIPMENT INFORMATION:

Water Quality Instrument:	Horiba U 52
Turbidity Meter:	LaMotte 2020WE

	Geotech Geopump Peristaltic
Pump Controller:	Pump

FINAL PURGE / SAMPLE DATA:

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
13:30:00	11.29	150	Clear	6.83	0.336	0	7.14	24.55	-3	0.02	

ANALYSIS, PRESERVATION AND BOTTLE REQUIREMENTS:

Analysis	Method Preservati		Number	Volume	Bottle Type	Collected	
DRO	8015C	None	2	250	Amber	yes	
GRO 8015C		HCI	3	40	Glass Vials	yes	

OBSERVATIONS/NOTES:

COORDINATES:

ONATURE		
IGNATURE:		

Latitude	Longitude
0.000000	0.000000

Project No:	112IC09567-02-GW Field
Project Site:	Lockheed-MSA
Event:	MSA-Annual Groundwater 2022

Sampled ID:	MT-MW-02S-061022
QA/QC Duplicate ID:	NA
MS/MSD Collected:	NO

Sampled By:	Zach Musser
Sample Date:	2022-06-10
Sample Time:	13:35:00

Time	Water Level (ft-BTOR):	Flow (mL/min)	Color	pH (S.U.)	S.C. (mS/cm)	DO (mg/L)	Turbidity (NTU)	Temp (Deg C)	ORP (mV)	Salinity (ppt)	Other
08:40:00	7.68	300	Clear	6.76	0.326	0.32	15.8	26.21	-11	0.02	
12:45:00	8.19	300	Clear	6.74	0.324	0.06	9.85	25.55	-10	0.02	
12:50:00	8.59	300	Clear	6.76	0.323	0	11.4	25.05	-9	0.02	
12:55:00	8.91	300	Clear	6.84	0.323	0	8.6	24.95	-13	0.02	
13:00:00	9.22	300	Clear	6.82	0.324	0	5.78	24.91	-13	0.02	
13:05:00	9.55	300	Clear	6.84	0.323	0	5.81	24.87	-14	0.02	
13:10:00	9.9	300	Clear	6.91	0.326	0	4.54	24.81	-16	0.02	
13:15:00	10.28	300	Clear	6.81	0.324	0	6.64	24.69	-13	0.02	
13:20:00	10.61	150	Clear	6.78	0.325	0	6.74	24.66	-11	0.02	
13:25:00	10.9	150	Clear	6.81	0.327	0	6.87	24.65	-13	0.02	
13:30:00	11.29	150	Clear	6.83	0.336	0	7.14	24.55	-3	0.02	

October 2022

701 Wilson Point Noan Balomore MO 21220

SE PPW 5/1/2022

WORK ORDER NO.110833807

EPA ID #	Accessor-	ADOS		TRANS. 1 PI	ONE (781) 79	2-5000	
TRANSPORTE	R2			VEHICLE ID			
EPA ID#	_				TRANS. 2 PI	HONE	
DESIGNATED Gean Har	FACILITY bors El Don	rada II C		SHIPPER Lookheed Marko	ATTN-Insa Mu	illis	7
FACILITY EPA	ID# 974818			SHIPPER EPA I	D#	10000	
ADDRESS Amer	ican Circle			ADDRESS	Park Plaza		
CITY El Dorado			STATE ZIP	CITY Baltimorg	1	STATE	ZIP
NO. & SIZE	TYPE	нм	DESCRIPTI	ON OF MATERIALS		TOTAL	UNIT WT/VOI
1	DIN		ARON DOT REGULATED			1	200
			В.				
		10000	C.				
			D.				
			E.				
			F.				
			G.			1937	
			н.				
PECIAL HAND	LING INS	TRUCT	IONS EMERGENCY PHONE	#: (800) 483-3718	GENERATOR:	Lockheed Marti	n

the applicable regulations of the Department of Transportation.

SHIPPER PRINT Malles	SIGN	DATE (-17-2)
TRANSPORTER 1 Nach Crawford	SIGN CAd	DATE 19-24
PRINT TRANSPORTER 2	SIGN √	DATE
PRINT RECEIVED BY	SIGN	DATE

A GENERAL INFORMATION Lockheed Martin GENERATOR NAME: GENERATOR EPA ID #/REGISTRATION # MDR000518760 GENERATOR CODE (Assigned by Clean Harbors) LO2553 CITY Baltimore STATE/PROVINCE MD ZIP/POSTAL CODE 21220 ADDRESS 701 Wilson Point Road PHONE: (301) 528-3004 CUSTOMER CODE (Assigned by Clean Harbors) TE0740 CUSTOMER NAME: Tetra Tech Inc STATE/PROVINCE ZIP/POSTAL CODE CITY MD 20874 **ADDRESS** 20251 Century Boulevard Suite 200 Germantown **B. WASTE DESCRIPTION** WASTE DESCRIPTION: Main Terminal Purge Water PROCESS GENERATING WASTE: **Groundwater sampling at the Main Terminal** IS THIS WASTE CONTAINED IN SMALL PACKAGING CONTAINED WITHIN A LARGER SHIPPING CONTAINER? No C. PHYSICAL PROPERTIES (at 25C or 77F) NUMBER OF PHASES/LAYERS VISCOSITY (If liquid present) PHYSICAL STATE COLOR SOLID WITHOUT FREE LIQUID 1 - 100 (e.g. Water) TOP 0.00 **V** 1 3 **POWDER** Varies **MIDDLE** 0.00 101 - 500 (e.g. Motor Oil) % BY VOLUME (Approx.) MONOLITHIC SOLID LIQUID WITH NO SOLIDS **BOTTOM** 501 - 10,000 (e.g. Molasses) 0.00 LIQUID/SOLID MIXTURE > 10,000 % FREE LIQUID ODOR % SETTLED SOLID MELTING POINT °F (°C) TOTAL ORGANIC BOILING POINT °F (°C) NONE % TOTAL SUSPENDED SOLID CARBON <= 95 (<=35) MILD SLUDGE < 140 (<60) ~ <= 1% 95 - 100 (35-38) **STRONG** GAS/AEROSOL 140-200 (60-93) 1-9% 101 - 129 (38-54) Describe: > 200 (>93) >= 10% >= 130 (>54) FLASH POINT °F (°C) SPECIFIC GRAVITY ASH BTU/LB (MJ/kg) < 0.8 (e.g. Gasoline) < 73 (<23) < 2,000 (<4.6) <= 2 < 0.1 > 20 73 - 100 (23-38) 0.8-1.0 (e.g. Ethanol) 2.1 - 6.9 2,000-5,000 (4.6-11.6) 0.1 - 1.0 Unknown • 101 -140 (38-60) 1.0 (e.g. Water) 5,000-10,000 (11.6-23.2) 7 (Neutral) 1.1 - 5.0141 -200 (60-93) 71-124 > 10,000 (>23.2) 1.0-1.2 (e.g. Antifreeze) 5.1 - 20.0> 200 (>93) >= 12.5 > 1.2 (e.g. Methylene Chloride) Actual D. COMPOSITION (List the complete composition of the waste, include any inert components and/or debris. Ranges for individual components are acceptable. If a trade name is used, CHEMICAL UOM MIN MAX 2-BUTANONE (ETHYL METHYL KETONE) 0.0060000 0.0060000 PPM 4-METHYL-2-PENTANONE (MIBK) PPM 0.0010000 0.0010000 **ACETONE** PPM 0.0250000 0.0250000 **BARIUM (TCLP)** 0.0060000 0.0060000 PPM **BENZENE** 0.0010000 PPM 0.0010000 CIS-1,2-DICHLOROETHENE (CIS-DCE) 0.0010000 0.0010000 **PPM HFPODA** 0.0009200 0.0009200 **PPB** PERFLUOROBUTANESULFONIC ACID (PFBS) 0.0043000 0.0043000 **PPB** PERFLUORODECANOIC ACID 0.0013000 0.0013000 **PPB** PERFLUORODODECANOIC ACID 0.0005400 0.0005400 **PPB** DOES THIS WASTE CONTAIN ANY HEAVY GALIGE METAL DEBRIS OR OTHER LARGE OBJECTS (EX. METAL PLATE OR PIPING>1/4" THICK OR >12' YES NO LONG, METAL REINFORCED HOSE > 12" LONG, METAL WIRE > 12" LONG, METAL VALVES, PIPE FİTTINGS, CONCRETE REINFORCING BAR OR PIECES OF CONCRETE >3")? If yes, describe, including dimensions: DOES THIS WASTE CONTAIN ANY METALS IN POWDERED OR OTHER FINELY DIVIDED FORM? YES NO DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING; ANIMAL WASTES, HUMAN BLOOD, BLOOD PRODUCTS, BODY YES ~ FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL DERIVED SERUMS OR PROTEINS OR ANY OTHER POTENTIALLY INFECTIOUS MATERIAL? I acknowledge that this waste material is neither infectious nor does it contain any organism known to be a threat to human health. This certification is based on my knowledge of the material. Select the answer below that applies: The waste was never exposed to potentially infectious material. NO YES YES NO Chemical disinfection or some other form of sterilization has been applied to the waste. I ACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PACKAGING REQUIREMENTS. YES NO I ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND WETTED. YES NO

SPECIFY THE SOURCE CODE ASSOCIATED WITH THE

G44

SPECIFY THE FORM CODE ASSOCIATED WITH THE WASTE.

W113

E. CONSTITUENTS

Are these values based on testing or knowledge?

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers.

RCRA	REGULATED METALS	REGULATORY LEVEL (mg/l)	TCLP mg/l	TOTAL	UOM	NOT APPL	CABLE		
D004	ARSENIC	5.0	•			✓			
0005	BARIUM	100.0				v			
0006	CADMIUM	1.0				~			
0007	CHROMIUM	5.0				V			
 0008	LEAD	5.0				·····			
0009	MERCURY	0.2				·····			
 0010	SELENIUM	1.0				·····			
 D011	SILVER	5.0				·····			
	VOLATILE COMPOUNDS			OTHER CONSTITUENT		MAX	UOM	N	от
D018	BENZENE	0.5		OTHER CONSTITUENT	13	IVIAA	UCIVI		O I ICABLE
 D019	CARBON TETRACHLORIDE	0.5		BROMINE				•	•
D021	CHLOROBENZENE	100.0		CHLORINE				-	-
D021 D022	CHLOROFORM	6.0		FLUORINE				•	ā
D022 D028	1,2-DICHLOROETHANE	0.5		IODINE					-
0028 0029		0.7		SULFUR					<u> </u>
D029 D035	1,1-DICHLOROETHYLENE METHYL ETHYL KETONE	200.0		POTASSIUM					⋤
				SODIUM					_ :
D039	TETRACHLOROETHYLENE	0.7		AMMONIA				🛱	- :
D040	TRICHLOROETHYLENE	0.5		CYANIDE AMENABLE					₫ :
D043 	VINYL CHLORIDE	0.2							
	SEMI-VOLATILE COMPOUNDS			CYANIDE REACTIVE					- :
D023	o-CRESOL	200.0		CYANIDE TOTAL					}
D024	m-CRESOL	200.0		SULFIDE REACTIVE					<u></u>
D025	p-CRESOL	200.0		HOCs		PCBs			
D026	CRESOL (TOTAL)	200.0		NONE		VON VON	IF		
D027	1,4-DICHLOROBENZENE	7.5		< 1000 PPM			PPM		
D030	2,4-DINITROTOLUENE	0.13		>= 1000 PPM) PPM		
D032	HEXACHLOROBENZENE	0.13		_		IF PCRS /	RE PRESEN	T IS THE	
D033	HEXACHLOROBUTADIENE	0.5		_		WASTE R	EGULATED E)
D034	HEXACHLOROETHANE	3.0				CFR 761?			
D036	NITROBENZENE	2.0				YE	S 🗸	NO	
D037	PENTACHLOROPHENOL	100.0		-					
D038	PYRIDINE	5.0		-					
D041	2,4,5-TRICHLOROPHENOL	400.0		-					
D042	2,4,6-TRICHLOROPHENOL	2.0		-					
	PESTICIDES AND HERBICIDES	 3		-					
D012	ENDRIN	0.02							
D013	LINDANE	0.4		-					
D014	METHOXYCHLOR	10.0		•					
D015	TOXAPHENE	0.5		-					
D016	2,4-D	10.0		-					
D017	2,4,5-TP (SILVEX)	1.0		-					
D020	CHLORDANE	0.03		-					
				_					
D031	HEPTACHLOR (AND ITS EPOXIDE)	0.008							

✓ NO (If yes, explain) YES

CHOOSE ALL THAT APPLY

DEA REGULATED SUBSTANCES **EXPLOSIVE FUMING** OSHA REGULATED CARCINOGENS **POLYMERIZABLE RADIOACTIVE** REACTIVE MATERIAL NONE OF THE ABOVE

F. REGULAT	TORY	STAT	JS								
YES	✓	NO	USEPA HAZARDOUS WASTE?								
YES	~	NO	DO ANY STATE WASTE CODES APPLY	/?							
			Texas Waste Code	avas Wasta Coda							
YES	V	NO	DO ANY CANADIAN PROVINCIAL WAS	TE CODES APPLY?							
YES	~	NO	IS THIS WASTE PROHIBITED FROM LA	AND DISPOSAL WITHOUT FURTHER TREATMENT PE	ER 40 CFR PART 268?						
			LDR CATEGORY: VARIANCE INFO:	to LDR							
YES	✓	NO	IS THIS A UNIVERSAL WASTE?								
YES	✓	NO	IS THE GENERATOR OF THE WASTE O	CLASSIFIED AS A VERY SMALL QUANTITY GENERA	TOR (VSQG) OR A STATE	EQUIVALENT DESIGNATION					
YES		NO	IS THIS MATERIAL GOING TO BE MAN	AGED AS A RCRA EXEMPT COMMERCIAL PRODUC	T, WHICH IS FUEL (40 CF	R 261.2 (C)(2)(II))?					
YES	•	NO	DOES TREATMENT OF THIS WASTE G	SENERATE A F006 OR F019 SLUDGE?							
YES		NO	IS THIS WASTE STREAM PROHIBITED 268.3(C)?	FROM INCINERATION BASED ON THE INORGANIC	METAL BEARING WASTE	PROHIBITION FOUND AT 40 CFR					
YES	✓	NO	IS THIS WASTE STREAM "USED OIL" V	VHICH IS TO BE MANAGED UNDER 40 CFR PART 27	9 - STANDARDS FOR TH	E MANAGEMENT OF USED OIL?					
YES	✓	NO	DOES THIS WASTE CONTAIN VOC'S IN	N CONCENTRATIONS >=500 PPM?							
YES		NO	DOES THE WASTE CONTAIN GREATE	R THAN 20% OF ORGANIC CONSTITUENTS WITH A	VAPOR PRESSURE >= .3	8KPA (.044 PSIA)?					
YES	✓	NO	DOES THIS WASTE CONTAIN AN ORG	ANIC CONSTITUENT WHICH IN ITS PURE FORM HA	S A VAPOR PRESSURE >	76.6 KPA (11.1 PSIA)?					
YES	~	NO	IS THIS CERCLA REGULATED (SUPER	FUND) WASTE ?							
YES	~	NO	IS THE WASTE SUBJECT TO ONE OF	THE FOLLOWING NESHAP RULES?							
			Hazardous Organic NESHAP (HON	l) rule (subpart G) Pharmaceuticals produ	uction (subpart GGG)						
YES		NO	IF THIS IS A US EPA HAZARDOUS WAS	STE, DOES THIS WASTE STREAM CONTAIN BENZEN	NE?						
	YES			om a facility with one of the SIC codes listed under benz ginal source of the waste is from a chemical manufacturi							
	YES	;	NO Is the generating source of this	waste stream a facility with Total Annual Benzene (TAB)) >10 Mg/year?						
			e TAB quantity for your facility?	Megagram/year (1 Mg = 2,200 lbs)							
			for this determination is: Knowledge of the	Waste Or Test Data	Knowledge	Testing					
	Des	cribe ti	ne knowledge :								
G. DOT/	TDG II	NFOR	MATION								
DOT/TDG F	PROPE	ER SH	IPPING NAME:								
NOI	N DO	TRE	GULATED								
			REQUIREMENTS FREQUENCY ONE TIME WEEKI	LY MONTHLY QUARTERLY YEARLY OTH	ER						
	V	C	ONTAINERIZED	BULK LIQUID	BULK SO	DLID					
·			RS/SHIPMENT GA	ALLONS/SHIPMENT: <i>0 Min -0 Max</i> GAL.	SHIPMENT UOM:	TON YARD					
STORAGE C			20		TONS/YARDS/SHIPME	NT: 0 Min - 0 Max					
POR	RTABLE T	ГОТЕ ТА	NK BOX CARTON CASE								
	BIC YARE	вох	DRUM								
I. SPECIAL		UEST	DRUM SIZE: 55								
COMMEN	NTS OF	REQU	ESTS:								
GENERATOR	R'S CEI	RTIFICA	ATION								
I certify that I samples subr	am aut mitted a	horized re repre	to execute this document as an authorized agent.	. I hereby certify that all information submitted in this and attached covers a discrepancy during the approval process, Generator gra							
A	A) THORIZED SIGNATURE NAME (PRINT) Anthony Apanavage Project Lead DATE 08/07/2022										

Addendum

D. COMPOSITION				
CHEMICAL	MIN		MAX	UOM
PERFLUOROHEPTANOIC ACID	0.01500 00		0.0150 000	PPB
PERFLUOROHEXANESULFONIC ACID	0.00660 00		0.0066 000	PPB
PERFLUOROHEXANOIC ACID (PFHXA)	0.02200 00		0.0220 000	PPB
PERFLUORONONANOIC ACID	0.00320 00		0.0032 000	PPB
PERFLUOROOCTANE SULFONIC ACID	0.002400 00	0	0.0024 000	PPB
PERFLUOROOCTANOIC ACID	0.00850 00		0.0085 000	PPB
PERFLUOROUNDECANOIC ACID	0.00130 00		0.0013 000	PPB
TOLUENE	0.00100 00		0.0010 000	PPM
TOTAL XYLENES	0.00100 00		0.0010 000	PPM
TRICHLOROETHENE	0.0020 00		0.0020 000	PPM
WATER	99.0000 000		100.00 00000	%

F. REGULATORY STATUS

ANALYTICAL REPORT

Job Number: 240-168405-1

Job Description: MSA Annual GW

For:

Tetra Tech, Inc. 20251 Century Blvd Suite 200 Germantown, MD 20874

Attention: Josh Mullis

Roxanne Cisneros

Approved for release. Roxanne Cisneros Senior Project Manager 7/7/2022 8:08 AM

Roxanne Cisneros, Senior Project Manager 180 S. Van Buren Avenue, Barberton, OH, 44203 (615)301-5761 roxanne.cisneros@et.eurofinsus.com 07/07/2022

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing North Central, LLC Project Manager. This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Table of Contents

Cc	over Title Page	1
Data Summaries		
	Definitions	4
	Case Narrative	5
	Detection Summary	6
	Client Sample Results	7
	Default Detection Limits	9
	Isotope Dilution Summary	10
	QC Sample Results	11
	QC Association	13
	Chronicle	14
	Certification Summary	15
	Method Summary	17
	Sample Summary	18
	Manual Integration Summary	19
	Reagent Traceability	31
Organic Sample Data		106
	LCMS	106
	Method PFC IDA	106
	Method PFC IDA QC Summary	107
	Method PFC IDA Sample Data	115
	Standards Data	119
	Method PFC IDA ICAL Data	119
	Method PFC IDA CCAL Data	301
	Raw QC Data	319
	Method PFC IDA Blank Data	319

Table of Contents

Method PFC IDA LCS/LCSD Data	325
Method PFC IDA Run Logs	327
Method PFC IDA Prep Data	333
Subcontracted Data	339
Shipping and Receiving Documents	340
Client Chain of Custody	341
Sample Receipt Checklist	343

Definitions/Glossary

Client: Tetra Tech, Inc. Job ID: 240-168405-1

Project/Site: MSA Annual GW

Qualifiers

LCMS

Qualifier	Qualifier Description
I	Value is EMPC (estimated maximum possible concentration).
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
	Deletine Francis Delie (Dellie de conicto)

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Job Narrative 240-168405-1

Comments

No additional comments.

Receipt

The sample was received on 6/16/2022 4:40 PM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.3° C.

I CMS

Method 537 (modified): The sample injection standard peak areas in the following sample: MSA-WC-MTW-061522 (240-168405-1) are outside of the QC limits for both the initial injection and the re-injection. The values here are from the initial injection of the sample.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Tetra Tech, Inc.

Job ID: 240-168405-1

Project/Site: MSA Annual GW

Client Sample ID: MSA-WC-MTW-061522

Lab Sample ID: 240-168405-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Perfluorohexanoic acid	22		1.7	0.43	ng/L	1	_	537 IDA	Total/NA
Perfluoroheptanoic acid	15		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorooctanoic acid	8.5		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorononanoic acid	3.2		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorodecanoic acid	1.3	J	1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorobutanesulfonic acid	4.3	1	1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorohexanesulfonic acid	6.6		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorooctanesulfonic acid	2.4		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorododecanoic acid	0.54	J	1.7	0.43	ng/L	1		537 IDA	Total/NA
HFPODA	0.92	J	2.6	0.86	ng/L	1		537 IDA	Total/NA
Perfluoroundecanoic acid	1.1	J	1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorohexanoic acid - RA	22		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluoroheptanoic acid - RA	15		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorooctanoic acid - RA	7.3		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorononanoic acid - RA	3.4		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorodecanoic acid - RA	1.2	J	1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorobutanesulfonic acid - RA	6.6	I	1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorohexanesulfonic acid - RA	7.0		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorooctanesulfonic acid - RA	2.3		1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluorododecanoic acid - RA	0.57	J	1.7	0.43	ng/L	1		537 IDA	Total/NA
Perfluoroundecanoic acid - RA	1.0	J	1.7	0.43	ng/L	1		537 IDA	Total/NA

Client Sample Results

Client: Tetra Tech, Inc.

Job ID: 240-168405-1

Project/Site: MSA Annual GW

Client Sample ID: MSA-WC-MTW-061522 Lab Sample ID: 240-168405-1

Date Collected: 06/15/22 11:00 Matrix: Water Date Received: 06/17/22 09:22

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	22		1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluoroheptanoic acid	15		1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluorooctanoic acid	8.5		1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluorononanoic acid	3.2		1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluorodecanoic acid	1.3	J	1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluorotridecanoic acid	0.43	U	1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluorotetradecanoic acid	0.43	U	1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluorobutanesulfonic acid	4.3	1	1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluorohexanesulfonic acid	6.6		1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluorooctanesulfonic acid	2.4		1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
NEtFOSAA	0.43	U	2.6	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
NMeFOSAA	0.52	U	1.7	0.52	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluorododecanoic acid	0.54	J	1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
HFPODA	0.92	J	2.6	0.86	ng/L		06/27/22 09:03	07/02/22 16:24	1
9CI-PF3ONS	0.43	U	1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
11CI-PF3OUdS	0.43	U	1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
DONA	0.43	U	1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Perfluoroundecanoic acid	1.1	J	1.7	0.43	ng/L		06/27/22 09:03	07/02/22 16:24	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C5 PFHxA	70		24 - 179				06/27/22 09:03	07/02/22 16:24	1
13C4 PFHpA	79		31 - 182				06/27/22 09:03	07/02/22 16:24	1
13C8 PFOA	91		48 - 162				06/27/22 09:03	07/02/22 16:24	1
13C9 PFNA	67		51 - 167				06/27/22 09:03	07/02/22 16:24	1
13C6 PFDA	78		49 - 163				06/27/22 09:03	07/02/22 16:24	1
13C2-PFDoDA	74		17 - 176				06/27/22 09:03	07/02/22 16:24	1
13C2 PFTeDA	59		10 - 179				06/27/22 09:03	07/02/22 16:24	1
13C3 PFBS	174		16 - 200				06/27/22 09:03	07/02/22 16:24	1
13C3 PFHxS	116		28 - 188				06/27/22 09:03	07/02/22 16:24	1
13C8 PFOS	86		51 - 159				06/27/22 09:03	07/02/22 16:24	1
d3-NMeFOSAA	58		31 - 174				06/27/22 09:03	07/02/22 16:24	1
d5-NEtFOSAA	65		29 - 195				06/27/22 09:03	07/02/22 16:24	1
13C3 HFPO-DA	64		17 - 185				06/27/22 09:03	07/02/22 16:24	1
13C7 PFUnA	79		34 - 174					07/02/22 16:24	1

Method: 537 II	DA - EPA 5	37 Isotone	Dilution - RA	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	22		1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluoroheptanoic acid	15		1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluorooctanoic acid	7.3		1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluorononanoic acid	3.4		1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluorodecanoic acid	1.2	J	1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluorotridecanoic acid	0.43	U	1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluorotetradecanoic acid	0.43	U	1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluorobutanesulfonic acid	6.6	1	1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluorohexanesulfonic acid	7.0		1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluorooctanesulfonic acid	2.3		1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
NEtFOSAA	0.43	U	2.6	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
NMeFOSAA	0.52	U	1.7	0.52	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluorododecanoic acid	0.57	J	1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1

Eurofins Canton

Client Sample Results

Client: Tetra Tech, Inc. Job ID: 240-168405-1 Project/Site: MSA Annual GW

Client Sample ID: MSA-WC-MTW-061522

Lab Sample ID: 240-168405-1 Date Collected: 06/15/22 11:00 **Matrix: Water**

Date Received: 06/17/22 09:22

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
HFPODA	0.86	U	2.6	0.86	ng/L		06/27/22 09:03	07/06/22 12:07	1
9CI-PF3ONS	0.43	U	1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
11CI-PF3OUdS	0.43	U	1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
DONA	0.43	U	1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Perfluoroundecanoic acid	1.0	J	1.7	0.43	ng/L		06/27/22 09:03	07/06/22 12:07	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C5 PFHxA	71		24 - 179				06/27/22 09:03	07/06/22 12:07	1
13C4 PFHpA	82		31 - 182				06/27/22 09:03	07/06/22 12:07	1
13C8 PFOA	96		48 - 162				06/27/22 09:03	07/06/22 12:07	1
13C9 PFNA	66		51 - 167				06/27/22 09:03	07/06/22 12:07	1
13C6 PFDA	86		49 - 163				06/27/22 09:03	07/06/22 12:07	1
13C2-PFDoDA	73		17 - 176				06/27/22 09:03	07/06/22 12:07	1
13C2 PFTeDA	62		10 - 179				06/27/22 09:03	07/06/22 12:07	1
13C3 PFBS	176		16 - 200				06/27/22 09:03	07/06/22 12:07	1
13C3 PFHxS	113		28 - 188				06/27/22 09:03	07/06/22 12:07	1
13C8 PFOS	82		51 - 159				06/27/22 09:03	07/06/22 12:07	1
d3-NMeFOSAA	64		31 - 174				06/27/22 09:03	07/06/22 12:07	1
d5-NEtFOSAA	70		29 - 195				06/27/22 09:03	07/06/22 12:07	1
13C3 HFPO-DA	67		17 - 185				06/27/22 09:03	07/06/22 12:07	1
13C7 PFUnA	78		34 - 174				06/27/22 09:03	07/06/22 12:07	1

Default Detection Limits

Client: Tetra Tech, Inc.

Job ID: 240-168405-1

Project/Site: MSA Annual GW

Method: 537 IDA - EPA 537 Isotope Dilution

Prep: 537 IDA

Analyte	RL	MDL	Units
11CI-PF3OUdS	2.0	0.50	ng/L
9CI-PF3ONS	2.0	0.50	ng/L
DONA	2.0	0.50	ng/L
HFPODA	3.0	1.0	ng/L
NEtFOSAA	3.0	0.50	ng/L
NMeFOSAA	2.0	0.60	ng/L
Perfluorobutanesulfonic acid	2.0	0.50	ng/L
Perfluorodecanoic acid	2.0	0.50	ng/L
Perfluorododecanoic acid	2.0	0.50	ng/L
Perfluoroheptanoic acid	2.0	0.50	ng/L
Perfluorohexanesulfonic acid	2.0	0.50	ng/L
Perfluorohexanoic acid	2.0	0.50	ng/L
Perfluorononanoic acid	2.0	0.50	ng/L
Perfluorooctanesulfonic acid	2.0	0.50	ng/L
Perfluorooctanoic acid	2.0	0.50	ng/L
Perfluorotetradecanoic acid	2.0	0.50	ng/L
Perfluorotridecanoic acid	2.0	0.50	ng/L
Perfluoroundecanoic acid	2.0	0.50	ng/L

Isotope Dilution Summary

Client: Tetra Tech, Inc.

Job ID: 240-168405-1

Method: 537 IDA - EPA 537 Isotope Dilution

Matrix: Water Prep Type: Total/NA

at Sample ID -WC-MTW-061522 -WC-MTW-061522 Control Sample	13C5PHA (24-179) 70 71	C4PFHA (31-182) 79 82	C8PFOA (48-162) 91	C9PFNA (51-167) 67	C6PFDA (49-163) 78	PFDoDA (17-176) 74	PFTDA (10-179) 59	(16-200)
-WC-MTW-061522 -WC-MTW-061522	70 71	79	91				<u> </u>	<u> </u>
-WC-MTW-061522	71			67	78	74	50	474
		82	00				59	174
Control Sample		J_	96	66	86	73	62	176
	96	100	96	92	97	94	95	92
od Blank	91	96	89	92	86	80	76	91
	Percent Isotope Dilution Recovery (Acceptance Limits)							
	C3PFHS	C8PFOS	d3NMFOS	d5NEFOS	HFPODA	13C7PUA		
it Sample ID	(28-188)	(51-159)	(31-174)	(29-195)	(17-185)	(34-174)		
-WC-MTW-061522	116	86	58	65	64	79		
-WC-MTW-061522	113	82	64	70	67	78		
Control Sample	96	90	91	84	93	98		
od Blank	88	96	81	78	81	86		
	nt Sample ID -WC-MTW-061522 -WC-MTW-061522 Control Sample	C3PFHS at Sample ID (28-188) -WC-MTW-061522 116 -WC-MTW-061522 113 Control Sample 96	Perc C3PFHS C8PFOS (28-188) (51-159)	Percent Isotope C3PFHS C8PFOS d3NMFOS d51-159 (28-188) (51-159) (31-174) (28-188) (51-159) (31-174)	Percent Isotope Dilution Rec C3PFHS C8PFOS d3NMFOS d5NEFOS d5NEF	Percent Isotope Dilution Recovery (Act	Percent Isotope Dilution Recovery (Acceptance Line	Percent Isotope Dilution Recovery (Acceptance Limits) C3PFHS C8PFOS d3NMFOS d5NEFOS HFPODA 13C7PUA 15 Sample ID (28-188) (51-159) (31-174) (29-195) (17-185) (34-174) -WC-MTW-061522 116 86 58 65 64 79 -WC-MTW-061522 113 82 64 70 67 78 -WC-MTW-061522 96 90 91 84 93 98

Surrogate Legend

13C5PHA = 13C5 PFHxA

Project/Site: MSA Annual GW

C4PFHA = 13C4 PFHpA

C8PFOA = 13C8 PFOA

C9PFNA = 13C9 PFNA

C6PFDA = 13C6 PFDA

PFDoDA = 13C2-PFDoDA

PFTDA = 13C2 PFTeDA

C3PFBS = 13C3 PFBS

C3PFHS = 13C3 PFHxS

C8PFOS = 13C8 PFOS

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

HFPODA = 13C3 HFPO-DA

13C7PUA = 13C7 PFUnA

QC Sample Results

Client: Tetra Tech, Inc.

Job ID: 240-168405-1

Project/Site: MSA Annual GW

Method: 537 IDA - EPA 537 Isotope Dilution

Lab Sample ID: MB 410-269643/1-A

Matrix: Water

Analysis Batch: 271895

MB MB

Analyte Result Qualifier RL Perfluorohexanoic acid 0.50 U 2.0 0.50 ng/L

Perfluorohexanoic acid 0.50 U 2.0 0.50 ng/L

Perfluorohexanoic acid 0.50 U 2.0 0.50 ng/L

Perfluorohexanoic acid 0.50 U 2.0 0.50 ng/L

Perfluorohexanoic acid 0.50 U 2.0 0.50 ng/L

Perfluorohexanoic acid 0.50 U 2.0 0.50 ng/L

Perfluorohexanoic acid 0.50 U 2.0 0.50 ng/L

Perfluorohexanoic acid 0.50 U 2.0 0.50 ng/L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorohexanoic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluoroheptanoic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluorooctanoic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluorononanoic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluorodecanoic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluorotridecanoic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluorotetradecanoic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluorobutanesulfonic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluorohexanesulfonic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluorooctanesulfonic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
NEtFOSAA	0.50	U	3.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
NMeFOSAA	0.60	U	2.0	0.60	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluorododecanoic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
HFPODA	1.0	U	3.0	1.0	ng/L		06/27/22 09:03	07/02/22 16:00	1
9CI-PF3ONS	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
11CI-PF3OUdS	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
DONA	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1
Perfluoroundecanoic acid	0.50	U	2.0	0.50	ng/L		06/27/22 09:03	07/02/22 16:00	1

	MB I	МВ				
Isotope Dilution	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C5 PFHxA	91	 -	24 - 179	06/27/22 09:03	07/02/22 16:00	1
13C4 PFHpA	96		31 - 182	06/27/22 09:03	07/02/22 16:00	1
13C8 PFOA	89		48 - 162	06/27/22 09:03	07/02/22 16:00	1
13C9 PFNA	92		51 - 167	06/27/22 09:03	07/02/22 16:00	1
13C6 PFDA	86		49 - 163	06/27/22 09:03	07/02/22 16:00	1
13C2-PFDoDA	80		17 - 176	06/27/22 09:03	07/02/22 16:00	1
13C2 PFTeDA	76		10 - 179	06/27/22 09:03	07/02/22 16:00	1
13C3 PFBS	91		16 - 200	06/27/22 09:03	07/02/22 16:00	1
13C3 PFHxS	88		28 - 188	06/27/22 09:03	07/02/22 16:00	1
13C8 PFOS	96		51 - 159	06/27/22 09:03	07/02/22 16:00	1
d3-NMeFOSAA	81		31 - 174	06/27/22 09:03	07/02/22 16:00	1
d5-NEtFOSAA	78		29 - 195	06/27/22 09:03	07/02/22 16:00	1
13C3 HFPO-DA	81		17 - 185	06/27/22 09:03	07/02/22 16:00	1
13C7 PFUnA	86		34 - 174	06/27/22 09:03	07/02/22 16:00	1

Lab Sample ID: LCS 410-269643/2-A

Matrix: Water

Analysis Batch: 271895

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 269643

•	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluorohexanoic acid	25.6	23.1		ng/L		90	58 - 139
Perfluoroheptanoic acid	25.6	22.3		ng/L		87	59 - 145
Perfluorooctanoic acid	25.6	24.2		ng/L		95	51 - 145
Perfluorononanoic acid	25.6	25.3		ng/L		99	61 - 139
Perfluorodecanoic acid	25.6	24.5		ng/L		96	56 ₋ 138
Perfluorotridecanoic acid	25.6	21.0		ng/L		82	58 - 146
Perfluorotetradecanoic acid	25.6	22.8		ng/L		89	62 - 139
Perfluorobutanesulfonic acid	22.7	21.7		ng/L		96	53 - 138
Perfluorohexanesulfonic acid	23.3	18.8		ng/L		80	58 - 134

Eurofins Canton

Page 11 of 344

QC Sample Results

Client: Tetra Tech, Inc.

Job ID: 240-168405-1

Project/Site: MSA Annual GW

Method: 537 IDA - EPA 537 Isotope Dilution (Continued)

Lab Sample ID: LCS 410-269643/2-A

Matrix: Water

Analysis Batch: 271895

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 269643

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Perfluorooctanesulfonic acid	23.7	23.4		ng/L		99	45 - 150	
NEtFOSAA	25.6	23.5		ng/L		92	55 - 134	
NMeFOSAA	25.6	24.9		ng/L		97	59 - 140	
Perfluorododecanoic acid	25.6	23.6		ng/L		92	59 - 143	
HFPODA	25.6	21.2		ng/L		83	50 - 135	
9CI-PF3ONS	23.8	22.4		ng/L		94	59 - 135	
11CI-PF3OUdS	23.8	22.5		ng/L		95	53 - 139	
DONA	24.2	22.3		ng/L		92	55 - 143	
Perfluoroundecanoic acid	25.6	23.4		ng/L		91	60 - 141	

•	22	•	CC

	LUS	LUS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C5 PFHxA	96		24 - 179
13C4 PFHpA	100		31 - 182
13C8 PFOA	96		48 - 162
13C9 PFNA	92		51 - 167
13C6 PFDA	97		49 - 163
13C2-PFDoDA	94		17 - 176
13C2 PFTeDA	95		10 - 179
13C3 PFBS	92		16 - 200
13C3 PFHxS	96		28 - 188
13C8 PFOS	90		51 - 159
d3-NMeFOSAA	91		31 - 174
d5-NEtFOSAA	84		29 - 195
13C3 HFPO-DA	93		17 - 185
13C7 PFUnA	98		34 - 174

QC Association Summary

Client: Tetra Tech, Inc.

Job ID: 240-168405-1

Project/Site: MSA Annual GW

LCMS

Pre	o Batc	h: 2	69643
-----	--------	------	-------

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-168405-1	MSA-WC-MTW-061522	Total/NA	Water	537 IDA	
240-168405-1 - RA	MSA-WC-MTW-061522	Total/NA	Water	537 IDA	
MB 410-269643/1-A	Method Blank	Total/NA	Water	537 IDA	
LCS 410-269643/2-A	Lab Control Sample	Total/NA	Water	537 IDA	

Analysis Batch: 271895

Lab Sample ID 240-168405-1	Client Sample ID MSA-WC-MTW-061522	Prep Type Total/NA	Matrix Water	Method 537 IDA	Prep Batch 269643
MB 410-269643/1-A	Method Blank	Total/NA	Water	537 IDA	269643
LCS 410-269643/2-A	Lab Control Sample	Total/NA	Water	537 IDA	269643

Analysis Batch: 272691

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
240-168405-1 - RA	MSA-WC-MTW-061522	Total/NA	Water	537 IDA	269643

Lab Chronicle

Client: Tetra Tech, Inc. Job ID: 240-168405-1

Project/Site: MSA Annual GW

Client Sample ID: MSA-WC-MTW-061522

Date Collected: 06/15/22 11:00 Matrix: Water

Date Received: 06/17/22 09:22

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	537 IDA			269643	06/27/22 09:03	PMS9	ELLE
Total/NA	Analysis	537 IDA		1	271895	07/02/22 16:24	QD9Y	ELLE
Total/NA	Prep	537 IDA	RA		269643	06/27/22 09:03	PMS9	ELLE
Total/NA	Analysis	537 IDA	RA	1	272691	07/06/22 12:07	PY4D	ELLE

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Lab Sample ID: 240-168405-1

Accreditation/Certification Summary

Client: Tetra Tech, Inc. Job ID: 240-168405-1 Project/Site: MSA Annual GW

Laboratory: Eurofins Lancaster Laboratories Environment Testing, LLC

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
A2LA	Dept. of Defense ELAP	1.01	11-30-22
A2LA	ISO/IEC 17025	0001.01	11-30-22
Alaska	State	PA00009	07-01-23
Alaska (UST)	State	17-027	02-28-23
Arizona	State	AZ0780	03-12-23
Arkansas DEQ	State	88-0660	08-10-22
California	State	2792	11-30-22
Colorado	State	PA00009	06-30-23
Connecticut	State	PH-0746	06-30-23
DE Haz. Subst. Cleanup Act (HSCA)	State	019-006 (PA cert)	01-31-23
Delaware (DW)	State	N/A	01-31-23
Florida	NELAP	E87997	06-30-22 *
Georgia (DW)	State	C048	01-31-23
Hawaii	State	N/A	01-31-23
Illinois	NELAP	200027	01-31-23
lowa	State	361	03-02-22 *
Kansas	NELAP	E-10151	10-31-22
Kentucky (DW)	State	KY90088	12-31-22
Kentucky (UST)	State	1.01	11-30-22
Kentucky (WW)	State	KY90088	01-01-23
Louisiana	NELAP	02055	06-30-22 *
Maine	State	2019012	03-12-23
Maryland	State	100	06-30-23
Massachusetts	State	M-PA009	06-30-23
Michigan	State	9930	01-31-23
Minnesota	NELAP	042-999-487	12-31-22
Missouri	State	450	01-31-25
		0098	01-01-23
Montana (UST)	State State		02-01-23
Montana (UST)		<cert no.=""></cert>	01-31-23
Nebraska	State	NE-OS-32-17	
New Hampshire	NELAP	2730	01-10-23
New Jersey	NELAP	PA011	06-30-23
New York	NELAP	10670	04-01-23
North Carolina (DW)	State	42705	07-31-22
North Carolina (WW/SW)	State	521 B. 225	12-31-22
North Dakota	State	R-205	01-31-23
Oklahoma	NELAP	R-205	08-31-22
Oregon	NELAP	PA200001	09-11-22
PALA	Canada	1978	09-16-24
Pennsylvania	NELAP	36-00037	01-31-23
Rhode Island	State	LAO00338	12-30-22
South Carolina	State	89002	01-31-23
Tennessee -	State	02838	01-31-23
Texas	NELAP	T104704194-21-40	08-31-22
Vermont	State	VT - 36037	10-28-22
Virginia	NELAP	460182	06-15-23
Washington	State	C457	04-11-23
West Virginia (DW)	State	9906 C	12-31-22
West Virginia DEP	State	055	07-31-22
Wyoming	State	8TMS-L	01-31-23

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Accreditation/Certification Summary

Client: Tetra Tech, Inc. Job ID: 240-168405-1

Client: Tetra Tech, Inc.
Project/Site: MSA Annual GW

Laboratory: Eurofins Lancaster	Laboratories Environme	nt Testing, LLC (Continued)
--------------------------------	------------------------	-----------------------------

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Method Summary

Client: Tetra Tech, Inc. Job ID: 240-168405-1

Project/Site: MSA Annual GW

Method	Method Description	Protocol	Laboratory
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE
537 IDA	EPA 537 Isotope Dilution	EPA	ELLE

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

ELLE = Eurofins Lancaster Laboratories Environment Testing, LLC, 2425 New Holland Pike, Lancaster, PA 17601, TEL (717)656-2300

Sample Summary

Client: Tetra Tech, Inc. Job ID: 240-168405-1

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 240-168405-1
 MSA-WC-MTW-061522
 Water
 06/15/22 11:00
 06/17/22 09:22

Project/Site: MSA Annual GW

Lab Name: Eurofins Lancaster Laborator Job No.: 240-16840)-168405	240-1	: 24	No.:	Job	Laborator	Lancaster	Eurofins	Name:	Lab
---	----------	-------	------	------	-----	-----------	-----------	----------	-------	-----

SDG No.:

Instrument ID: 30733 Analysis Batch Number: 271695

Lab Sample ID: IC 410-271695/1 Client Sample ID: _____

COMPOUND NAME	RETENTION	MA	NUAL INTEGRATION	
	TIME	REASON	ANALYST	DATE
MTP	1.41	Missed Peak	fellenbau ma	07/01/22 15:44
PPF Acid	1.75	Baseline	fellenbau ma	07/01/22 15:44
PFMOAA	2.72	Baseline	fellenbau ma	07/01/22 15:44
R-PSDA	3.85	Baseline	fellenbau ma	07/01/22 15:45
Hydrolyzed PSDA	3.87	Baseline	fellenbau ma	07/01/22 15:45
PFO2HxA	4.26	Baseline	fellenbau ma	07/01/22 15:45
Perfluoropentanoic acid	4.37	Baseline	fellenbau ma	07/01/22 15:45
PEPA	4.47	Baseline	fellenbau ma	07/01/22 15:46
Perfluorohexanoic acid	4.78	Baseline	fellenbau ma	07/01/22 15:46
HFPODA	4.91	Baseline	fellenbau ma	07/01/22 15:47
Hydro-PS Acid	5.20	Baseline	fellenbau ma	07/01/22 15:47
6:2 Fluorotelomer sulfonic acid	5.52	Baseline	fellenbau ma	07/01/22 15:48
Perfluorooctanoic acid	5.54	Baseline	JVK6	07/01/22 13:41
Perfluorooctanesulfonic acid	5.86	Isomers	fellenbau ma	07/01/22 15:49
8:2 Fluorotelomer sulfonic acid	6.18	Baseline	JVK6	07/01/22 13:42
NMeFOSAA	6.34	Isomers	JVK6	07/01/22 13:42
NETFOSAA	6.46	Isomers	fellenbau ma	07/01/22 15:49
NMeFOSE	6.73	Baseline	fellenbau ma	07/01/22 15:50

Lab Name: Eurofins Lancaster Laborator Job No.: 240-168405-1

SDG No.:

Analysis Batch Number: 271695

Instrument ID: 30733

Lab Sample ID: IC 410-271695/1 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
NMeFOSA	6.74	Baseline	fellenbau	07/01/22 15:50
			ma	
NETFOSE	6.89	Baseline	fellenbau	07/01/22 15:50
			ma	
NETFOSA	6.90	Baseline	fellenbau	07/01/22 15:51
			ma	

Lab Name: Eurofins Lancaster Laborator Job No.:	: 24	240.	-16	840	5-	1
---	------	------	-----	-----	----	---

SDG No.:

Instrument ID: 30733 Analysis Batch Number: 271695

Lab Sample ID: <u>IC 410-271695/2</u> Client Sample ID: _____

COMPOUND NAME	RETENTION	MANUAL	INTEGRATION	
	TIME	REASON	ANALYST	DATE
MTP	1.41	Missed Peak	fellenbau ma	07/01/22 15:53
PPF Acid	1.75	Baseline	JVK6	07/01/22 13:45
PFMOAA	2.75	Baseline	JVK6	07/01/22 13:45
R-PSDA	3.85	Baseline	JVK6	07/01/22 13:45
PEPA	4.48	Baseline	fellenbau ma	07/01/22 15:54
HFPODA	4.91	Baseline	fellenbau ma	07/01/22 15:54
Hydro-PS Acid	5.13	Baseline	fellenbau ma	07/01/22 15:54
Perfluoroheptanoic acid	5.18	Baseline	fellenbau ma	07/01/22 15:54
5:3 FTCA	5.26	Baseline	JVK6	07/01/22 13:46
6:2 FTCA	5.30	Baseline	fellenbau ma	07/01/22 15:55
Perfluorooctanoic acid	5.54	Baseline	JVK6	07/01/22 13:46
Perfluorooctanesulfonic acid	5.87	Isomers	JVK6	07/01/22 13:46
NMeFOSAA	6.34	Isomers	JVK6	07/01/22 13:46
NETFOSAA	6.47	Baseline	fellenbau ma	07/01/22 15:56
Perfluorododecanoic acid	6.70	Baseline	fellenbau ma	07/01/22 15:56
NMeFOSE	6.73	Split Peak	fellenbau ma	07/01/22 15:56

Lab Name: Eurofins Lancaster Laborator Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Analysis Batch Number: 271695

Lab Sample ID: IC 410-271695/3 Client Sample ID:

Date Analyzed: 07/01/22 13:31 Lab File ID: 22JUL01XMCAL-03.d GC Column: Gemini C18 50 ID: 3(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
MTP	1.42	Baseline	JVK6	07/01/22 13:48
PFMOAA	2.74	Baseline	fellenbau	07/01/22 15:58
			ma	
Hydro-PS Acid	5.13	Split Peak	fellenbau	07/01/22 15:58
			ma	
NMeFOSAA	6.34	Isomers	JVK6	07/01/22 13:48
NETFOSAA	6.48	Split Peak	fellenbau	07/01/22 15:58
			ma	

Lab Sample ID: IC 410-271695/4 Client Sample ID:

Date Analyzed: 07/01/22 13:42 Lab File ID: 22JUL01XMCAL-04.d GC Column: Gemini C18 50 ID: 3(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
MTP	1.42	Baseline	fellenbau	07/01/22 16:00
			ma	
Hydro-PS Acid	5.19	Baseline	fellenbau	07/01/22 16:00
			ma	

Lab Sample ID: ICISAV 410-271695/5 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Hydro-PS Acid	5.20	Baseline	fellenbau	07/01/22 15:41
			ma	
Perfluorooctanoic acid	5.54	Wrong peak	fellenbau	07/01/22 15:42
			ma	

Lab Name: Eurofins Lancaster Laborator Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Analysis Batch Number: 271695

Lab Sample ID: IC 410-271695/6 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON	ANALYST	DATE	
Hydro-PS Acid	5.20	Split Peak	fellenbau ma	07/01/22 16:16	

Lab Sample ID: IC 410-271695/7 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION			
	TIME	REASON	ANALYST	DATE	
Hydro-PS Acid	5.19	Split Peak	fellenbau	07/01/22 16:17	
			ma		

Lab Sample ID: ICB 410-271695/8 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Perfluorohexanoic acid		Missed Peak	fellenbau	07/01/22 16:58
			ma	
Perfluorooctanesulfonic acid		Missed Peak	fellenbau	07/01/22 16:58
			ma	
Perfluorotetradecanoic acid		Baseline	fellenbau	07/01/22 16:57
			ma	

Lab Name: Eurofins Lancaster Laborator Job No.: 240-168405-1

SDG No.:

Analysis Batch Number: 271695 Instrument ID: 30733

Lab Sample ID: ICV 410-271695/9 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
MTP	1.43	Baseline	fellenbau	07/01/22 17:03
			ma	
PEPA	4.47	Baseline	fellenbau	07/01/22 17:03
			ma	
Hydro-PS Acid	5.19	Baseline	fellenbau	07/01/22 17:04
			ma	
NMeFOSAA	6.32	Baseline	fellenbau	07/01/22 17:04
			ma	

Lab Sample ID: WDM 410-271695/10 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Perfluorooctanoic acid	5.54	Split Peak	fellenbau ma	07/01/22 17:07

Lab Name: Eurofins Lancaster Laborator Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Analysis Batch Number: 271895

Lab Sample ID: CCV 410-271895/1 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
MTP	1.42	Baseline	JVK6	07/04/22 07:30
Perfluorooctanoic acid	5.54	Baseline	JVK6	07/04/22 07:30
NMeFOSAA	6.31	Isomers	JVK6	07/04/22 07:30
10:2 FTS	6.69	Baseline	JVK6	07/04/22 07:31

Lab Sample ID: LCS 410-269643/2-A Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
NMeFOSAA	6.33	Isomers	JVK6	07/06/22 07:17

Lab Sample ID: 240-168405-1 Client Sample ID:

Date Analyzed: 07/02/22 16:24 Lab File ID: 22JUL02-04.d GC Column: Gemini C18 50 ID: 3(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
13C3-PFBA	3.84	Baseline	JVK6	07/06/22 07:18
13C3 PFBS	4.44	Baseline	JVK6	07/06/22 07:18
Perfluorobutanesulfonic acid	4.44	Baseline	JVK6	07/06/22 07:18
Perfluorohexanoic acid	4.78	Baseline	JVK6	07/06/22 07:19
Perfluoroheptanoic acid	5.18	Baseline	JVK6	07/06/22 07:19
Perfluorohexanesulfonic acid	5.18	Isomers	JVK6	07/06/22 07:19
Perfluorooctanoic acid	5.54	Isomers	JVK6	07/06/22 07:19
13C4 PFOS	5.86	Baseline	JVK6	07/06/22 07:18
Perfluorononanoic acid	5.87	Baseline	JVK6	07/06/22 07:20
Perfluorooctanesulfonic acid	5.87	Isomers	JVK6	07/06/22 07:19

Lab Name: Eurofins Lancaster Laborator Job No.: 240-168405-1

SDG No.:

Analysis Batch Number: 271895

Lab Sample ID: CCV 410-271895/14 Client Sample ID:

Instrument ID: 30733

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
NMeFOSAA	6.33	Isomers	JVK6	07/04/22 07:32

537 IDA

Page 26 of 344 07/07/2022

Lab Name: Eurofins Lancaster Laborator Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Analysis Batch Number: 272051

Lab Sample ID: IC 410-272051/1 Client Sample ID:

Date Analyzed: 07/04/22 16:15 Lab File ID: 22JUL04XMCAL-01.d GC Column: Gemini C18 50 ID: 3(mm)

COMPOUND NAME	RETENTION	'ION MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
MTP	1.42	Baseline	JVK6	07/05/22 06:56
PPF Acid	1.73	Baseline	JVK6	07/05/22 06:56
PFMOAA	2.72	Baseline	JVK6	07/05/22 06:56
HFPODA	4.92	Baseline	JVK6	07/05/22 06:57
Perfluorooctanoic acid	5.53	Baseline	JVK6	07/05/22 06:57
Perfluorooctanesulfonic acid	5.86	Isomers	JVK6	07/05/22 06:57
8:2 Fluorotelomer sulfonic acid	6.18	Baseline	JVK6	07/05/22 06:58
NMeFOSAA	6.32	Isomers	JVK6	07/05/22 06:58
NETFOSAA	6.48	Isomers	JVK6	07/05/22 06:58
10:2 FTS	6.71	Baseline	JVK6	07/05/22 06:58
NETFOSE	6.89	Baseline	JVK6	07/05/22 06:59

Lab Sample ID: IC 410-272051/2 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
MTP	1.42	Baseline	JVK6	07/05/22 07:00
PPF Acid	1.74	Baseline	JVK6	07/05/22 07:00
PFMOAA	2.73	Baseline	JVK6	07/05/22 07:01
PEPA	4.47	Baseline	JVK6	07/05/22 07:01
Perfluorooctanoic acid	5.53	Baseline	JVK6	07/05/22 07:01
8:2 FTCA	5.99	Baseline	JVK6	07/05/22 07:02
8:2 Fluorotelomer sulfonic acid	6.17	Baseline	JVK6	07/05/22 07:02
NMeFOSAA	6.33	Isomers	JVK6	07/05/22 07:02
Perfluorododecanoic acid	6.68	Baseline	JVK6	07/05/22 07:02

Lab Name: Eurofins Lancaster Laborator Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Analysis Batch Number: 272051

Lab Sample ID: IC 410-272051/3 Client Sample ID:

Date Analyzed: 07/04/22 16:38 Lab File ID: 22JUL04XMCAL-03.d GC Column: Gemini C18 50 ID: 3(mm)

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
MTP	1.42	Baseline	JVK6	07/05/22 07:03
NMeFOSAA	6.32	Isomers	JVK6	07/05/22 07:04
NETFOSAA	6.46	Isomers	JVK6	07/05/22 07:04

Lab Sample ID: IC 410-272051/4 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE	
MTP	1.42	Baseline	JVK6	07/05/22 07:05	
NMeFOSAA	6.33	Isomers	JVK6	07/05/22 07:06	

Lab Sample ID: ICB 410-272051/8 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Perfluorotetradecanoic acid	7.08	Baseline	JVK6	07/05/22 07:09

Lab Sample ID: ICV 410-272051/9 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
MTP	1.42	Baseline	JVK6	07/05/22 07:10
Perfluorooctanoic acid	5.53	Baseline	JVK6	07/05/22 07:11
NMeFOSAA	6.33	Isomers	JVK6	07/05/22 07:11

Lab Name: Eurofins Lancaster Laborator Job No.: 240-168405-1

SDG No.:

Analysis Batch Number: 272051 Instrument ID: 30733

Lab Sample ID: WDM 410-272051/10 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION		
	TIME	REASON	ANALYST	DATE
Perfluorooctanoic acid	5.54	Isomers	JVK6	07/05/22 07:12

537 IDA

Page 29 of 344 07/07/2022

Lab Name: Eurofins Lancaster Laborator Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Analysis Batch Number: 272691

Lab Sample ID: CCV 410-272691/4 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION					
	TIME	REASON	ANALYST	DATE			
MTP	1.41	Baseline	JVK6	07/06/22 12:14			
NMeFOSAA	6.34	Isomers	JVK6	07/06/22 12:14			

Lab Sample ID: 240-168405-1 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTE	GRATION	
	TIME	REASON	ANALYST	DATE
13C3-PFBA	3.83	Baseline	PY4D	07/06/22 17:06
Perfluorobutanesulfonic acid	4.43	Baseline	PY4D	07/06/22 17:06
Perfluorohexanoic acid	4.78	Baseline	PY4D	07/06/22 17:06
Perfluoroheptanoic acid	5.17	Baseline	PY4D	07/06/22 17:06
Perfluorohexanesulfonic acid	5.18	Baseline	PY4D	07/06/22 17:06
Perfluorooctanoic acid	5.53	Baseline	PY4D	07/06/22 17:06
Perfluorooctanesulfonic acid	5.85	Baseline	PY4D	07/06/22 17:06
HFPODA		Invalid Compound ID	PY4D	07/06/22 17:06

Lab Sample ID: CCV 410-272691/11 Client Sample ID:

COMPOUND NAME	RETENTION	MANUAL INTEGRATION					
	TIME	REASON	ANALYST	DATE			
MTP	1.41	Baseline	fellenbau	07/06/22 15:04			
			ma				
Hydro-PS Acid	5.13	Baseline	fellenbau	07/06/22 15:05			
			ma				

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Read	gent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
PFC ICV MOD 00044	09/10/22	06/10/22	Methanol, Lot ED663-US	10 mL	PFC ST 01249	0.025 mL	13C2 PFDA	5 ng/mL
							13C2 PFOA	5 ng/mL
							13C3-PFBA	5 ng/mL
							13C4 PFOS	4.7825 ng/mL
.PFC ST 01249	04/26/26	Wellingt	on Laboratories, Lot MPF	ACCIS0516	(Purchased Re	agent)	13C2 PFDA	2000 ng/mL
							13C2 PFOA	2000 ng/mL
							13C3-PFBA	2000 ng/mL
							13C4 PFOS	1913 ng/mL
PFC_ICV_MOD_00044	09/10/22	06/10/22	Methanol, Lot ED663-US	10 mL	PFC_IN_00701	0.05 mL	d5-NEtPFOSA	10 ng/mL
							13C3 HFPO-DA	10 ng/mL
							M2-8:2 FTS	9.58 ng/mL
							M2-6:2 FTS	9.5 ng/mL
							d3-NMePFOSA	10 ng/mL
							13C-6:2 FTCA	10 ng/mL
							13C-10:2 FTCA	10 ng/mL
							13C-8:2 FTCA	10 ng/mL
							d3-NMeFOSAA	10 ng/mL
							d5-NEtFOSAA	10 ng/mL
							d7-N-MeFOSE-M	10 ng/mL
							d9-N-EtFOSE-M	10 ng/mL
							13C8 FOSA	10 ng/mL
							M2-4:2 FTS	9.34 ng/mL
							13C-6:2 FTUCA	10 ng/mL
							13C-8:2 FTUCA	10 ng/mL
							13C-10:2 FTUCA	10 ng/mL
					PFC_IN_00705	1 mL	11Cl-PF3OUdS	1.86 ng/mL
							9Cl-PF3ONS	1.86 ng/mL
							DONA	1.89 ng/mL
							HFPODA NEtFOSAA	2 ng/mL
							NMeFOSAA	2 ng/mL
							Perfluorobutanesulfonic acid	2 ng/mL
							Perfluorodecanoic acid	1.77 ng/mL 2 ng/mL
							Perfluorodecanoic acid	2 ng/mL 2 ng/mL
							Perfluorododecanoic acid	2 ng/mL 2 ng/mL
							Perfluorohexanesulfonic acid	1.824 ng/mL
							Perfluorohexanoic acid	2 ng/mL
							Perfluorononanoic acid	2 ng/mL
							Perfluorooctanesulfonic acid	1.851 ng/mL
							Perfluorooctanoic acid	2 ng/mL
							Perfluorotetradecanoic acid	2 ng/mL
							Perfluorotridecanoic acid	2 ng/mL
							Perfluoroundecanoic acid	2 ng/mL
					PFC_ST_01219	0.05 mT.	13C2 PFTeDA	10 ng/mL
						0.00 ME	13C2-PFDoDA	10 ng/mL
							13C3 PFBS	9.3 ng/mL
							13C3 PFHxS	9.46 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							13C4 PFBA	10 ng/mL
							13C4 PFHpA	10 ng/mL
							13C5 PFHxA	10 ng/mL
							13C5 PFPeA	10 ng/mL
							13C6 PFDA	10 ng/mL
							13C7 PFUnA	10 ng/mL
							13C8 PFOA	10 ng/mL
							13C8 PFOS	9.56 ng/mL
							13C9 PFNA	10 ng/mL
.PFC IN 00701	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mL	PFC ST 00981	0.2 mL	d5-NEtPFOSA	2000 ppb
					PFC ST 00984	0.2 mL	13C3 HFPO-DA	2000 ppb
					PFC ST 00985	0.2 mL	M2-8:2 FTS	1916 ppb
					PFC ST 00986		M2-6:2 FTS	1900 ppb
					PFC ST 01081		d3-NMePFOSA	2000 ppb
					PFC ST 01108		13C-6:2 FTCA	2000 ppb
					PFC ST 01109	0.2 mL	13C-10:2 FTCA	2000 ppb
					PFC ST 01113		13C-8:2 FTCA	2000 ppb
					PFC ST 01215		d3-NMeFOSAA	2000 ppb
					PFC ST 01216		d5-NEtFOSAA	2000 ppb
					PFC ST 01293		d7-N-MeFOSE-M	2000 ppb
					PFC ST 01295		d9-N-EtFOSE-M	2000 ppb
					PFC ST 01411		13C8 FOSA	2000 ppb
					PFC ST 01412		M2-4:2 FTS	1868 ppb
					PFC ST 01467		13C-6:2 FTUCA	2000 ppb
					PFC ST 01468		13C-8:2 FTUCA	2000 ppb
					PFC ST 01469		13C-10:2 FTUCA	2000 ppb
PFC_ST_00981	11/23/25	We	ellington Laboratories, I dNEtFOSA1120M	ot	(Purchased Rea		d5-NEtPFOSA	50000 ng/mL
PFC ST 00984	05/13/24	Wellingt	on Laboratories, Lot M3H	FPODA0521	(Purchased Rea	agent)	13C3 HFPO-DA	50000 ng/mL
PFC ST 00985	12/17/25	Wellingt	on Laboratories, Lot M28	32FTS1220	(Purchased Rea	agent)	M2-8:2 FTS	47900 ng/mL
PFC ST 00986	05/14/26	Wellingt	on Laboratories, Lot M26	2FTS0521	(Purchased Rea	agent)	M2-6:2 FTS	47500 ng/mL
PFC_ST_01081	04/04/23	We	ellington Laboratories, I dNMeFOSA0421M	ot	(Purchased Rea	agent)	d3-NMePFOSA	50000 ng/mL
PFC ST 01108	04/04/23	Welling	gton Laboratories, Lot MF	THEA0421	(Purchased Rea	agent)	13C-6:2 FTCA	50000 ppb
PFC ST 01109	04/04/23	Welling	gton Laboratories, Lot MF	DEA0817	(Purchased Rea	agent)	13C-10:2 FTCA	50000 ppb
PFC ST 01113	04/04/23	Welling	gton Laboratories, Lot MF	OEA1020	(Purchased Rea	agent)	13C-8:2 FTCA	50000 ppb
PFC_ST_01215	04/04/23	We	ellington Laboratories, I d3NMeFOSAA0521	ot	(Purchased Rea	agent)	d3-NMeFOSAA	50000 ng/mL
PFC_ST_01216	04/04/23	We	ellington Laboratories, I d5NEtFOSAA0921	ot	(Purchased Rea	agent)	d5-NEtFOSAA	50000 ng/mL
PFC_ST_01293	02/10/23		ellington Laboratories, I d7NMeFOSE1220M	ot	(Purchased Rea	agent)	d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01295	02/10/23		ellington Laboratories, I d9NEtFOSE1220M		(Purchased Rea	agent)	d9-N-EtFOSE-M	50000 ng/mL
PFC_ST_01411	10/12/26		on Laboratories, Lot M8F		(Purchased Rea		13C8 FOSA	50000 ng/mL
PFC_ST_01412	10/13/26		on Laboratories, Lot M24		(Purchased Rea	agent)	M2-4:2 FTS	46700 ng/mL
PFC_ST_01467	03/22/23		ton Laboratories, Lot MF		(Purchased Rea		13C-6:2 FTUCA	50000 ppb
PFC_ST_01468	03/22/23		ton Laboratories, Lot MF		(Purchased Rea	agent)	13C-8:2 FTUCA	50000 ppb
PFC ST 01469	03/22/23	Welling	ton Laboratories, Lot MF	DUEA1221	(Purchased Rea	agent)	13C-10:2 FTUCA	50000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
.PFC IN 00705	12/09/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC IN 00704	0.2 mL	11Cl-PF3OUdS	18.6 ng/mL
= =							9C1-PF3ONS	18.6 ng/mL
							DONA	18.9 ng/mL
							HFPODA	20 ng/mL
							NETFOSAA	20 ng/mL
							NMeFOSAA	20 ng/mL
							Perfluorobutanesulfonic acid	17.7 ng/mL
						Perfluorodecanoic acid	20 ng/mL	
						Perfluorododecanoic acid	20 ng/mL	
						Perfluoroheptanoic acid	20 ng/mL	
						Perfluorohexanesulfonic acid	18.24 ng/mL	
						Perfluorohexanoic acid	20 ng/mL	
							Perfluorononanoic acid	20 ng/mL
						Perfluorooctanesulfonic acid	18.51 ng/mL	
						Perfluorooctanoic acid	20 ng/mL	
						Perfluorotetradecanoic acid	20 ng/mL	
					Perfluorotridecanoic acid	20 ng/mL		
						Perfluoroundecanoic acid	20 ng/mL	
PFC IN 00704	12/09/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC ST 01549	1.25 mL		465 ng/mL
*****	,, ,						9C1-PF3ONS	465 ng/mL
							DONA	472.5 ng/mL
							HFPODA	500 ng/mL
							NETFOSAA	500 ng/mL
							NMeFOSAA	500 ng/mL
							Perfluorobutanesulfonic acid	442.5 ng/mL
							Perfluorodecanoic acid	500 ng/mL
							Perfluorododecanoic acid	500 ng/mL
							Perfluoroheptanoic acid	500 ng/mL
							Perfluorohexanesulfonic acid	456 ng/mL
							Perfluorohexanoic acid	500 ng/mL
							Perfluorononanoic acid	500 ng/mL
							Perfluorooctanesulfonic acid	462.75 ng/mL
							Perfluorooctanoic acid	500 ng/mL
							Perfluorotetradecanoic acid	500 ng/mL
							Perfluorotridecanoic acid	500 ng/mL
							Perfluoroundecanoic acid	500 ng/mL
PFC ST 01549	06/01/24	Wellingt	on Laboratories, Lot 537	PDSR10521	(Purchased Rea	agent)	11Cl-PF3OUdS	1860 ng/mL
			•				9C1-PF3ONS	1860 ng/mL
							DONA	1890 ng/mL
							HFPODA	2000 ng/mL
							NETFOSAA	2000 ng/mL
							NMeFOSAA	2000 ng/mL
							Perfluorobutanesulfonic acid	1770 ng/mL
							Perfluorodecanoic acid	2000 ng/mL
							Perfluorododecanoic acid	2000 ng/mL
							Perfluoroheptanoic acid	2000 ng/mL
							Perfluorohexanesulfonic acid	1824 ng/mL
							Perfluorohexanoic acid	2000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Perfluorononanoic acid	2000 ng/mL
							Perfluorooctanesulfonic acid	1851 ng/mL
							Perfluorooctanoic acid	2000 ng/mL
							Perfluorotetradecanoic acid	2000 ng/mL
							Perfluorotridecanoic acid	2000 ng/mL
							Perfluoroundecanoic acid	2000 ng/mL
.PFC ST 01219	01/13/26	Wellingt.	on Laboratories, Lot MP	FACCES0121	(Purchased Rea	agent.)	13C2 PFTeDA	2000 ppb
111121111111111111111111111111111111111	,,				(= == == == = = = = = = = = = = = = =	- 5 /	13C2-PFDoDA	2000 ppb
							13C3 PFBS	1860 ppb
							13C3 PFHxS	1892 ppb
							13C4 PFBA	2000 ppb
							13C4 PFHpA	2000 ppb
							13C5 PFHxA	2000 ppb
							13C5 PFPeA	2000 ppb
							13C6 PFDA	2000 ppb
							13C7 PFUnA	2000 ppb
							13C8 PFOA	2000 ppb
							13C8 PFOS	1912 ppb
							13C9 PFNA	2000 ppb
PFC_IS_MOD_00323	07/11/22	05/11/22	Methanol, Lot ED319-US	10 mL	PFC_ST_01559	0.5 mL	13C2 PFDA	100 ng/mL
							13C2 PFOA	100 ng/mL
							13C3-PFBA	100 ng/mL
							13C4 PFOS	95.65 ng/mL
.PFC_ST_01559	04/26/26	Wellingt	on Laboratories, Lot MP	FACCIS0516	(Purchased Rea	agent)	13C2 PFDA	2000 ng/mL
							13C2 PFOA	2000 ng/mL
							13C3-PFBA	2000 ng/mL
							13C4 PFOS	1913 ng/mL
PFC LB MOD 00030	09/10/22	06/10/22	Methanol, Lot ED663-US	10 mL	PFC IN 00701	0.05 mL	d5-NEtPFOSA	10 ng/mL
							13C3 HFPO-DA	10 ng/mL
							M2-8:2 FTS	9.58 ng/mL
							M2-6:2 FTS	9.5 ng/mL
							d3-NMePFOSA	10 ng/mL
							13C-6:2 FTCA	10 ng/mL
							13C-10:2 FTCA	10 ng/mL
							13C-8:2 FTCA	10 ng/mL
							13C4 PFOA	10 ng/mL
							d3-NMeFOSAA	10 ng/mL
							d5-NEtFOSAA	10 ng/mL
							13C2 PFHxA	10 ng/mL
							13C2 PFUnA	10 ng/mL
							d7-N-MeFOSE-M	10 ng/mL
							d9-N-EtFOSE-M	10 ng/mL
							13C8 FOSA	10 ng/mL
							M2-4:2 FTS	9.34 ng/mL
							13C-6:2 FTUCA	10 ng/mL
							13C-8:2 FTUCA	10 ng/mL
							13C-0.2 FTUCA	10 ng/mL
Í.	I	I	Í.	Ţ	I		1 100 10.2 110011	1 10 119/11111

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Read	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					PFC IN 00706	0.04 mL	Perfluorooctanoic acid	2 ng/mL
					PFC ST 01219	0.05 mL	13C2 PFTeDA	10 ng/mL
							13C2-PFDoDA	10 ng/mL
							13C3 PFBS	9.3 ng/mL
							13C3 PFHxS	9.46 ng/mL
							13C4 PFBA	10 ng/mL
							13C4 PFHpA	10 ng/mL
							13C5 PFHxA	10 ng/mL
							13C5 PFPeA	10 ng/mL
							13C6 PFDA	10 ng/mL
							13C7 PFUnA	10 ng/mL
							13C8 PFOA	10 ng/mL
							13C8 PFOS	9.56 ng/mL
							13C9 PFNA	10 ng/mL
.PFC IN 00701	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mL	PFC ST 00981	0.2 mL	d5-NEtPFOSA	2000 ppb
			·		PFC ST 00984	0.2 mL	13C3 HFPO-DA	2000 ppb
					PFC ST 00985	0.2 mL	M2-8:2 FTS	1916 ppb
					PFC ST 00986	0.2 mL	M2-6:2 FTS	1900 ppb
					PFC ST 01081	0.2 mL	d3-NMePFOSA	2000 ppb
					PFC ST 01108	0.2 mL	13C-6:2 FTCA	2000 ppb
					PFC ST 01109	0.2 mL	13C-10:2 FTCA	2000 ppb
					PFC ST 01113	0.2 mL	13C-8:2 FTCA	2000 ppb
					PFC ST 01214	0.2 mL	13C4 PFOA	2000 ppb
					PFC ST 01215	0.2 mL	d3-NMeFOSAA	2000 ppb
					PFC ST 01216	0.2 mL	d5-NEtFOSAA	2000 ppb
					PFC ST 01217	0.2 mL	13C2 PFHxA	2000 ppb
					PFC ST 01218	0.2 mL	13C2 PFUnA	2000 ppb
					PFC ST 01293	0.2 mL	d7-N-MeFOSE-M	2000 ppb
					PFC ST 01295	0.2 mL	d9-N-EtFOSE-M	2000 ppb
					PFC ST 01411	0.2 mL	13C8 FOSA	2000 ppb
					PFC ST 01412	0.2 mL	M2-4:2 FTS	1868 ppb
					PFC ST 01467	0.2 mL	13C-6:2 FTUCA	2000 ppb
					PFC ST 01468	0.2 mL	13C-8:2 FTUCA	2000 ppb
					PFC ST 01469	0.2 mL	13C-10:2 FTUCA	2000 ppb
PFC_ST_00981	11/23/25	W∈	ellington Laboratories, I dNEtFOSA1120M	ot	(Purchased Re	agent)	d5-NEtPFOSA	50000 ng/mL
PFC ST 00984	05/13/24	Wellingt	on Laboratories, Lot M3H	FPODA0521	(Purchased Re	agent)	13C3 HFPO-DA	50000 ng/mL
PFC ST 00985	12/17/25	Wellingt	on Laboratories, Lot M28	32FTS1220	(Purchased Re	agent)	M2-8:2 FTS	47900 ng/mL
PFC ST 00986	05/14/26	Wellingt	on Laboratories, Lot M26	2FTS0521	(Purchased Re	agent)	M2-6:2 FTS	47500 ng/mL
PFC_ST_01081	04/04/23		ellington Laboratories, I dNMeFOSA0421M		(Purchased Re		d3-NMePFOSA	50000 ng/mL
PFC ST 01108	04/04/23	Welling	ton Laboratories, Lot MF	THEA0421	(Purchased Re	agent)	13C-6:2 FTCA	50000 ppb
PFC ST 01109	04/04/23	Welling	gton Laboratories, Lot MF	DEA0817	(Purchased Re	agent)	13C-10:2 FTCA	50000 ppb
PFC ST 01113	04/04/23		gton Laboratories, Lot MF		(Purchased Re		13C-8:2 FTCA	50000 ppb
PFC ST 01214	05/13/26	Welling	gton Laboratories, Lot MF	PFOA0521	(Purchased Re	agent)	13C4 PFOA	50000 ng/mL
PFC_ST_01215	04/04/23		ellington Laboratories, I d3NMeFOSAA0521		(Purchased Re		d3-NMeFOSAA	50000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
PFC_ST_01216	04/04/23	We	ellington Laboratories d5NEtFOSAA0921	, Lot	(Purchased Read	gent)	d5-NEtFOSAA	50000 ng/mL
PFC ST 01217	10/04/26	Welling	ton Laboratories, Lot	MPFHxA0921	(Purchased Read	gent)	13C2 PFHxA	50000 ng/mL
PFC ST 01218	02/02/26		ton Laboratories, Lot		(Purchased Read		13C2 PFUnA	50000 ng/mL
PFC_ST_01293	02/10/23		ellington Laboratories d7NMeFOSE1220M		(Purchased Read		d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01295	02/10/23		ellington Laboratories d9NEtFOSE1220M		(Purchased Read		d9-N-EtFOSE-M	50000 ng/mL
PFC_ST_01411	10/12/26		ton Laboratories, Lot		(Purchased Read		13C8 FOSA	50000 ng/mL
PFC_ST_01412	10/13/26		on Laboratories, Lot		(Purchased Read		M2-4:2 FTS	46700 ng/mL
PFC_ST_01467	03/22/23		ton Laboratories, Lot		(Purchased Read		13C-6:2 FTUCA	50000 ppb
PFC_ST_01468	03/22/23		ton Laboratories, Lot		(Purchased Read		13C-8:2 FTUCA	50000 ppb
PFC_ST_01469	03/22/23		ton Laboratories, Lot		(Purchased Read		13C-10:2 FTUCA	50000 ppb
.PFC_IN_00706	12/10/22		MeOH, Lot ED663-US		PFC_ST_01013	0.02 mL		500 ng/mL
PFC_ST_01013	01/08/26		gton Laboratories, Lot		(Purchased Read		Perfluorooctanoic acid	50000 ng/mL
.PFC_ST_01219	01/13/26	Wellingt	on Laboratories, Lot	MPFACCES0121	(Purchased Read	gent)	13C2 PFTeDA	2000 ppb
							13C2-PFDoDA	2000 ppb
							13C3 PFBS	1860 ppb
							13C3 PFHxS	1892 ppb
							13C4 PFBA	2000 ppb
							13C4 PFHpA	2000 ppb
							13C5 PFHxA	2000 ppb
							13C5 PFPeA	2000 ppb
							13C6 PFDA	2000 ppb
							13C7 PFUNA 13C8 PFOA	2000 ppb
							13C8 PFOA	2000 ppb
							13C8 PFOS 13C9 PFNA	1912 ppb 2000 ppb
PFC_MS_MODWX_00138	07/20/22	05/20/22	Methanol, Lot ED412-	US 10 mL	PFC_IN_00683	0.8 mL	NMeFOSA	160 ng/mL
							N-ethylperfluoro-1-octanesulfo namide	160 ng/mL
							2- (N-methylperfluoro-1-octanesul fonamido) ethanol	160 ng/mL
							2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	160 ng/mL
							Perfluorooctanesulfonamide	160 ng/mL
							Perfluorohexadecanoic acid	160 ng/mL
							Perfluorooctadecanoic acid	160 ng/mL
							Perfluorododecanesulfonic acid (PFDoS)	
							Perfluoropentanesulfonic acid	150.08 ng/mL
							Perfluoroheptanesulfonic acid	152.32 ng/mL
							Perfluorononanesulfonic acid	153.6 ng/mL
							Perfluorodecanesulfonic acid	154.24 ng/mL
							Perfluorobutanoic acid	160 ng/mL
						1	Perfluoropentanoic acid	160 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added		Concentration
							1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	
							1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	151.68 ng/m
							1H, 1H, 2H, 2H-perfluorodecanesul fonic acid (8:2)	
							1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	154.24 ng/m
					PFC_IN_00685	0.8 mL	N, N-Bis (2-hydroxyethyl) perfluo robutanesulfonamide	160 ng/m
							Perfluoro(2,5,8-trimethyl-3,6,9-trioxadodecan)amide	633.6 ng/m
							Perfluoro-2,5-dimethyl-3,6-dio xanonanoic acid (HFPO-TrA)	640 ng/m
							3:3 FTCA 5:3 FTCA	160 ng/m 160 ng/m
							7:3 FTCA	160 ng/m
							6:2 FTCA	160 ng/m
							8:2 FTCA	160 ng/m
							10:2 FTCA	160 ng/m
							6:2 FTUCA	160 ng/m
							8:2 FTUCA	160 ng/m
							10:2 FTUCA	160 ng/m
							PFECA F	160 ng/m
							PFECA A	160 ng/m
							PFECA B	160 ng/m
							PES	142.4 ng/m
							PFECHS	147.52 ng/m
							PFPrS	146.56 ng/m
							FBSA	160 ng/m
							FHxSA	160 ng/m
							Sodium	156.8 ng/m
					PFC IN 00687	0 0 mT	trifluoromethanesulfonate PFECA G	160 ng/m
					FFC_IN_00087	0.0 1111	PPF Acid	160 ng/m
							MTP	160 ng/m
							PFMOAA	160 ng/m
							R-EVE	160 ng/m
							R-PSDA	160 ng/m
							Hydrolyzed PSDA	160 ng/m
							PFO2HxA	160 ng/m
							NVHOS	160 ng/m
							PFO3OA	160 ng/mi
							PFO4DA	160 ng/m
							Hydro-EVE Acid	160 ng/m
							EVE Acid	160 ng/m
							R-PSDCA	160 ng/m
							Hydro-PS Acid	160 ng/m
							PS Acid	160 ng/m

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							TAF	160 ng/mL
							PMPA	160 ng/mL
							PEPA	160 ng/mL
					PFC ST 01539	0.8 mL	11Cl-PF3OUdS	148.8 ng/mL
							9C1-PF3ONS	148.8 ng/mL
							DONA	151.2 ng/mL
							HFPODA	160 ng/mL
							NETFOSAA	160 ng/mL
							NMeFOSAA	160 ng/mL
							Perfluorobutanesulfonic acid	141.6 ng/mL
							Perfluorodecanoic acid	160 ng/mL
							Perfluorododecanoic acid	160 ng/mL
							Perfluoroheptanoic acid	160 ng/mL
							Perfluorohexanesulfonic acid	145.92 ng/mL
							Perfluorohexanoic acid	160 ng/mL
							Perfluorononanoic acid	160 ng/mL
							Perfluorooctanesulfonic acid	148.08 ng/mL
							Perfluorooctanoic acid	160 ng/mL
							Perfluorotetradecanoic acid	160 ng/mL
							Perfluorotridecanoic acid	160 ng/mL
							Perfluoroundecanoic acid	160 ng/mL
.PFC IN 00683	11/10/22	05/10/22	Methanol, Lot ED412-US	0 mT	PFC ST 01417	U 32 mT	NMeFOSA	2000 ng/mL
.Frc_in_00003	11/19/22	03/19/22	Mechanol, Lot ED412-05	0 11111	PFC_ST_01417	0.32 ML		2000 ng/mL
							namide	
					PFC_ST_01419	0.32 mL		2000 ng/mL
							(N-methylperfluoro-1-octanesul fonamido) ethanol	
					PFC_ST_01420	0.32 mL	(N-ethylperfluoro-1-octanesulf onamido) ethanol	2000 ng/mL
					PFC_ST_01422	0.32 mL	Perfluorooctanesulfonamide	2000 ng/mL
					PFC_ST_01423	0.32 mL	Perfluorohexadecanoic acid	2000 ng/mL
					PFC ST 01424		Perfluorooctadecanoic acid	2000 ng/mL
					PFC_ST_01425	0.32 mL	Perfluorododecanesulfonic acid (PFDoS)	1936 ng/mL
					PFC ST 01426	0.32 mL	Perfluoropentanesulfonic acid	1876 ng/mL
				1	PFC ST 01427		Perfluoroheptanesulfonic acid	1904 ng/mL
					PFC ST 01428	0.32 mL	Perfluorononanesulfonic acid	1920 ng/mL
					PFC ST 01429	0.32 mL	Perfluorodecanesulfonic acid	1928 ng/mL
					PFC ST 01430	0.32 mL	Perfluorobutanoic acid	2000 ng/mL
				1	PFC ST 01431		Perfluoropentanoic acid	2000 ng/mL
					PFC_ST_01432	0.32 mL	1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	1868 ng/mL
				PFC_ST_01433	0.32 mL	1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	1896 ng/mL	
					PFC_ST_01434	0.32 mL	1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	1916 ng/mL
					PFC_ST_01435	0.32 mL		1928 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent R	eagent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
PFC ST 01417	03/23/23	Wellingto	on Laboratories, Lot NMe	FOSA0721M	(Purchased	Reagent)	NMeFOSA	50000 ng/mL
PFC_ST_01418	03/23/23		n Laboratories, Lot NEt		(Purchased		N-ethylperfluoro-1-octanesulfo namide	50000 ng/mL
PFC_ST_01419	03/23/23	Wellingto	on Laboratories, Lot NMe	FOSE0921M	(Purchased	Reagent)	2- (N-methylperfluoro-1-octanesul fonamido) ethanol	50000 ng/mL
PFC_ST_01420	03/23/23	Wellingto	on Laboratories, Lot NEt	FOSE0921M	(Purchased	Reagent)	2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	50000 ng/mL
PFC_ST_01422	03/23/23	Welling	ton Laboratories, Lot FC	SA0721I	(Purchased		Perfluorooctanesulfonamide	50000 ng/mL
PFC_ST_01423	03/23/23		on Laboratories, Lot PF		(Purchased		Perfluorohexadecanoic acid	50000 ng/mL
PFC_ST_01424	03/23/23		ton Laboratories, Lot PE		(Purchased		Perfluorooctadecanoic acid	50000 ng/mL
PFC_ST_01425	03/23/23		on Laboratories, Lot LP		(Purchased		Perfluorododecanesulfonic acid (PFDoS)	
PFC_ST_01426	03/23/23		on Laboratories, Lot LP		(Purchased		Perfluoropentanesulfonic acid	46900 ng/mL
PFC_ST_01427	03/23/23		on Laboratories, Lot LP		(Purchased		Perfluoroheptanesulfonic acid	47600 ng/mL
PFC_ST_01428	03/23/23		ton Laboratories, Lot LE		(Purchased		Perfluorononanesulfonic acid	48000 ng/mL
PFC_ST_01429	03/23/23		ton Laboratories, Lot LE		(Purchased		Perfluorodecanesulfonic acid	48200 ng/mL
PFC_ST_01430	03/23/23		ton Laboratories, Lot P		(Purchased		Perfluorobutanoic acid	50000 ng/mL
PFC_ST_01431	03/23/23		ton Laboratories, Lot PI		(Purchased		Perfluoropentanoic acid	50000 ng/mL
PFC_ST_01432	03/23/23		ton Laboratories, Lot 42		(Purchased		1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	46700 ng/mL
PFC_ST_01433	03/23/23		ton Laboratories, Lot 62		(Purchased		1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	47400 ng/mL
PFC_ST_01434	03/23/23		ton Laboratories, Lot 82		(Purchased	Reagent)	1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	
PFC_ST_01435	03/23/23		on Laboratories, Lot 10	2FTS0221	(Purchased		1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	_
.PFC_IN_00685	08/21/22	05/19/22	Methanol, Lot ED412-US	8 mI	FBSEE_20ppm_0000		N, N-Bis (2-hydroxyethyl) perfluo robutanesulfonamide	
					HFPO_TeA_Int1_00		Perfluoro(2,5,8-trimethyl-3,6,9-trioxadodecan)amide	7920 ppb
					PFC_HFPO_TrA_000	0.64 mL	Perfluoro-2,5-dimethyl-3,6-dio xanonanoic acid (HFPO-TrA)	
					PFC_ST_01361	0.32 mL	3:3 FTCA	2000 ppb
					PFC_ST_01362		5:3 FTCA	2000 ppb
					PFC_ST_01363		7:3 FTCA	2000 ppb
					PFC_ST_01364		6:2 FTCA	2000 ppb
					PFC_ST_01365		8:2 FTCA	2000 ppb
				1	PFC_ST_01366		10:2 FTCA	2000 ppb
					PFC_ST_01367		6:2 FTUCA	2000 ppb
					PFC_ST_01368		8:2 FTUCA	2000 ppb
				1	PFC_ST_01369		10:2 FTUCA	2000 ppb
					PFC_ST_01370		PFECA F	2000 ppb
				1	PFC_ST_01371		PFECA A	2000 ppb
				1	PFC ST 01372		PFECA B	2000 ppb
					PFC_ST_01373	0.32 mL		1780 ppb
				1	PFC_ST_01374	0.32 mL		1844 ppb
		1		1	PFC_ST_01375	0.32 mL	LELES	1832 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reager	nt		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
					PFC ST 01439	0.32 mL	FBSA	2000 ppb
					PFC ST 01440	0.32 mL	FHXSA	2000 ppb
					PFC TFMS Int 00002	0.016 mL		1960 ppb
							trifluoromethanesulfonate	
FBSEE_20ppm_00001	02/03/23	02/03/22	Methanol, Lot 204513	10 mL	FBSEE_00002	10 uL	N,N-Bis(2-hydroxyethyl)perfluo robutanesulfonamide	20 ppm
FBSEE_00002	02/03/25	Synqı	uest Laboratories, Lot 62		(Purchased Reag	ent)	N,N-Bis(2-hydroxyethyl)perfluorobutanesulfonamide	20000 ppm
HFPO_TeA_Int1_00002			Methanol, Lot EC058-US		HFPO_TeA_Int1_00001	1 mL	9-trioxadodecan)amide	990000 ppb
HFPO_TeA_Int1_00001			Methanol, Lot 204513		PFC_HFPO_TeA_00002		Perfluoro(2,5,8-trimethyl-3,6,9-trioxadodecan)amide	9900000 ppb
PFC_HFPO_TeA_00002	09/29/22	Synqu	est Laboratories, Lot Q1	77-06	(Purchased Reag	ent)	Perfluoro(2,5,8-trimethyl-3,6,	99 %
						-	9-trioxadodecan)amide	
PFC_HFPO_TrA_00001			Methanol, Lot 204513		HFPO-TrA_00001	8 uL	xanonanoic acid (HFPO-TrA)	100 ppm
HFPO-TrA_00001	11/15/23		onto Research Chemicals, 21-JPO-57-1		(Purchased Reag	·	Perfluoro-2,5-dimethyl-3,6-dio xanonanoic acid (HFPO-TrA)	125 mg/mL
PFC_ST_01361	11/12/25		ton Laboratories, Lot FP		(Purchased Reag		3:3 FTCA	50000 ng/mL
PFC_ST_01362	11/11/25		ton Laboratories, Lot FP		(Purchased Reag		5:3 FTCA	50000 ng/mL
PFC_ST_01363	11/12/25		ton Laboratories, Lot FH		(Purchased Reag		7:3 FTCA	50000 ng/mL
PFC_ST_01364	03/08/24		gton Laboratories, Lot Fl		(Purchased Reag		6:2 FTCA	50000 ng/mL
PFC_ST_01365	08/18/24		gton Laboratories, Lot F		(Purchased Reag		8:2 FTCA	50000 ng/mL
PFC_ST_01366	07/07/23		gton Laboratories, Lot Fl		(Purchased Reag		10:2 FTCA	50000 ng/mL
PFC_ST_01367	09/03/23		ton Laboratories, Lot FH		(Purchased Reag		6:2 FTUCA	50000 ng/mL
PFC_ST_01368	03/29/23		ton Laboratories, Lot FC		(Purchased Reag		8:2 FTUCA	50000 ng/mL
PFC_ST_01369	03/29/23		ton Laboratories, Lot FD		(Purchased Reag		10:2 FTUCA	50000 ng/mL
PFC_ST_01370	07/21/24		on Laboratories, Lot PF4		(Purchased Reag		PFECA F	50000 ng/mL
PFC_ST_01371	11/21/24		on Laboratories, Lot PF5		(Purchased Reag		PFECA A	50000 ng/mL
PFC_ST_01372	08/21/23		on Laboratories, Lot 360		(Purchased Reag		PFECA B	50000 ng/mL
PFC_ST_01373	05/13/25		ton Laboratories, Lot PF1		(Purchased Reag	ent)	PES	44500 ppb
PFC_ST_01374	07/21/24	Welling	ton Laboratoires, Lot PF	ECHS1021	(Purchased Reag	ent)	PFECHS	46100 ppb
PFC ST 01375	07/12/26	Welling	ton Laboratories, Lot LP	FPrS0721	(Purchased Reag	ent)	PFPrS	45800 ppb
PFC ST 01439	03/23/23		ton Laboratories, Lot FB		(Purchased Reag	ent)	FBSA	50000 ng/mL
PFC_ST_01440	03/23/23		ton Laboratories, Lot FH:		(Purchased Reag	ent)	FHxSA	50000 ng/mL
PFC_TFMS_Int_00002	08/25/22	02/25/22	Methanol, Lot 204513		PFC_TFMS_Int_00001	1 mL	Sodium trifluoromethanesulfonate	980 ppm
PFC_TFMS_Int_00001	09/29/22	09/29/21	Methanol, Lot 204513	10 mL	PFC_TFMS_PS_00001	0.1 g	Sodium trifluoromethanesulfonate	9800 ppm
PFC_TFMS_PS_00001	09/29/22		igma-Aldrich, Lot MKCM04		(Purchased Reag		Sodium trifluoromethanesulfonate	98 %
.PFC_IN_00687	08/16/22	05/20/22	Methanol, Lot ED412-US	5 mL	PFC_IN_00602	1 mL	PFECA G	2000 ppb
							PPF Acid	2000 ppb
							MTP	2000 ppb
							PFMOAA	2000 ppb
							R-EVE	2000 ppb
							R-PSDA	2000 ppb
							Hydrolyzed PSDA	2000 ppb
							PFO2HxA	2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

SDG No.: _____

			Reagent	Parent Reag	rent		
Reagent ID	<u> </u>	rep Dilutant te Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
						NVHOS	2000 ppb
						PFO3OA	2000 ppb
						PFO4DA	2000 ppb
						Hydro-EVE Acid	2000 ppb
						EVE Acid	2000 ppb
						R-PSDCA	2000 ppb
						Hydro-PS Acid	2000 ppb
						PS Acid	2000 ppb
						TAF	2000 ppb
						PMPA	2000 ppb
						PEPA	2000 ppb
PFC_IN_00602	08/16/22 02/1	6/22 Methanol, Lot EC203-US	10 mL	PFC_ST_00199	0.1 mL	PFECA G	10000 ppb
				PFC ST 00329	0.1 mL	PPF Acid	10000 ppb
				PFC ST 00332	0.1 mL	MTP	10000 ppb
				PFC_ST_01117		PFMOAA	10000 ppb
				PFC_ST_01118	0.1 mL	R-EVE	10000 ppb
				PFC_ST_01119		R-PSDA	10000 ppb
				PFC ST 01120	0.1 mL	Hydrolyzed PSDA	10000 ppb
				PFC ST 01121	0.1 mL	PFO2HxA	10000 ppb
				PFC ST 01122	0.1 mL	NVHOS	10000 ppb
				PFC ST 01124	0.1 mL	PFO3OA	10000 ppb
				PFC_ST_01127	0.1 mL	PFO4DA	10000 ppb
				PFC ST 01128	0.1 mL	Hydro-EVE Acid	10000 ppb
				PFC ST 01129	0.1 mL	EVE Acid	10000 ppb
				PFC ST 01130	0.1 mL	R-PSDCA	10000 ppb
				PFC ST 01131	0.1 mL	Hydro-PS Acid	10000 ppb
				PFC ST 01132	0.1 mL	PS Acid	10000 ppb
				PFC ST 01133	0.1 mL	TAF	10000 ppb
				PFC ST 01134	0.1 mL	PMPA	10000 ppb
				PFC_ST_01135	0.1 mL	PEPA	10000 ppb
PFC_ST_00199	02/26/23	Chemours, Lot N/A		(Purchased Rea	agent)	PFECA G	1000000 ug/L
PFC_ST_00329	02/26/23	Chemours, Lot N/A		(Purchased Rea	agent)	PPF Acid	1000000 ug/L
PFC_ST_00332	02/26/23	Chemours, Lot N/A		(Purchased Rea	agent)	MTP	1000000 ug/L
PFC_ST_01117	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	PFMOAA	1000000 ug/L
PFC_ST_01118	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	R-EVE	1000000 ug/L
PFC_ST_01119	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	R-PSDA	1000000 ug/L
PFC_ST_01120	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	Hydrolyzed PSDA	1000000 ug/L
PFC_ST_01121	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	PFO2HxA	1000000 ug/L
PFC_ST_01122	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	NVHOS	1000000 ug/L
PFC_ST_01124	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	PFO3OA	1000000 ug/L
PFC_ST_01127	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	PFO4DA	1000000 ug/L
PFC_ST_01128	10/13/22	Chemours, Lot N/A		(Purchased Rea	<i></i>	Hydro-EVE Acid	1000000 ug/L
PFC_ST_01129	10/13/22	Chemours, Lot N/A		(Purchased Rea		EVE Acid	1000000 ug/L
PFC_ST_01130	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	R-PSDCA	1000000 ug/L
PFC_ST_01131	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	Hydro-PS Acid	1000000 ug/L
PFC_ST_01132	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	PS Acid	1000000 ug/L
PFC_ST_01133	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	TAF	1000000 ug/L
PFC ST 01134	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	PMPA	1000000 ug/L

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

			Reagent	Parent Reag	gent		
	Exp Prep	Dilutant	Final		Volume		
Reagent ID	Date Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
PFC ST 01135	10/13/22	Chemours, Lot N/A		(Purchased Rea	agent)	PEPA	1000000 ug/L
.PFC ST 01539		on Laboratories, Lot		(Purchased Rea		11Cl-PF3OUdS	1860 ng/mL
		•			<i>,</i>	9C1-PF3ONS	1860 ng/mL
						DONA	1890 ng/mL
						HFPODA	2000 ng/mL
						NETFOSAA	2000 ng/mL
						NMeFOSAA	2000 ng/mL
						Perfluorobutanesulfonic acid	1770 ng/mL
						Perfluorodecanoic acid	2000 ng/mL
						Perfluorododecanoic acid	2000 ng/mL
						Perfluoroheptanoic acid	2000 ng/mL
						Perfluorohexanesulfonic acid	1824 ng/mL
						Perfluorohexanoic acid	2000 ng/mL
						Perfluorononanoic acid	2000 ng/mL
						Perfluorooctanesulfonic acid	1851 ng/mL
						Perfluorooctanoic acid	2000 ng/mL
						Perfluorotetradecanoic acid	2000 ng/mL
						Perfluorotridecanoic acid	2000 ng/mL
						Perfluoroundecanoic acid	2000 ng/mL
PFC_SS_MODX_00239	07/01/22 04/01/22	Methanol, Lot ED260-	US 12.5 mL	PFC_IN_00635	2.5 ml	13C8 PFOS	382.4 ng/mL
						13C3 PFBS	372 ng/mL
						13C3 PFHxS	378.4 ng/mL
						13C4 PFBA	400 ng/mL
						13C5 PFPeA	400 ng/mL
						13C5 PFHxA	400 ng/mL
						13C4 PFHpA	400 ng/mL
						13C8 PFOA	400 ng/mL
						13C9 PFNA	400 ng/mL
						13C6 PFDA	400 ng/mL
						13C7 PFUnA	400 ng/mL
						13C2-PFDoDA	400 ng/mL
						13C2 PFTeDA	400 ng/mL
						13C8 FOSA	400 ng/mL
						d3-NMePFOSA d5-NEtPFOSA	400 ng/mL 400 ng/mL
						d5-NETPFOSA d7-N-MeFOSE-M	400 ng/mL 400 ng/mL
						d9-N-EtFOSE-M	400 ng/mL 400 ng/mL
						d3-NMeFOSAA	400 ng/mL
						d5-NEtFOSAA	400 ng/mL
						13C3 HFPO-DA	400 ng/mL
						M2-4:2 FTS	373.6 ng/mL
					M2-6:2 FTS	380 ng/mL	
					M2-8:2 FTS	383.2 ng/mL	
				PFC IN 00636	2.5 ml	L 13C-6:2 FTCA	400 ng/mL
				3	2.5 111	13C-8:2 FTCA	400 ng/mL
						13C-10:2 FTCA	400 ng/mL
						13C-6:2 FTUCA	400 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
-					-		13C-8:2 FTUCA	400 ng/mI
							13C-10:2 FTUCA	400 ng/mI
PFC IN 00635	10/01/22	04/01/22	Methanol, Lot ED260-US	2.5 mT ₁	PFC ST 01299	1 mL		1912 ng/mI
	,	,,			PFC ST 01330		13C3 PFBS	1860 ng/mI
					PFC ST 01441		13C3 PFHxS	1892 ng/mI
					PFC ST 01443	1 mL	13C4 PFBA	2000 ng/ml
					PFC ST 01444	1 mL		2000 ng/ml
					PFC ST 01445	1 mL		2000 ng/ml
					PFC ST 01446	1 mL	13C4 PFHpA	2000 ng/mI
					PFC ST 01447		13C8 PFOA	2000 ng/ml
					PFC ST 01448	1 mL		2000 ng/ml
					PFC ST 01449	1 mL	13C6 PFDA	2000 ng/ml
					PFC ST 01450	1 mL		2000 ng/ml
					PFC ST 01451		13C2-PFDoDA	2000 ng/mI
					PFC ST 01452		13C2 PFTeDA	2000 ng/ml
					PFC ST 01453		13C8 FOSA	2000 ng/ml
					PFC ST 01454	1 mL		2000 ng/ml
					PFC ST 01455		d5-NEtPFOSA	2000 ng/m
					PFC ST 01456		d7-N-MeFOSE-M	2000 ng/m
					PFC ST 01457		d9-N-EtFOSE-M	2000 ng/mi
					PFC ST 01458		d3-NMeFOSAA	2000 ng/mi
					PFC ST 01459	1 mL		2000 ng/ml
					PFC ST 01460	1 mL	13C3 HFPO-DA	2000 ng/ml
					PFC ST 01461		M2-4:2 FTS	1868 ng/mi
					PFC ST 01462		M2-6:2 FTS	1900 ng/mi
					PFC ST 01463	1 mL	M2-8:2 FTS	1916 ng/m
.PFC ST 01299	02/10/23	Welling	ton Laboratories, Lot M8	PFOS0721	(Purchased Rea		13C8 PFOS	47800 ng/ml
.PFC ST 01330	02/28/23		ton Laboratories, Lot M3		(Purchased Rea		13C3 PFBS	46500 ng/ml
.PFC ST 01441	02/28/24		ton Laboratories, Lot M3F		(Purchased Rea		13C3 PFHxS	47300 ng/ml
.PFC ST 01443	02/28/24		gton Laboratories, Lot MF		(Purchased Rea		13C4 PFBA	50000 ng/ml
.PFC ST 01444	02/28/24		ton Laboratories, Lot M5F		(Purchased Rea		13C5 PFPeA	50000 ng/ml
.PFC ST 01445	03/10/23		ton Laboratories, Lot M5F		(Purchased Rea		13C5 PFHxA	50000 ng/ml
.PFC ST 01446	02/28/24		ton Laboratories, Lot M4F		(Purchased Rea		13C4 PFHpA	50000 ng/ml
.PFC ST 01447	02/28/24		ton Laboratories, Lot M8		(Purchased Rea		13C8 PFOA	50000 ng/ml
.PFC ST 01448	02/28/24		ton Laboratories, Lot M9		(Purchased Rea		13C9 PFNA	50000 ng/ml
.PFC ST 01449	02/28/24		ton Laboratories, Lot M6		(Purchased Rea		13C6 PFDA	50000 ng/ml
.PFC ST 01450	02/28/24		ton Laboratories, Lot M7F		(Purchased Rea		13C7 PFUnA	50000 ng/ml
.PFC ST 01451	02/28/24		ton Laboratories, Lot MP:		(Purchased Rea		13C2-PFDoDA	50000 ng/ml
.PFC ST 01452	02/18/24		on Laboratories, Lot M2P		(Purchased Rea		13C2 PFTeDA	50000 ng/ml
.PFC ST 01453	03/10/23	Wellingt	on Laboratories, Lot M8F	OSA0921I	(Purchased Rea	agent)	13C8 FOSA	50000 ng/mI
.PFC_ST_01454	02/28/24		ellington Laboratories, I dNMeFOSA1021M		(Purchased Rea		d3-NMePFOSA	50000 ng/mI
.PFC_ST_01455	02/28/24	We	ellington Laboratories, I dNEtFOSA0821M	iot	(Purchased Rea	agent)	d5-NEtPFOSA	50000 ng/mI
PFC_ST_01456	02/28/24	We	ellington Laboratories, I d7NMeFOSE1221M	ot	(Purchased Rea	agent)	d7-N-MeFOSE-M	50000 ng/mI
PFC_ST_01457	02/28/24	We	ellington Laboratories, I d9NEtFOSE1221M	ot	(Purchased Rea	agent)	d9-N-EtFOSE-M	50000 ng/mI

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

			Reagent	Parent Reagen	it	
Reagent ID	Exp Pr Date Da		Final Volume	Reagent ID	Volume Added Analyte	Concentration
<u> </u>	02/28/24	Wellington Laboratories			=	
PFC_ST_01458		d3NMeFOSAA0521		(Purchased Reage	·	50000 ng/mL
PFC_ST_01459	02/28/24	Wellington Laboratories d5NEtFOSAA0921		(Purchased Reage		50000 ng/mL
PFC_ST_01460		ington Laboratories, Lot l		(Purchased Reage		50000 ng/mL
PFC_ST_01461		ington Laboratories, Lot I		(Purchased Reage	•	46700 ng/mL
PFC_ST_01462		ington Laboratories, Lot I		(Purchased Reage		47500 ng/mL
PFC_ST_01463		lington Laboratories, Lot		(Purchased Reage		47900 ng/mL
.PFC_IN_00636	10/01/22 04/0	1/22 Methanol, Lot ED260-	US 25 mL	PFC_ST_01464	1 mL 13C-6:2 FTCA	2000 ppb
				PFC_ST_01465	1 mL 13C-8:2 FTCA	2000 ppb
				PFC_ST_01466	1 mL 13C-10:2 FTCA	2000 ppb
				PFC_ST_01467	1 mL 13C-6:2 FTUCA	2000 ppb
				PFC_ST_01468	1 mL 13C-8:2 FTUCA	2000 ppb
				PFC_ST_01469	1 mL 13C-10:2 FTUCA	2000 ppb
PFC_ST_01464		llington Laboratories, Lot		(Purchased Reage	•	50000 ppb
PFC_ST_01465		llington Laboratories, Lot		(Purchased Reage		50000 ppb
PFC_ST_01466		llington Laboratories, Lot		(Purchased Reage		50000 ppb
PFC ST 01467		lington Laboratories, Lot		(Purchased Reage		50000 ppb
PFC ST 01468		lington Laboratories, Lot		(Purchased Reage		50000 ppb
PFC_ST_01469	03/22/23 Wel	lington Laboratories, Lot		(Purchased Reage	ent) 13C-10:2 FTUCA	50000 ppb
PFC_SS_MODX_00273	08/15/22 06/1	5/22 Methanol, Lot ED663-	US 25 mL	PFC_IN_00709	5 mL 13C8 PFOS	382.4 ng/mL
					13C3 PFBS	372 ng/mL
					13C3 PFHxS	378.4 ng/mL
					13C4 PFBA	400 ng/mL
					13C5 PFPeA	400 ng/mL
					13C5 PFHxA	400 ng/mL
					13C4 PFHpA	400 ng/mL
					13C8 PFOA	400 ng/mL
					13C9 PFNA	400 ng/mL
					13C6 PFDA	400 ng/mL
					13C7 PFUnA	400 ng/mL
					13C2-PFDoDA	400 ng/mL
					13C2 PFTeDA	400 ng/mL
					13C8 FOSA	400 ng/mL
					d3-NMePFOSA	400 ng/mL
					d5-NEtPFOSA	400 ng/mL
					d7-N-MeFOSE-M	400 ng/mL
					d9-N-EtFOSE-M	400 ng/mL
					d3-NMeFOSAA	400 ng/mL
					d5-NEtFOSAA	400 ng/mL
					13C3 HFPO-DA	400 ng/mL
					M2-4:2 FTS	373.6 ng/mL
					M2-6:2 FTS	380 ng/mL
					M2-8:2 FTS	383.2 ng/mL
				PFC_IN_00710	5 mL 13C-6:2 FTCA	400 ng/mL
					13C-8:2 FTCA	400 ng/mL
					13C-10:2 FTCA	400 ng/mL
					13C-6:2 FTUCA	400 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							13C-8:2 FTUCA	400 ng/mL
							13C-10:2 FTUCA	400 ng/mL
.PFC IN 00709	12/15/22	06/15/22	Methanol, Lot ED633-US	25 mL	PFC ST 01570	1 mL	13C8 PFOS	1912 ppb
					PFC ST 01645	1 mL	13C3 PFBS	1860 ppb
					PFC ST 01646	1 mL	13C3 PFHxS	1892 ppb
					PFC ST 01648	1 mL	13C4 PFBA	2000 ppb
					PFC ST 01649	1 mL	13C5 PFPeA	2000 ppb
					PFC ST 01650	1 mL	13C5 PFHxA	2000 ppb
					PFC ST 01651	1 mL	13C4 PFHpA	2000 ppb
					PFC ST 01652	1 mL	13C8 PFOA	2000 ppb
					PFC ST 01653	1 mL	13C9 PFNA	2000 ppb
					PFC ST 01654	1 mL	13C6 PFDA	2000 ppb
					PFC ST 01655	1 mL	13C7 PFUnA	2000 ppb
					PFC ST 01656		13C2-PFDoDA	2000 ppb
					PFC ST 01657		13C2 PFTeDA	2000 ppb
					PFC ST 01658		13C8 FOSA	2000 ppb
					PFC ST 01659	1 mL		2000 ppb
					PFC ST 01660	1 mL	d5-NEtPFOSA	2000 ppb
					PFC ST 01661		d7-N-MeFOSE-M	2000 ppb
					PFC ST 01662		d9-N-EtFOSE-M	2000 ppb
					PFC ST 01663		d3-NMeFOSAA	2000 ppb
					PFC ST 01664	1 mL		2000 ppb
					PFC ST 01665		13C3 HFPO-DA	2000 ppb
					PFC ST 01666		M2-4:2 FTS	1868 ppb
					PFC ST 01667		M2-6:2 FTS	1900 ppb
					PFC ST 01668		M2-8:2 FTS	1916 ppb
PFC ST 01570	05/09/24	Welling	ton Laboratories, Lot M8	PFOS0721	(Purchased Rea		13C8 PFOS	47800 ng/mL
PFC ST 01645	06/02/26		ton Laboratories, Lot M3		(Purchased Rea		13C3 PFBS	46500 ng/mL
PFC ST 01646	06/02/26		ton Laboratories, Lot M3F		(Purchased Rea		13C3 PFHxS	47300 ng/mL
PFC ST 01648	06/02/26		ton Laboratories, Lot MF		(Purchased Rea		13C4 PFBA	50000 ng/mL
PFC ST 01649	06/02/26		ton Laboratories, Lot M5F		(Purchased Rea		13C5 PFPeA	50000 ng/mL
PFC ST 01650	06/02/26		ton Laboratories, Lot M5F		(Purchased Rea		13C5 PFHxA	50000 ng/mL
PFC ST 01651	06/02/26		ton Laboratories, Lot M4F		(Purchased Rea		13C4 PFHpA	50000 ng/mL
PFC ST 01652	06/02/26		ton Laboratories, Lot M8		(Purchased Rea		13C8 PFOA	50000 ng/mL
PFC ST 01653	06/02/26		ton Laboratories, Lot M9		(Purchased Rea		13C9 PFNA	50000 ng/mL
PFC ST 01654	06/02/26		ton Laboratories, Lot M6		(Purchased Rea		13C6 PFDA	50000 ng/mL
PFC ST 01655	06/02/26		ton Laboratories, Lot M7F		(Purchased Rea		13C7 PFUnA	50000 ng/mL
PFC_ST_01055	06/02/26		ton Laboratories, Lot MP:		(Purchased Rea		13C2-PFDoDA	50000 ng/mL
PFC ST 01657	06/02/26		on Laboratories, Lot M2P		(Purchased Rea		13C2 PFTeDA	50000 ng/mL
PFC_ST_01057	06/02/26		on Laboratories, Lot MSF		(Purchased Rea		13C8 FOSA	
PFC_ST_01659	06/02/26		ellington Laboratories, Lot Mor ellington Laboratories, I dNMeFOSA0422M		(Purchased Rea		d3-NMePFOSA	50000 ng/mL 50000 ng/mL
PFC_ST_01660	06/02/26	We	ellington Laboratories, I dNEtFOSA0322M	ot	(Purchased Rea	agent)	d5-NEtPFOSA	50000 ng/mL
PFC_ST_01661	06/02/26	We	ellington Laboratories, I d7NMeFOSE1221M	ot	(Purchased Rea	agent)	d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01662	06/02/26	We	ellington Laboratories, I d9NEtFOSE1221M	ot	(Purchased Rea	agent)	d9-N-EtFOSE-M	50000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reager	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
<u>-</u>	06/02/26						=	
PFC_ST_01663			llington Laboratories, d3NMeFOSAA0222		(Purchased Reag		d3-NMeFOSAA	50000 ng/mL
PFC_ST_01664	06/02/26		ellington Laboratories, d5NEtFOSAA0522		(Purchased Reag		d5-NEtFOSAA	50000 ng/mL
PFC_ST_01665	06/02/26		on Laboratories, Lot M		(Purchased Reag		13C3 HFPO-DA	50000 ng/mL
PFC_ST_01666	06/02/26		on Laboratories, Lot M		(Purchased Reag	, ,	M2-4:2 FTS	46700 ng/mL
PFC_ST_01667	06/02/26		on Laboratories, Lot M		(Purchased Reag		M2-6:2 FTS	47500 ng/mL
PFC_ST_01668	06/02/26		on Laboratories, Lot M		(Purchased Reag		M2-8:2 FTS	47900 ng/mL
.PFC_IN_00710	12/15/22	06/15/22	Methanol, Lot ED663-US	S 25 mL	PFC_ST_01669		13C-6:2 FTCA	2000 ppb
					PFC_ST_01670		13C-8:2 FTCA	2000 ppb
					PFC_ST_01671		13C-10:2 FTCA	2000 ppb
					PFC_ST_01672		13C-6:2 FTUCA	2000 ppb
					PFC_ST_01673		13C-8:2 FTUCA	2000 ppb
					PFC_ST_01674		13C-10:2 FTUCA	2000 ppb
PFC_ST_01669	06/02/24		ston Laboratories, Lot		(Purchased Reag	, ,	13C-6:2 FTCA	50000 ppb
PFC_ST_01670	06/02/24		ston Laboratories, Lot		(Purchased Reag		13C-8:2 FTCA	50000 ppb
PFC_ST_01671	06/02/24		ston Laboratories, Lot		(Purchased Reag		13C-10:2 FTCA	50000 ppb
PFC_ST_01672	06/02/24		ton Laboratories, Lot I		(Purchased Reag		13C-6:2 FTUCA	50000 ppb
PFC_ST_01673	06/02/24		ton Laboratories, Lot I		(Purchased Reag		13C-8:2 FTUCA	50000 ppb
PFC_ST_01674	06/02/24	Welling	ton Laboratories, Lot I	MFDUEA1221	(Purchased Reag	gent)	13C-10:2 FTUCA	50000 ppb
PFC SS MODX 00279	08/28/22	06/28/22	Methanol, Lot ED531-U	S 12.5 mL	PFC IN 00714	2.5 mI	13C3 PFBS	372 ng/mL
							13C3 PFHxS	378.4 ng/mL
							13C8 PFOS	382.4 ng/mL
							13C4 PFBA	400 ng/mL
							13C5 PFPeA	400 ng/mL
							13C5 PFHxA	400 ng/mL
							13C4 PFHpA	400 ng/mL
							13C8 PFOA	400 ng/mL
							13C9 PFNA	400 ng/mL
							13C6 PFDA	400 ng/mL
							13C7 PFUnA	400 ng/mL
							13C2-PFDoDA	400 ng/mL
							13C2 PFTeDA	400 ng/mL
							13C8 FOSA	400 ng/mL
							d3-NMePFOSA	400 ng/mL
							d5-NEtPFOSA	400 ng/mL
							d7-N-MeFOSE-M	400 ng/mL
							d9-N-EtFOSE-M	400 ng/mL
							d3-NMeFOSAA	400 ng/mL
							d5-NEtFOSAA	400 ng/mL
							13C3 HFPO-DA	400 ng/mL
							M2-4:2 FTS	373.6 ng/mL
							M2-6:2 FTS	380 ng/mL
							M2-8:2 FTS	383.2 ng/mL
					PFC IN 00715	2.5 mL	13C-6:2 FTCA	400 ng/mL
							13C-8:2 FTCA	400 ng/mL
							13C-10:2 FTCA	400 ng/mL
							13C-6:2 FTUCA	400 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							13C-8:2 FTUCA	400 ng/mL
							13C-10:2 FTUCA	400 ng/mL
.PFC IN 00714	12/28/22	06/28/22	Methanol, Lot ED531-US	25 mL	PFC ST 01645	1 mL	13C3 PFBS	1860 ppb
					PFC ST 01646	1 mL	13C3 PFHxS	1892 ppb
					PFC ST 01647	1 mL	13C8 PFOS	1912 ppb
					PFC ST 01648	1 mL	13C4 PFBA	2000 ppb
					PFC ST 01649	1 mL	13C5 PFPeA	2000 ppb
					PFC ST 01650	1 mL	13C5 PFHxA	2000 ppb
					PFC ST 01651	1 mL	13C4 PFHpA	2000 ppb
					PFC ST 01652	1 mL	13C8 PFOA	2000 ppb
					PFC ST 01653	1 mL	13C9 PFNA	2000 ppb
					PFC ST 01654	1 mL	13C6 PFDA	2000 ppb
					PFC ST 01655	1 mL	13C7 PFUnA	2000 ppb
					PFC ST 01656		13C2-PFDoDA	2000 ppb
					PFC ST 01657		13C2 PFTeDA	2000 ppb
					PFC ST 01658		13C8 FOSA	2000 ppb
					PFC ST 01659	1 mL	d3-NMePFOSA	2000 ppb
					PFC ST 01660	1 mL	d5-NEtPFOSA	2000 ppb
					PFC ST 01661		d7-N-MeFOSE-M	2000 ppb
					PFC ST 01662		d9-N-EtFOSE-M	2000 ppb
					PFC ST 01663		d3-NMeFOSAA	2000 ppb
					PFC ST 01664	1 mL	d5-NEtFOSAA	2000 ppb
					PFC ST 01665		13C3 HFPO-DA	2000 ppb
					PFC ST 01666		M2-4:2 FTS	1868 ppb
					PFC ST 01667		M2-6:2 FTS	1900 ppb
					PFC ST 01668		M2-8:2 FTS	1916 ppb
PFC ST 01645	06/02/26	Welling	ton Laboratories, Lot M3:	PFBS0222	(Purchased Rea		13C3 PFBS	46500 ng/mL
PFC ST 01646	06/02/26		ton Laboratories, Lot M3F		(Purchased Rea		13C3 PFHxS	47300 ng/mL
PFC ST 01647	06/02/26		ton Laboratories, Lot M8		(Purchased Rea		13C8 PFOS	47800 ng/mL
PFC ST 01648	06/02/26		ton Laboratories, Lot MF		(Purchased Rea		13C4 PFBA	50000 ng/mL
PFC ST 01649	06/02/26		ton Laboratories, Lot M5F		(Purchased Rea		13C5 PFPeA	50000 ng/mL
PFC ST 01650	06/02/26		ton Laboratories, Lot M5F		(Purchased Rea		13C5 PFHXA	50000 ng/mL
PFC ST 01651	06/02/26		ton Laboratories, Lot M4F		(Purchased Rea		13C4 PFHpA	50000 ng/mL
PFC_ST_01051	06/02/26		ton Laboratories, Lot M41		(Purchased Rea		13C8 PFOA	50000 ng/mL
PFC ST 01653	06/02/26		ton Laboratories, Lot M9		(Purchased Rea		13C9 PFNA	50000 ng/mL
PFC ST 01654	06/02/26		ton Laboratories, Lot M6		(Purchased Rea		13C6 PFDA	50000 ng/mL
PFC ST 01655	06/02/26		ton Laboratories, Lot M7F		(Purchased Rea		13C7 PFUnA	50000 ng/mL
PFC ST 01656	06/02/26		ton Laboratories, Lot MP:		(Purchased Rea		13C2-PFDoDA	50000 ng/mL
PFC_ST_01050	06/02/26		on Laboratories, Lot M2P		(Purchased Rea		13C2 PFTeDA	50000 ng/mL
PFC ST 01658	06/02/26		ton Laboratories, Lot M8F		(Purchased Rea		13C8 FOSA	50000 ng/mL
PFC_ST_01659	06/02/26		ellington Laboratories, I dNMeFOSA0422M		(Purchased Rea		d3-NMePFOSA	50000 ng/mL
PFC_ST_01660	06/02/26	We	ellington Laboratories, I dNEtFOSA0322M	ot	(Purchased Rea	agent)	d5-NEtPFOSA	50000 ng/mL
PFC_ST_01661	06/02/26	We	ellington Laboratories, I d7NMeFOSE1221M	ot	(Purchased Rea	agent)	d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01662	06/02/26	Me	ellington Laboratories, I d9NEtFOSE1221M	ot	(Purchased Rea	agent)	d9-N-EtFOSE-M	50000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

			Reagent	Parent Reagent			
Exp Pr	rep	Dilutant	1 -		Volume		
_	-	Used	Volume	Reagent ID	Added	Analyte	Concentration
06/02/26	Welli	ngton Laboratories.	Lot	(Purchased Reage	nt)	d3-NMeFOSAA	50000 ng/ml
00/02/20	WCIII		БОС	(rarenasea neage	110)	do mierobini	30000 Hg/ III
06/02/26	Welli		Lot	(Purchased Reage	nt)	d5-NEtFOSAA	50000 ng/ml
		d5NEtFOSAA0522					J.
06/02/26 Wel.	lington 1	Laboratories, Lot M3H	FPODA0522	(Purchased Reage	nt)	13C3 HFPO-DA	50000 ng/m
06/02/26 Wel	Llington	Laboratories, Lot M2	42FTS0422	(Purchased Reage	nt)	M2-4:2 FTS	46700 ng/m
06/02/26 Wel	Llington	Laboratories, Lot M2	62FTS0222	(Purchased Reage	nt)	M2-6:2 FTS	47500 ng/m
			82FTS1121	(Purchased Reage	nt)	M2-8:2 FTS	47900 ng/m
12/28/22 06/2	28/22 Met	thanol, Lot ED531-US	25 mL				2000 ppl
							2000 ppl
							2000 ppl
				PFC_ST_01672	1 mL	13C-6:2 FTUCA	2000 ppl
				PFC_ST_01673	1 mL	13C-8:2 FTUCA	2000 ppl
				PFC ST 01674	1 mL	13C-10:2 FTUCA	2000 ppl
06/02/24 We	ellington	Laboratories, Lot M	FHEA0921	(Purchased Reage	nt)	13C-6:2 FTCA	50000 ppl
06/02/24 We	ellington	Laboratories, Lot M	FOEA1121	(Purchased Reage	nt)	13C-8:2 FTCA	50000 ppl
06/02/24 We	ellington	Laboratories, Lot M	FDEA0921	(Purchased Reage	nt)	13C-10:2 FTCA	50000 ppl
06/02/24 We	llington	Laboratories, Lot MF	HUEA0322	(Purchased Reage	nt)	13C-6:2 FTUCA	50000 ppl
06/02/24 We	llington	Laboratories, Lot MF	OUEA1121	(Purchased Reage	nt)	13C-8:2 FTUCA	50000 ppl
06/02/24 We	llington	Laboratories, Lot MF	DUEA1221	(Purchased Reage	nt)	13C-10:2 FTUCA	50000 ppl
09/10/22 06/1	10/22 Met	thanol. Lot ED663-US	10 mT.	PEC IN 00701	0 05 mT.	d5-NE+PFOSA	10 ppl
03/10/22 00/1	10/22 110	enanoi, Eoc Eboos os	10 1111	110_111_00701	0.00 1111		10 ppi
							9.58 ppl
							9.5 ppl
							10 ppl
							10 ppi
							10 ppl
							10 ppi
							10 ppi
							10 ppi
							10 ppi
							10 ppi
							10 ppi
							9.34 ppl
							10 ppl
							10 ppl 10 ppl
				DEC IN 00703	Λ 1 Τ		
				PFC_IN_00703	O.I ML		0.2 ppl
							0.2 ppl
							0.2 ppl
							0.2 ppl
							0.2 ppl
							0.2 ppl
							0.2 ppl
							0.2 ppl
						NVHOS PFO3OA	0.2 ppl 0.2 ppl
	Date Date Date Date Date Date Date Date	Date Date 06/02/26 Welli 06/02/26 Wellington 06/02/26 Wellington 06/02/26 Wellington 06/02/26 Wellington 12/28/22 06/28/22 Me 06/02/24 Wellington Date Date Used 06/02/26 Wellington Laboratories, d3NMeFOSAA0222 06/02/26 Wellington Laboratories, d5NEtFOSAA0522 06/02/26 Wellington Laboratories, Lot M3E 06/02/26 Wellington Laboratories, Lot M2E 06/02/24 Wellington Laboratories, Lot M3E 06/02/24 Wellington Laboratories, Lot M4E Exp Date Date Used Volume 06/02/26 Wellington Laboratories, Lot d3NMeFOSAA0222 06/02/26 Wellington Laboratories, Lot d5NEtFOSAA0522 06/02/26 Wellington Laboratories, Lot M3HFPODA0522 06/02/26 Wellington Laboratories, Lot M242FTS0422 06/02/26 Wellington Laboratories, Lot M242FTS0422 06/02/26 Wellington Laboratories, Lot M262FTS0222 06/02/26 Wellington Laboratories, Lot M282FTS1121 12/28/22 06/28/22 Methanol, Lot ED531-US 25 mL 06/02/24 Wellington Laboratories, Lot MFDEA0921 06/02/24 Wellington Laboratories, Lot MFDEA0322 06/02/24 Wellington Laboratories, Lot MFDUEA1221	Exp Date Date Used Volume Reagent ID 06/02/26 Wellington Laboratories, Lot (Purchased Reage d5NEtFOSAA0222 06/02/26 Wellington Laboratories, Lot M3HFPODA0522 (Purchased Reage d5NEtFOSAA0522 06/02/26 Wellington Laboratories, Lot M242FTS0422 (Purchased Reage 06/02/26 Wellington Laboratories, Lot M242FTS0422 (Purchased Reage 06/02/26 Wellington Laboratories, Lot M242FTS0422 (Purchased Reage 06/02/26 Wellington Laboratories, Lot M262FTS0222 (Purchased Reage 06/02/26 Wellington Laboratories, Lot M282FTS1121 (Purchased Reage 06/02/26 Wellington Laboratories, Lot M282FTS1121 (Purchased Reage 12/28/22 06/28/22 Methanol, Lot ED531-US 25 mL PFC ST 01669 PFC ST 01670 PFC ST 01671 PFC ST 01673 PFC ST 01674 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFHEA0921 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDEA0921 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDEA0322 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24 Wellington Laboratories, Lot MFDUEA1221 (Purchased Reage 06/02/24	Date Date Dilutant Date Date Used Used Volume Reagent ID Added	Rxp		

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentratio
							Hydro-EVE Acid	0.2 pp
							EVE Acid	0.2 pp
							R-PSDCA	0.2 pp
							Hydro-PS Acid	0.2 pp
							PS Acid	0.2 pp
							TAF	0.2 pp
							PMPA	0.2 pp
							PEPA	0.2 pp
					PFC_IN_00705	0.1 mT.	Perfluorooctadecanoic acid	0.2 pp
						0.12	N-ethylperfluoro-1-octanesulfo	0.2 pp
							NMeFOSA	0.2 pp
							1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	0.1916 pp
							1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	0.1928 pp
							2- (N-ethylperfluoro-1-octanesulf	0.2 pp
							onamido) ethanol	0.2 pp
							(N-methylperfluoro-1-octanesul fonamido) ethanol	
							Perfluorododecanesulfonic acid (PFDoS)	0.1936 pp
							Perfluorohexadecanoic acid	0.2 pp
							Perfluorooctanesulfonamide	0.2 pp
							1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	0.1868 pp
							1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	0.1896 pp
							Perfluorobutanoic acid	0.2 pp
							Perfluoropentanoic acid	0.2 pp
							Perfluorodecanesulfonic acid	0.1928 pp
							Perfluoroheptanesulfonic acid	0.1904 pp
							Perfluorononanesulfonic acid	0.192 pp
							Perfluoropentanesulfonic acid	0.1876 pp
							3:3 FTCA	0.2 pp
							5:3 FTCA	0.2 pp
							7:3 FTCA	0.2 pp
							6:2 FTCA	0.2 pp
							8:2 FTCA	0.2 pp
							10:2 FTCA	0.2 pp
							PFECA F	0.2 pp
							PFECA A	0.2 pp
							PFECA B	0.2 pp
							PES	0.178 pp
							PFECHS	0.1844 pp
							PFPrS	0.1832 pp
							6:2 FTUCA	0.2 pp

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Rea	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							8:2 FTUCA	0.2 ppb
							10:2 FTUCA	0.2 ppb
							11Cl-PF3OUdS	0.186 ppb
							9C1-PF3ONS	0.186 ppb
							DONA	0.189 ppb
							HFPODA	0.2 ppb
							NETFOSAA	0.2 ppb
							NMeFOSAA	0.2 ppb
							Perfluorobutanesulfonic acid	0.177 ppb
							Perfluorodecanoic acid	0.2 ppb
							Perfluorododecanoic acid	0.2 ppb
							Perfluoroheptanoic acid	0.2 ppb
							Perfluorohexanesulfonic acid	0.1824 ppb
							Perfluorohexanoic acid	0.2 ppb
							Perfluorononanoic acid	0.2 ppb
							Perfluorooctanesulfonic acid	0.1851 ppb
							Perfluorooctanoic acid	0.2 ppb
							Perfluorotetradecanoic acid	0.2 ppb
							Perfluorotridecanoic acid	0.2 ppb
							Perfluoroundecanoic acid	0.2 ppb
					PFC_ST_01219	0.05 mL	13C2 PFTeDA	10 ppb
							13C2-PFDoDA	10 ppb
							13C3 PFBS	9.3 ppb
							13C3 PFHxS	9.46 ppb
							13C4 PFBA	10 ppb
							13C4 PFHpA	10 ppb
							13C5 PFHxA	10 ppb
							13C5 PFPeA	10 ppb
							13C6 PFDA	10 ppb
							13C7 PFUnA	10 ppb
							13C8 PFOA	10 ppb
							13C8 PFOS	9.56 ppb
						0.005	13C9 PFNA	10 ppb
					PFC_ST_01249	0.025 mL	13C2 PFDA	5 ppb
							13C2 PFOA	5 ppb
							13C3-PFBA 13C4 PFOS	5 ppb
DEC IN 00701	10/00/00	06/00/22	Methanol, Lot ED319-US	E T	PFC ST 00981	0 0	d5-NEtPFOSA	4.7825 ppb
.PFC_IN_00701	12/09/22	06/09/22	Methanol, Lot ED319-05	2 1111	PFC_ST_00981 PFC_ST_00984		13C3 HFPO-DA	2000 ppb
					PFC_ST_00984 PFC_ST_00985		M2-8:2 FTS	2000 ppb 1916 ppb
					PFC_SI_00985		M2-6:2 FTS	1910 ppb
					PFC_ST_00980		d3-NMePFOSA	2000 ppb
					PFC ST 01108		13C-6:2 FTCA	2000 ppb
					PFC ST 01109		13C-10:2 FTCA	2000 ppb
					PFC ST 01113		13C-8:2 FTCA	2000 ppb
					PFC ST 01215		d3-NMeFOSAA	2000 ppb
					PFC ST 01216		d5-NEtFOSAA	2000 ppb
					PFC ST 01293		d7-N-MeFOSE-M	2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					PFC ST 01295	0.2 mL	d9-N-EtFOSE-M	2000 ppb
					PFC ST 01411	0.2 mL	13C8 FOSA	2000 ppb
					PFC ST 01412	0.2 mL	M2-4:2 FTS	1868 ppb
					PFC ST 01467	0.2 mL	13C-6:2 FTUCA	2000 ppb
					PFC ST 01468	0.2 mL	13C-8:2 FTUCA	2000 ppb
					PFC ST 01469	0.2 mL	13C-10:2 FTUCA	2000 ppb
PFC_ST_00981	11/23/25		ellington Laboratories, dNEtFOSA1120M	Lot	(Purchased Rea	agent)	d5-NEtPFOSA	50000 ng/mL
PFC ST 00984	05/13/24		on Laboratories, Lot M31		(Purchased Rea	agent)	13C3 HFPO-DA	50000 ng/mL
PFC ST 00985	12/17/25	Wellingt	on Laboratories, Lot M2	82FTS1220	(Purchased Rea		M2-8:2 FTS	47900 ng/mL
PFC ST 00986	05/14/26		on Laboratories, Lot M2		(Purchased Rea		M2-6:2 FTS	47500 ng/mL
PFC_ST_01081	04/04/23		ellington Laboratories, dNMeFOSA0421M		(Purchased Rea		d3-NMePFOSA	50000 ng/mL
PFC_ST_01108	04/04/23		gton Laboratories, Lot M		(Purchased Rea	agent)	13C-6:2 FTCA	50000 ppb
PFC_ST_01109	04/04/23		gton Laboratories, Lot M		(Purchased Rea		13C-10:2 FTCA	50000 ppb
PFC_ST_01113	04/04/23		gton Laboratories, Lot M		(Purchased Rea		13C-8:2 FTCA	50000 ppb
PFC_ST_01215	04/04/23		ellington Laboratories, d3NMeFOSAA0521		(Purchased Rea		d3-NMeFOSAA	50000 ng/mL
PFC_ST_01216	04/04/23		ellington Laboratories, d5NEtFOSAA0921		(Purchased Rea		d5-NEtFOSAA	50000 ng/mL
PFC_ST_01293	02/10/23		ellington Laboratories, d7NMeFOSE1220M		(Purchased Rea		d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01295	02/10/23		ellington Laboratories, d9NEtFOSE1220M		(Purchased Rea		d9-N-EtFOSE-M	50000 ng/mL
PFC_ST_01411	10/12/26		ton Laboratories, Lot M8		(Purchased Rea		13C8 FOSA	50000 ng/mL
PFC_ST_01412	10/13/26		on Laboratories, Lot M2		(Purchased Rea		M2-4:2 FTS	46700 ng/mL
PFC_ST_01467	03/22/23		ton Laboratories, Lot M		(Purchased Rea		13C-6:2 FTUCA	50000 ppb
PFC_ST_01468	03/22/23		ton Laboratories, Lot M		(Purchased Rea	,	13C-8:2 FTUCA	50000 ppb
PFC_ST_01469	03/22/23		ton Laboratories, Lot M		(Purchased Rea		13C-10:2 FTUCA	50000 ppb
.PFC_IN_00703	10/13/22	06/10/22	Methanol, Lot ED663-US	5 mI	PFC_IN_00702	0.05 mL	PFECA G	20 ppb
							PPF Acid	20 ppb
							MTP	20 ppb
							PFMOAA	20 ppb
							R-EVE	20 ppb
							R-PSDA	20 ppb
							Hydrolyzed PSDA	20 ppb
							PFO2HxA	20 ppb
							NVHOS	20 ppb
							PF030A	20 ppb
							PFO4DA	20 ppb
							Hydro-EVE Acid	20 ppb
							EVE Acid	20 ppb
							R-PSDCA	20 ppb
							Hydro-PS Acid	20 ppb
							PS Acid	20 ppb
							TAF	20 ppb
							PMPA	20 ppb
				1			PEPA	20 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	rent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							PPF Acid	2000 ppb
							MTP	2000 ppb
							PFMOAA	2000 ppb
							R-EVE	2000 ppb
							R-PSDA	2000 ppb
							Hydrolyzed PSDA	2000 ppb
							PFO2HxA	2000 ppb
							NVHOS	2000 ppb
							PFO3OA	2000 ppb
							PFO4DA	2000 ppb
							Hydro-EVE Acid	2000 ppb
							EVE Acid	2000 ppb
							R-PSDCA	2000 ppb
							Hydro-PS Acid	2000 ppb
							PS Acid	2000 ppb
							TAF	2000 ppb
							PMPA	2000 ppb
							PEPA	2000 ppb
PFC_IN_00698	10/13/22	06/09/22	Methanol, Lot ED319-US	10 mL	PFC_ST_00199		PFECA G	10000 ppb
					PFC_ST_00329		PPF Acid	10000 ppb
					PFC_ST_00332	0.1 mL		10000 ppb
					PFC_ST_01117		PFMOAA	10000 ppb
					PFC_ST_01118	0.1 mL		10000 ppb
					PFC_ST_01119		R-PSDA	10000 ppb
					PFC_ST_01120		Hydrolyzed PSDA	10000 ppb
					PFC_ST_01121		PFO2HxA	10000 ppb
					PFC_ST_01122	0.1 mL		10000 ppb
					PFC_ST_01124		PF030A	10000 ppb
					PFC_ST_01127		PFO4DA	10000 ppb
					PFC_ST_01128		Hydro-EVE Acid	10000 ppb
					PFC_ST_01129		EVE Acid	10000 ppb
					PFC_ST_01130		R-PSDCA	10000 ppb
					PFC_ST_01131		Hydro-PS Acid	10000 ppb
					PFC_ST_01132 PFC_ST_01133	0.1 mL	PS Acid	10000 ppb
					PFC_ST_01133 PFC_ST_01134	0.1 mL		10000 ppb
					PFC_SI_01134 PFC_ST_01135	0.1 mL		10000 ppb 10000 ppb
PFC ST 00199	02/26/23		Chemours, Lot N/A		(Purchased Rea		PFECA G	10000 ppb
PFC ST 00329	02/26/23		Chemours, Lot N/A		(Purchased Rea		PPF Acid	1000000 ug/L
PFC_SI_00329	02/26/23		Chemours, Lot N/A		(Purchased Rea		MTP	1000000 ug/L
PFC ST 01117	10/13/22		Chemours, Lot N/A		(Purchased Rea		PFMOAA	1000000 ug/L
PFC ST 01118	10/13/22		Chemours, Lot N/A		(Purchased Rea		R-EVE	1000000 ug/L
PFC ST 01119	10/13/22		Chemours, Lot N/A		(Purchased Rea		R-PSDA	1000000 ug/L
PFC ST 01120	10/13/22		Chemours, Lot N/A		(Purchased Rea		Hydrolyzed PSDA	1000000 ug/L
PFC ST 01121	10/13/22		Chemours, Lot N/A		(Purchased Rea		PFO2HxA	1000000 ug/L
PFC ST 01122	10/13/22		Chemours, Lot N/A		(Purchased Rea		NVHOS	1000000 ug/L
PFC ST 01124	10/13/22		Chemours, Lot N/A		(Purchased Rea		PF030A	1000000 ug/L
PFC ST 01127	10/13/22		Chemours, Lot N/A		(Purchased Rea		PFO4DA	1000000 ug/L

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
PFC ST 01128	10/13/22		Chemours, Lot N/A		(Purchased Read	gent)	Hydro-EVE Acid	1000000 ug/L
PFC ST 01129	10/13/22		Chemours, Lot N/A		(Purchased Read	gent)	EVE Acid	1000000 ug/L
PFC ST 01130	10/13/22		Chemours, Lot N/A		(Purchased Read	gent)	R-PSDCA	1000000 ug/L
PFC ST 01131	10/13/22		Chemours, Lot N/A		(Purchased Read	gent)	Hydro-PS Acid	1000000 ug/L
PFC ST 01132	10/13/22		Chemours, Lot N/A		(Purchased Read	gent)	PS Acid	1000000 ug/L
PFC ST 01133	10/13/22		Chemours, Lot N/A		(Purchased Read	gent)	TAF	1000000 ug/L
PFC ST 01134	10/13/22		Chemours, Lot N/A		(Purchased Read	gent)	PMPA	1000000 ug/L
PFC ST 01135	10/13/22		Chemours, Lot N/A		(Purchased Read	gent)	PEPA	1000000 ug/L
.PFC IN 00705	12/09/22 06	5/10/22	Methanol, Lot ED663-US	5 mL	PFC IN 00704	0.2 mL	Perfluorooctadecanoic acid	20 ng/mL
							N-ethylperfluoro-1-octanesulfo namide	20 ng/mL
							NMeFOSA	20 ng/mL
							1H, 1H, 2H, 2H-perfluorodecanesul fonic acid (8:2)	19.16 ng/mL
							1H, 1H, 2H, 2H-perfluorododecanes ulfonic acid (10:2)	19.28 ng/mL
							2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	20 ng/mL
							2- (N-methylperfluoro-1-octanesul fonamido) ethanol	20 ng/mL
							Perfluorododecanesulfonic acid (PFDoS)	19.36 ng/mL
							Perfluorohexadecanoic acid	20 ng/mL
							Perfluorooctanesulfonamide	20 ng/mL
							1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	18.68 ng/mL
							1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	18.96 ng/mL
							Perfluorobutanoic acid	20 ng/mL
							Perfluoropentanoic acid	20 ng/mL
							Perfluorodecanesulfonic acid	19.28 ng/mL
							Perfluoroheptanesulfonic acid	19.04 ng/mL
							Perfluorononanesulfonic acid	19.2 ng/mL
							Perfluoropentanesulfonic acid	18.76 ng/mL
							3:3 FTCA	20 ng/mL
							5:3 FTCA	20 ng/mL
							7:3 FTCA	20 ng/mL
							6:2 FTCA	20 ng/mL
							8:2 FTCA	20 ng/mL
							10:2 FTCA	20 ng/mL
							PFECA F	20 ng/mL
							PFECA A	20 ng/mL
							PFECA B	20 ng/mL
							PES	17.8 ng/mL
							PFECHS	18.44 ng/mL
							PFPrS	18.32 ng/mL
							6:2 FTUCA	20 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							8:2 FTUCA	20 ng/mL
							10:2 FTUCA	20 ng/mL
							11Cl-PF3OUdS	18.6 ng/mL
							9C1-PF3ONS	18.6 ng/mL
							DONA	18.9 ng/mL
							HFPODA	20 ng/mL
							NEtFOSAA	20 ng/mL
							NMeFOSAA	20 ng/mL
							Perfluorobutanesulfonic acid	17.7 ng/mL
							Perfluorodecanoic acid	20 ng/mL
							Perfluorododecanoic acid	20 ng/mL
							Perfluoroheptanoic acid	20 ng/mL
							Perfluorohexanesulfonic acid	18.24 ng/mL
							Perfluorohexanoic acid	20 ng/mL
							Perfluorononanoic acid	20 ng/mL
							Perfluorooctanesulfonic acid	18.51 ng/mL
							Perfluorooctanoic acid	20 ng/mL
							Perfluorotetradecanoic acid	20 ng/mL
							Perfluorotridecanoic acid	20 ng/mL
							Perfluoroundecanoic acid	20 ng/mL
PFC_IN_00704	12/09/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC_IN_00699	1.25 mL	Perfluorooctadecanoic acid	500 ng/mL
							N-ethylperfluoro-1-octanesulfo	500 ng/mL
							namide	
							NMeFOSA	500 ng/mL
							1H, 1H, 2H, 2H-perfluorodecanesul fonic acid (8:2)	
							1H, 1H, 2H, 2H-perfluorododecanes ulfonic acid (10:2)	
							2-	500 ng/mL
							(N-ethylperfluoro-1-octanesulf onamido) ethanol	
							2- (N-methylperfluoro-1-octanesul fonamido) ethanol	500 ng/mL
							Perfluorododecanesulfonic acid (PFDoS)	484 ng/mL
							Perfluorohexadecanoic acid	500 ng/mL
							Perfluorooctanesulfonamide	500 ng/mL
							1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	
							1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	474 ng/mL
							Perfluorobutanoic acid	500 ng/mL
							Perfluoropentanoic acid	500 ng/mL
							Perfluorodecanesulfonic acid	482 ng/mL
							Perfluoroheptanesulfonic acid	476 ng/mL
							Perfluorononanesulfonic acid	480 ng/mL
							Perfluoropentanesulfonic acid	469 ng/mL
					PFC_IN_00700	1.25 mL	3:3 FTCA	500 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							5:3 FTCA	500 ng/mL
							7:3 FTCA	500 ng/mL
							6:2 FTCA	500 ng/mL
							8:2 FTCA	500 ng/mL
							10:2 FTCA	500 ng/mL
							PFECA F	500 ng/mL
							PFECA A	500 ng/mL
							PFECA B	500 ng/mL
							PES	445 ng/mL
							PFECHS	461 ng/mL
							PFPrS	458 ng/mL
							6:2 FTUCA	500 ng/mL
							8:2 FTUCA	500 ng/mL
							10:2 FTUCA	500 ng/mL
					PFC ST 01549	1.25 mL		465 ng/mL
							9C1-PF3ONS	465 ng/mL
							DONA	472.5 ng/mL
							HFPODA	500 ng/mL
							NEtFOSAA	500 ng/mL
							NMeFOSAA	500 ng/mL
							Perfluorobutanesulfonic acid	442.5 ng/mL
							Perfluorodecanoic acid	500 ng/mL
							Perfluorododecanoic acid	500 ng/mL
							Perfluoroheptanoic acid	500 ng/mL
							Perfluorohexanesulfonic acid	456 ng/mL
							Perfluorohexanoic acid	500 ng/mL
							Perfluorononanoic acid	500 ng/mL
							Perfluorooctanesulfonic acid	462.75 ng/mL
							Perfluorooctanoic acid	500 ng/mL
							Perfluorotetradecanoic acid	500 ng/mL
							Perfluorotridecanoic acid	500 ng/mL
							Perfluoroundecanoic acid	500 ng/mL
PFC IN 00699	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mL	PFC ST 00747	0.2 mL	Perfluorooctadecanoic acid	2000 ng/mL
					PFC_ST_00971	0.2 mL	N-ethylperfluoro-1-octanesulfo namide	2000 ng/mL
					PFC ST 00972		NMeFOSA	2000 ng/mL
					PFC_ST_00976	0.2 mL	1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	1916 ng/mL
					PFC_ST_00977	0.2 mL	1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	1928 ng/mL
				PFC_ST_01073	0.2 mL		2000 ng/mL	
			PFC_ST_01082	0.2 mL		2000 ng/mL		
					PFC_ST_01224	0.2 mL	Perfluorododecanesulfonic acid (PFDoS)	1936 ng/mL
					PFC_ST_01226	0.2 mL	Perfluorohexadecanoic acid	2000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

					Parent Reage	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Reagent Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					PFC ST 01227	0.2 mL	Perfluorooctanesulfonamide	2000 ng/mL
					PFC_ST_01228	0.2 mL	1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	1868 ng/mL
					PFC_ST_01229	0.2 mL	1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	1896 ng/mL
					PFC ST 01232		Perfluorobutanoic acid	2000 ng/mL
					PFC_ST_01233		Perfluoropentanoic acid	2000 ng/mL
					PFC_ST_01234		Perfluorodecanesulfonic acid	1928 ng/mL
					PFC_ST_01235		Perfluoroheptanesulfonic acid	1904 ng/mL
					PFC_ST_01236		Perfluorononanesulfonic acid	1920 ng/mL
					PFC_ST_01237		Perfluoropentanesulfonic acid	1876 ng/mL
PFC_ST_00747	11/13/25		gton Laboratories, Lot P		(Purchased Rea		Perfluorooctadecanoic acid	50000 ng/mL
PFC_ST_00971			on Laboratories, Lot NEt		(Purchased Rea	,	N-ethylperfluoro-1-octanesulfo namide	,
PFC_ST_00972	10/20/25		on Laboratories, Lot NMe		(Purchased Rea		NMeFOSA	50000 ng/mL
PFC_ST_00976	12/01/25	-	gton Laboratories, Lot 8		(Purchased Rea		1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	_
PFC_ST_00977	03/03/26		ton Laboratories, Lot 10		(Purchased Rea		1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	48200 ng/mL
PFC_ST_01073	06/02/26		on Laboratories, Lot NEt		(Purchased Rea	gent)	2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	50000 ng/mL
PFC_ST_01082		_	on Laboratories, Lot NMe		(Purchased Rea		2- (N-methylperfluoro-1-octanesul fonamido) ethanol	50000 ng/mL
PFC_ST_01224	02/16/23	_	ton Laboratories, Lot LE		(Purchased Rea		Perfluorododecanesulfonic acid (PFDoS)	48400 ng/mL
PFC_ST_01226	05/07/26		ton Laboratories, Lot PF		(Purchased Rea		Perfluorohexadecanoic acid	50000 ng/mL
PFC_ST_01227	08/10/26	Welling	gton Laboratories, Lot F	OSA0721I	(Purchased Rea		Perfluorooctanesulfonamide	50000 ng/mL
PFC_ST_01228	10/04/26		gton Laboratories, Lot 4		(Purchased Rea		1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	46700 ng/mL
PFC_ST_01229	06/09/26		gton Laboratories, Lot 6		(Purchased Rea		1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	47400 ng/mL
PFC_ST_01232	10/04/26		gton Laboratories, Lot F		(Purchased Rea		Perfluorobutanoic acid	50000 ng/mL
PFC ST 01233	08/10/26		gton Laboratories, Lot P		(Purchased Rea		Perfluoropentanoic acid	50000 ng/mL
PFC ST 01234	08/19/26	Welling	gton Laboratories, Lot L	PFDS0821	(Purchased Rea		Perfluorodecanesulfonic acid	48200 ng/mL
PFC_ST_01235	07/09/26	Welling	ton Laboratories, Lot LF	PFHpSU/21	(Purchased Rea	gent)	Perfluoroheptanesulfonic acid	47600 ng/mL
PFC ST 01236 PFC ST 01237	10/19/26 07/12/26		gton Laboratories, Lot L		(Purchased Rea		Perfluorononanesulfonic acid	48000 ng/mL
PFC_ST_01237 PFC IN 00700	12/09/22		ton Laboratories, Lot LE Methanol, Lot ED319-US		(Purchased Rea		Perfluoropentanesulfonic acid 3:3 FTCA	46900 ng/mL 2000 ppb
PFC_IN_00700	12/09/22	06/09/22	Methanol, Lot ED319-05	J IIIL	PFC_ST_01094 PFC_ST_01095		5:3 FTCA	2000 ppb 2000 ppb
					PFC ST 01096		7:3 FTCA	2000 ppb 2000 ppb
					PFC_SI_01096 PFC_ST_01097		6:2 FTCA	2000 ppb 2000 ppb
					PFC ST 01097		8:2 FTCA	2000 ppb
					PFC ST 01099		10:2 FTCA	2000 ppb
					PFC ST 01103		PFECA F	2000 ppb
					PFC ST 01104		PFECA A	2000 ppb
					PFC ST 01105		PFECA B	2000 ppb
					PFC_ST_01106	0.2 mL		1780 ppb
1	1	1	1	1		1	1	

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				D	Parent Reag	gent		
	Exp	Prep	Dilutant	Reagent Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
					PFC ST 01107	0.2 mL	PFECHS	1844 ppb
					PFC ST 01223	0.2 mL	PFPrS	1832 ppb
					PFC ST 01367	0.2 mL	6:2 FTUCA	2000 ppb
					PFC_ST_01368		8:2 FTUCA	2000 ppb
					PFC_ST_01369		10:2 FTUCA	2000 ppb
PFC_ST_01094	11/12/25	-	ton Laboratories, Lot F		(Purchased Rea		3:3 FTCA	50000 ng/mL
PFC_ST_01095	11/11/25		gton Laboratories, Lot F		(Purchased Rea		5:3 FTCA	50000 ng/mL
PFC_ST_01096	11/12/25		ston Laboratories, Lot Fl		(Purchased Rea		7:3 FTCA	50000 ng/mL
PFC_ST_01097	03/08/24		gton Laboratories, Lot F		(Purchased Rea		6:2 FTCA	50000 ng/mL
PFC_ST_01098	08/18/24		gton Laboratories, Lot F		(Purchased Rea		8:2 FTCA	50000 ng/mL
PFC_ST_01099	07/07/23		gton Laboratories, Lot F		(Purchased Rea		10:2 FTCA	50000 ng/mL
PFC_ST_01103	03/31/25		on Laboratories, Lot PF		(Purchased Rea		PFECA F	50000 ng/mL
PFC_ST_01104	03/31/25		on Laboratories, Lot PF		(Purchased Rea		PFECA A	50000 ng/mL
PFC_ST_01105	03/31/25		on Laboratories, Lot 360		(Purchased Rea	-	PFECA B	50000 ng/mL
PFC_ST_01106	05/13/25		ton Laboratories, Lot PF		(Purchased Rea	-	PES	44500 ppb
PFC_ST_01107	04/06/26		ton Laboratoires, Lot PF		(Purchased Rea	-	PFECHS	46100 ppb
PFC_ST_01223	07/12/26		ton Laboratories, Lot LF		(Purchased Rea		PFPrS	45800 ppb
PFC_ST_01367	09/03/23		ton Laboratories, Lot F		(Purchased Rea	-	6:2 FTUCA	50000 ng/mL
PFC_ST_01368	03/29/23	_	ton Laboratories, Lot F		(Purchased Rea	-	8:2 FTUCA	50000 ng/mL
PFC_ST_01369	03/29/23		ton Laboratories, Lot F		(Purchased Rea	-	10:2 FTUCA	50000 ng/mL
PFC_ST_01549	06/01/24	Wellingt	on Laboratories, Lot 537	PDSR10521	(Purchased Rea	agent)	11Cl-PF3OUdS	1860 ng/mL
							9Cl-PF3ONS	1860 ng/mL
							DONA	1890 ng/mL
							HFPODA	2000 ng/mL
							NETFOSAA	2000 ng/mL
							NMeFOSAA	2000 ng/mL
							Perfluorobutanesulfonic acid	1770 ng/mL
							Perfluorodecanoic acid	2000 ng/mL
							Perfluorododecanoic acid	2000 ng/mL
							Perfluoroheptanoic acid	2000 ng/mL
							Perfluorohexanesulfonic acid	1824 ng/mL
							Perfluorohexanoic acid	2000 ng/mL
							Perfluorononanoic acid	2000 ng/mL
							Perfluorooctanesulfonic acid	1851 ng/mL
							Perfluorooctanoic acid	2000 ng/mL
							Perfluorotetradecanoic acid	2000 ng/mL
							Perfluorotridecanoic acid	2000 ng/mL
	0.1 /1.0 /2.2						Perfluoroundecanoic acid	2000 ng/mL
.PFC_ST_01219	01/13/26	Wellingt	on Laboratories, Lot MPF	'ACCESU121	(Purchased Rea	agent)	13C2 PFTeDA	2000 ppb
							13C2-PFDoDA	2000 ppb
							13C3 PFBS	1860 ppb
							13C3 PFHxS	1892 ppb
							13C4 PFBA	2000 ppb
							13C4 PFHpA	2000 ppb
							13C5 PFHxA	2000 ppb
							13C5 PFPeA	2000 ppb
							13C6 PFDA	2000 ppb
1	1	I .			1		13C7 PFUnA	2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	rent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							13C8 PFOA	2000 ppb
							13C8 PFOS	1912 ppb
							13C9 PFNA	2000 ppb
.PFC_ST_01249	04/26/26	Wellingt	on Laboratories, Lot ME	FACCIS0516	(Purchased Rea	agent)	13C2 PFDA	2000 ng/mI
							13C2 PFOA	2000 ng/mL
							13C3-PFBA	2000 ng/mL
							13C4 PFOS	1913 ng/mL
PFC STD XMOD2 00016	09/10/22	06/10/22	Methanol, Lot ED663-US	10 mL	PFC IN 00701	0.05 mL	d5-NEtPFOSA	10 ppb
							13C3 HFPO-DA	10 ppb
							M2-8:2 FTS	9.58 ppb
							M2-6:2 FTS	9.5 ppb
							d3-NMePFOSA	10 ppb
							13C-6:2 FTCA	10 ppb
							13C-10:2 FTCA	10 ppb
							13C-8:2 FTCA	10 ppb
							d3-NMeFOSAA	10 ppb
							d5-NEtFOSAA	10 ppb
							d7-N-MeFOSE-M	10 ppb
							d9-N-EtFOSE-M	10 ppb
							13C8 FOSA	10 ppb
							M2-4:2 FTS	9.34 ppb
							13C-6:2 FTUCA	10 ppb
							13C-8:2 FTUCA	10 ppb
							13C-10:2 FTUCA	10 ppb
					PFC_IN_00703	0.25 mL	PFECA G	0.5 ppb
							PPF Acid	0.5 ppb
							MTP	0.5 ppb
							PFMOAA	0.5 ppb
							R-EVE	0.5 ppb
							R-PSDA	0.5 ppb
							Hydrolyzed PSDA	0.5 ppb
							PFO2HxA	0.5 ppb
							NVHOS	0.5 ppb
							PFO3OA	0.5 ppb
							PFO4DA	0.5 ppb
							Hydro-EVE Acid	0.5 ppb
							EVE Acid	0.5 ppb
							R-PSDCA	0.5 ppb
							Hydro-PS Acid	0.5 ppb
							PS Acid	0.5 ppb
							TAF	0.5 ppb
							PMPA	0.5 ppb
					DEC IN 00705	0.25	PEPA	0.5 ppb
					PFC_IN_00705	0.25 mL	Perfluorooctadecanoic acid	0.5 ppb
							N-ethylperfluoro-1-octanesulfo namide	0.5 ppb
							NMeFOSA	0.5 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							1H, 1H, 2H, 2H-perfluorodecanesul fonic acid (8:2)	
							1H, 1H, 2H, 2H-perfluorododecanes ulfonic acid (10:2)	0.482 ppk
							2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	0.5 ppk
							2- (N-methylperfluoro-1-octanesul fonamido) ethanol	0.5 ppk
							Perfluorododecanesulfonic acid (PFDoS)	
							Perfluorohexadecanoic acid	0.5 ppk
							Perfluorooctanesulfonamide	0.5 pph
							1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	
							1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	
							Perfluorobutanoic acid	0.5 ppk
							Perfluoropentanoic acid	0.5 ppk
							Perfluorodecanesulfonic acid	0.482 pph
							Perfluoroheptanesulfonic acid	0.476 ppk
							Perfluorononanesulfonic acid	0.48 ppk
							Perfluoropentanesulfonic acid	0.469 ppk
							3:3 FTCA	0.5 ppk
							5:3 FTCA	0.5 ppk
							7:3 FTCA	0.5 ppk
							6:2 FTCA	0.5 ppk
							8:2 FTCA	0.5 ppk
							10:2 FTCA PFECA F	0.5 ppk
							PFECA A	0.5 ppk 0.5 ppk
							PFECA B	0.5 ppk
							PES	0.445 ppk
							PFECHS	0.461 ppk
							PFPrS	0.458 ppk
							6:2 FTUCA	0.5 ppk
							8:2 FTUCA	0.5 ppk
							10:2 FTUCA	0.5 ppk
							11Cl-PF3OUdS	0.465 ppk
							9C1-PF3ONS	0.465 ppk
							DONA	0.4725 ppk
							HFPODA	0.5 ppk
							NETFOSAA	0.5 ppk
							NMeFOSAA	0.5 ppk
							Perfluorobutanesulfonic acid	0.4425 ppk
							Perfluorodecanoic acid	0.5 ppk
							Perfluorododecanoic acid	0.5 ppk
ı							Perfluoroheptanoic acid	0.5 ppk

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Read	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Perfluorohexanesulfonic acid	0.456 ppb
							Perfluorohexanoic acid	0.5 ppb
							Perfluorononanoic acid	0.5 ppb
							Perfluorooctanesulfonic acid	0.46275 ppb
							Perfluorooctanoic acid	0.5 ppb
							Perfluorotetradecanoic acid	0.5 ppb
							Perfluorotridecanoic acid	0.5 ppb
							Perfluoroundecanoic acid	0.5 ppb
					PFC ST 01219	0 05 mT	13C2 PFTeDA	10 ppb
					110_51_01219	0.05 1111	13C2-PFDoDA	10 ppb
							13C3 PFBS	
							13C3 PFHxS	9.3 ppb 9.46 ppb
							13C4 PFBA	9.46 ppb
							13C4 PFBA 13C4 PFHpA	10 ppb
							13C4 PFHPA 13C5 PFHxA	10 ppb
								10 ppb
							13C5 PFPeA	10 ppb
							13C6 PFDA	10 ppb
							13C7 PFUnA	10 ppb
							13C8 PFOA	10 ppb
							13C8 PFOS	9.56 ppb
							13C9 PFNA	10 ppb
					PFC_ST_01249	0.025 mL	13C2 PFDA	5 ppb
							13C2 PFOA	5 ppb
							13C3-PFBA	5 ppb
							13C4 PFOS	4.7825 ppb
.PFC_IN_00701	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mL	PFC_ST_00981		d5-NEtPFOSA	2000 ppb
					PFC_ST_00984		13C3 HFPO-DA	2000 ppb
					PFC_ST_00985		M2-8:2 FTS	1916 ppb
					PFC_ST_00986		M2-6:2 FTS	1900 ppb
					PFC_ST_01081		d3-NMePFOSA	2000 ppb
					PFC_ST_01108		13C-6:2 FTCA	2000 ppb
					PFC_ST_01109		13C-10:2 FTCA	2000 ppb
					PFC_ST_01113		13C-8:2 FTCA	2000 ppb
					PFC_ST_01215	0.2 mL	d3-NMeFOSAA	2000 ppb
					PFC_ST_01216	0.2 mL	d5-NEtFOSAA	2000 ppb
					PFC ST 01293	0.2 mL	d7-N-MeFOSE-M	2000 ppb
					PFC ST 01295	0.2 mL	d9-N-EtFOSE-M	2000 ppb
					PFC ST 01411	0.2 mL	13C8 FOSA	2000 ppb
					PFC ST 01412	0.2 mL	M2-4:2 FTS	1868 ppb
					PFC ST 01467	0.2 mL	13C-6:2 FTUCA	2000 ppb
					PFC ST 01468	0.2 mL	13C-8:2 FTUCA	2000 ppb
					PFC ST 01469	0.2 mL	13C-10:2 FTUCA	2000 ppb
PFC_ST_00981	11/23/25	W∈	ellington Laboratories, I dNEtFOSA1120M	ot	(Purchased Re		d5-NEtPFOSA	50000 ng/mL
PFC ST 00984	05/13/24	Wellingt	on Laboratories, Lot M3H	FPODA0521	(Purchased Re	agent)	13C3 HFPO-DA	50000 ng/mL
PFC ST 00985	12/17/25		on Laboratories, Lot M28		(Purchased Re		M2-8:2 FTS	47900 ng/mL
PFC ST 00986	05/14/26		on Laboratories, Lot M26		(Purchased Re		M2-6:2 FTS	47500 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reage	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
PFC_ST_01081	04/04/23	We	llington Laboratories,	Lot	(Purchased Rea	gent)	d3-NMePFOSA	50000 ng/mL
PFC ST 01108	04/04/23	Welling	ton Laboratories, Lot	MFHEA0421	(Purchased Rea	gent)	13C-6:2 FTCA	50000 ppb
PFC ST 01109	04/04/23	Welling	ton Laboratories, Lot	MFDEA0817	(Purchased Rea	gent)	13C-10:2 FTCA	50000 ppb
PFC ST 01113	04/04/23		ton Laboratories, Lot		(Purchased Rea		13C-8:2 FTCA	50000 ppb
PFC_ST_01215	04/04/23	We	llington Laboratories, d3NMeFOSAA0521	Lot	(Purchased Rea	gent)	d3-NMeFOSAA	50000 ng/mL
PFC_ST_01216	04/04/23		llington Laboratories, d5NEtFOSAA0921		(Purchased Rea	gent)	d5-NEtFOSAA	50000 ng/mL
PFC_ST_01293	02/10/23		llington Laboratories, d7NMeFOSE1220M		(Purchased Rea		d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01295	02/10/23	We	llington Laboratories, d9NEtFOSE1220M	Lot	(Purchased Rea	gent)	d9-N-EtFOSE-M	50000 ng/mL
PFC_ST_01411	10/12/26		on Laboratories, Lot M		(Purchased Rea		13C8 FOSA	50000 ng/mL
PFC_ST_01412	10/13/26		n Laboratories, Lot M2		(Purchased Rea		M2-4:2 FTS	46700 ng/mL
PFC_ST_01467	03/22/23	Wellingt	on Laboratories, Lot N	MFHUEA0322	(Purchased Rea	gent)	13C-6:2 FTUCA	50000 ppb
PFC_ST_01468	03/22/23		on Laboratories, Lot N		(Purchased Rea		13C-8:2 FTUCA	50000 ppb
PFC_ST_01469	03/22/23		on Laboratories, Lot M		(Purchased Rea		13C-10:2 FTUCA	50000 ppb
.PFC_IN_00703	10/13/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC_IN_00702	0.05 mI	PFECA G	20 ppb
							PPF Acid	20 ppb
							MTP	20 ppb
							PFMOAA	20 ppb
							R-EVE	20 ppb
							R-PSDA	20 ppb
							Hydrolyzed PSDA	20 ppb
							PFO2HxA	20 ppb
							NVHOS	20 ppb
							PF030A	20 ppb
							PFO4DA	20 ppb
							Hydro-EVE Acid	20 ppb
							EVE Acid	20 ppb
							R-PSDCA	20 ppb
							Hydro-PS Acid	20 ppb
							PS Acid TAF	20 ppb
							PMPA	20 ppb
							PEPA	20 ppb 20 ppb
PFC IN 00702	10/13/22	06/10/22	Methanol, Lot ED663-US	5 E mT	PFC IN 00698	1T	PEPA PFECA G	20 ppb 2000 ppb
PFC_IN_00/02	10/13/22	06/10/22	Methanoi, Lot ED003-03) J IIIT	PFC_IN_00096	1 1111	PPF Acid	2000 ppb 2000 ppb
							MTP	2000 ppb
							PFMOAA	2000 ppb 2000 ppb
							R-EVE	2000 ppb 2000 ppb
							R-PSDA	2000 ppb
							Hydrolyzed PSDA	2000 ppb 2000 ppb
							PFO2HxA	2000 ppb 2000 ppb
							NVHOS	2000 ppb
							PFO3OA	2000 ppb
							PFO4DA	2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Read	gent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Hydro-EVE Acid	2000 ppb
							EVE Acid	2000 ppb
							R-PSDCA	2000 ppb
							Hydro-PS Acid	2000 ppb
							PS Acid	2000 ppb
							TAF	2000 ppb
							PMPA	2000 ppb
							PEPA	2000 ppb
PFC_IN_00698	10/13/22	06/09/22	Methanol, Lot ED319-US	10 mL	PFC ST 00199	0.1 mL	PFECA G	10000 ppb
- -			·		PFC ST 00329	0.1 mL	PPF Acid	10000 ppb
					PFC ST 00332	0.1 mL	MTP	10000 ppb
					PFC ST 01117	0.1 mL	PFMOAA	10000 ppb
					PFC ST 01118	0.1 mL	R-EVE	10000 ppb
					PFC ST 01119	0.1 mL		10000 ppb
					PFC ST 01120		Hydrolyzed PSDA	10000 ppb
					PFC ST 01121		PFO2HxA	10000 ppb
					PFC ST 01122	0.1 mL		10000 ppb
					PFC ST 01124	0.1 mL		10000 ppb
					PFC ST 01127	0.1 mL		10000 ppb
					PFC ST 01128		Hydro-EVE Acid	10000 ppb
					PFC ST 01129		EVE Acid	10000 ppb
					PFC ST 01130		R-PSDCA	10000 ppb
					PFC ST 01131		Hydro-PS Acid	10000 ppb
					PFC ST 01132		PS Acid	10000 ppb
					PFC ST 01133	0.1 mL		10000 ppb
					PFC ST 01134	0.1 mL		10000 ppb
					PFC ST 01135	0.1 mL		10000 ppb
PFC ST 00199	02/26/23		Chemours, Lot N/A		(Purchased Re		PFECA G	100000 pps
PFC ST 00329	02/26/23		Chemours, Lot N/A		(Purchased Re		PPF Acid	1000000 ug/L
PFC ST 00332	02/26/23		Chemours, Lot N/A		(Purchased Re		MTP	1000000 ug/L
PFC ST 01117	10/13/22		Chemours, Lot N/A		(Purchased Re		PFMOAA	1000000 ug/L
PFC ST 01117	10/13/22		Chemours, Lot N/A		(Purchased Re		R-EVE	1000000 ug/L
PFC_ST_01110	10/13/22		Chemours, Lot N/A		(Purchased Re		R-PSDA	1000000 ug/L
PFC_SI_01119	10/13/22		Chemours, Lot N/A		(Purchased Re		Hydrolyzed PSDA	1000000 ug/L
PFC_SI_01120	10/13/22		Chemours, Lot N/A		(Purchased Re		PFO2HxA	1000000 ug/L
PFC_SI_01121	10/13/22		Chemours, Lot N/A		(Purchased Re		NVHOS	1000000 ug/L
PFC_SI_01122	10/13/22		Chemours, Lot N/A		(Purchased Re		PFO3OA	1000000 ug/L
PFC_ST_01124	10/13/22		Chemours, Lot N/A		(Purchased Re		PFO4DA	1000000 ug/L
PFC_SI_01127	10/13/22		Chemours, Lot N/A		(Purchased Re		Hydro-EVE Acid	1000000 ug/L
PFC_SI_U1126	10/13/22		Chemours, Lot N/A		(Purchased Re		EVE Acid	1000000 ug/L
PFC_SI_01129	10/13/22		Chemours, Lot N/A		(Purchased Re		R-PSDCA	1000000 ug/L
PFC_SI_01130	10/13/22		Chemours, Lot N/A		(Purchased Re		Hydro-PS Acid	1000000 ug/L
PFC_ST_01131	10/13/22		Chemours, Lot N/A		(Purchased Re		PS Acid	1000000 ug/L
PFC_ST_01132	10/13/22		Chemours, Lot N/A				TAF	1000000 ug/L
PFC_ST_01133	10/13/22		Chemours, Lot N/A		(Purchased Re		PMPA	
	10/13/22				(Purchased Re (Purchased Re		PEPA	1000000 ug/L
PFC_ST_01135 .PFC IN 00705		06/10/00	Chemours, Lot N/A Methanol, Lot ED663-US	F	PFC IN 00704	2 '	Perfluorooctadecanoic aci	1000000 ug/L .d 20 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

			Parent Reage	Reagent				
Concentratio	Analyte	Volume Added	Reagent ID	Final Volume	Dilutant Used	Prep Date	Exp Date	Reagent ID
20 ng/m	N-ethylperfluoro-1-octanesulfo namide							
20 ng/m	NMeFOSA							
19.16 ng/m	1H, 1H, 2H, 2H-perfluorodecanesul							
19.10 Hg/III	fonic acid (8:2)							
19.28 ng/m	1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)							
20 ng/m	2-							
20 119/111	(N-ethylperfluoro-1-octanesulf onamido) ethanol							
20 ng/m	2-							
,	(N-methylperfluoro-1-octanesul fonamido) ethanol							
19.36 ng/m	Perfluorododecanesulfonic acid (PFDoS)							
20 ng/m	Perfluorohexadecanoic acid							
20 ng/m	Perfluorooctanesulfonamide							
18.68 ng/m	1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)							
18.96 ng/m	1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)							
20 ng/m	Perfluorobutanoic acid							
20 ng/m	Perfluoropentanoic acid							
19.28 ng/m	Perfluorodecanesulfonic acid							
19.04 ng/m	Perfluoroheptanesulfonic acid							
19.2 ng/m	Perfluorononanesulfonic acid							
18.76 ng/m	Perfluoropentanesulfonic acid							
20 ng/m	3:3 FTCA							
20 ng/m	5:3 FTCA							
20 ng/m	7:3 FTCA							
20 ng/m	6:2 FTCA							
20 ng/m	8:2 FTCA							
20 ng/m	10:2 FTCA							
20 ng/m	PFECA F							
20 ng/m	PFECA A							
20 ng/m	PFECA B							
17.8 ng/m	PES							
18.44 ng/m	PFECHS							
18.32 ng/m	PFPrS							
20 ng/m	6:2 FTUCA							
20 ng/m	8:2 FTUCA							
20 ng/m	10:2 FTUCA							
18.6 ng/m	11Cl-PF3OUdS							
18.6 ng/m	9C1-PF3ONS							
18.9 ng/m	DONA							
20 ng/m	HFPODA							
20 ng/m	NETFOSAA							
	NMEFOSAA							
20 ng/m	Perfluorobutanesulfonic acid							

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	rent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Perfluorodecanoic acid	20 ng/mL
							Perfluorododecanoic acid	20 ng/mL
							Perfluoroheptanoic acid	20 ng/mL
							Perfluorohexanesulfonic acid	18.24 ng/mL
							Perfluorohexanoic acid	20 ng/mL
							Perfluorononanoic acid	20 ng/mL
							Perfluorooctanesulfonic acid	18.51 ng/mL
							Perfluorooctanoic acid	20 ng/mL
							Perfluorotetradecanoic acid	20 ng/mL
							Perfluorotridecanoic acid	20 ng/mL
							Perfluoroundecanoic acid	20 ng/mL
PFC IN 00704	12/09/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC IN 00699	1.25 mL	Perfluorooctadecanoic acid	500 ng/mL
							N-ethylperfluoro-1-octanesulfo	
							namide	
							NMeFOSA	500 ng/mL
	1H, 1H, 2H-perfluorodecanesul fonic acid (8:2) 1H, 1H, 2H-perfluorododecanes ulfonic acid (10:2) 2- (N-ethylperfluoro-1-octanesulf	fonic acid (8:2)	_					
		_						
		(N-ethylperfluoro-1-octanesulf onamido) ethanol						
							2- (N-methylperfluoro-1-octanesul fonamido) ethanol	
							Perfluorododecanesulfonic acid (PFDoS)	484 ng/mL
							Perfluorohexadecanoic acid	500 ng/mL
							Perfluorooctanesulfonamide	500 ng/mL
							1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	467 ng/mL
							1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	474 ng/mL
							Perfluorobutanoic acid	500 ng/mL
							Perfluoropentanoic acid	500 ng/mL
							Perfluorodecanesulfonic acid	482 ng/mL
							Perfluoroheptanesulfonic acid	476 ng/mL
		1					Perfluorononanesulfonic acid	480 ng/mL
							Perfluoropentanesulfonic acid	469 ng/mL
					PFC_IN_00700	1.25 mL	3:3 FTCA	500 ng/mL
							5:3 FTCA	500 ng/mL
							7:3 FTCA	500 ng/mL
							6:2 FTCA	500 ng/mL
							8:2 FTCA	500 ng/mL
							10:2 FTCA	500 ng/mL
							PFECA F	500 ng/mL
							PFECA A	500 ng/mL
							PFECA B	500 ng/mL
		1					PES	445 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							PFECHS	461 ng/mL
							PFPrS	458 ng/mL
							6:2 FTUCA	500 ng/mL
							8:2 FTUCA	500 ng/mL
							10:2 FTUCA	500 ng/mL
					PFC ST 01549	1.25 mL	11Cl-PF3OUdS	465 ng/mL
							9C1-PF3ONS	465 ng/mL
							DONA	472.5 ng/mL
							HFPODA	500 ng/mL
							NETFOSAA	500 ng/mL
							NMeFOSAA	500 ng/mL
							Perfluorobutanesulfonic acid	442.5 ng/mL
							Perfluorodecanoic acid	500 ng/mL
							Perfluorododecanoic acid	500 ng/mL
							Perfluoroheptanoic acid	500 ng/mL
							Perfluorohexanesulfonic acid	456 ng/mL
							Perfluorohexanoic acid	500 ng/mL
							Perfluorononanoic acid	500 ng/mL
							Perfluorooctanesulfonic acid	462.75 ng/mL
							Perfluorooctanoic acid	500 ng/mL
							Perfluorotetradecanoic acid	500 ng/mL
							Perfluorotridecanoic acid	500 ng/mL
							Perfluoroundecanoic acid	500 ng/mL
PFC IN 00699	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mL	PFC ST 00747	0.2 mL	Perfluorooctadecanoic acid	2000 ng/mL
			,		PFC_ST_00971		N-ethylperfluoro-1-octanesulfo namide	2000 ng/mL
					PFC ST 00972	0.2 mL	NMeFOSA	2000 ng/mL
					PFC_ST_00976	0.2 mL	1H, 1H, 2H, 2H-perfluorodecanesul fonic acid (8:2)	1916 ng/mL
					PFC_ST_00977	0.2 mL	1H, 1H, 2H, 2H-perfluorododecanes ulfonic acid (10:2)	1928 ng/mL
					PFC_ST_01073	0.2 mL		2000 ng/mL
					PFC_ST_01082	0.2 mL		2000 ng/mL
					PFC_ST_01224	0.2 mL	Perfluorododecanesulfonic acid (PFDoS)	1936 ng/mL
					PFC ST 01226	0.2 mL	Perfluorohexadecanoic acid	2000 ng/mL
					PFC ST 01227		Perfluorooctanesulfonamide	2000 ng/mL
					PFC_ST_01228		1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	1868 ng/mL
			PFC_ST_01229	0.2 mL	1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	1896 ng/mL		
					PFC ST 01232	0.2 mL	Perfluorobutanoic acid	2000 ng/mL
					PFC ST 01233		Perfluoropentanoic acid	2000 ng/mL
					PFC ST 01234		Perfluorodecanesulfonic acid	1928 ng/mL
					PFC ST 01235		Perfluoroheptanesulfonic acid	1904 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reage	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					PFC_ST_01236		Perfluorononanesulfonic acid	1920 ng/mL
					PFC_ST_01237		Perfluoropentanesulfonic acid	1876 ng/mL
PFC_ST_00747	11/13/25		ton Laboratories, Lot		(Purchased Rea		Perfluorooctadecanoic acid	50000 ng/mL
PFC_ST_00971	11/23/25	_	on Laboratories, Lot N		(Purchased Rea		N-ethylperfluoro-1-octanesulfo namide	50000 ng/mL
PFC_ST_00972	10/20/25		on Laboratories, Lot N		(Purchased Rea		NMeFOSA	50000 ng/mL
PFC_ST_00976	12/01/25	_	ton Laboratories, Lot		(Purchased Rea		1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	47900 ng/mL
PFC_ST_00977	03/03/26	Welling	ton Laboratories, Lot	102FTS0221	(Purchased Rea	gent)	1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	48200 ng/mL
PFC_ST_01073	06/02/26	-	on Laboratories, Lot N		(Purchased Rea	gent)	2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	50000 ng/mL
PFC_ST_01082	06/02/26	_	on Laboratories, Lot N		(Purchased Rea		2- (N-methylperfluoro-1-octanesul fonamido) ethanol	50000 ng/mL
PFC_ST_01224	02/16/23	_	ton Laboratories, Lot		(Purchased Rea	gent)	Perfluorododecanesulfonic acid (PFDoS)	48400 ng/mL
PFC ST 01226	05/07/26	Welling	ton Laboratories, Lot	PFHxDA0421	(Purchased Rea		Perfluorohexadecanoic acid	50000 ng/mL
PFC ST 01227	08/10/26		ton Laboratories, Lot		(Purchased Rea		Perfluorooctanesulfonamide	50000 ng/mL
PFC_ST_01228	10/04/26	Welling	ton Laboratories, Lot	42FTS0921	(Purchased Rea		1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	46700 ng/mL
PFC_ST_01229	06/09/26	Welling	ton Laboratories, Lot	62FTS0521	(Purchased Rea	gent)	1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	47400 ng/mL
PFC_ST_01232	10/04/26		gton Laboratories, Lot		(Purchased Rea	gent)	Perfluorobutanoic acid	50000 ng/mL
PFC_ST_01233	08/10/26		ton Laboratories, Lot		(Purchased Rea		Perfluoropentanoic acid	50000 ng/mL
PFC_ST_01234	08/19/26		ton Laboratories, Lot		(Purchased Rea		Perfluorodecanesulfonic acid	48200 ng/mL
PFC_ST_01235	07/09/26		ton Laboratories, Lot		(Purchased Rea		Perfluoroheptanesulfonic acid	47600 ng/mL
PFC_ST_01236	10/19/26		ton Laboratories, Lot		(Purchased Rea		Perfluorononanesulfonic acid	48000 ng/mL
PFC_ST_01237	07/12/26		ton Laboratories, Lot		(Purchased Rea		Perfluoropentanesulfonic acid	46900 ng/mL
PFC_IN_00700	12/09/22	06/09/22	Methanol, Lot ED319-U	IS 5 mL	PFC_ST_01094		3:3 FTCA	2000 ppb
					PFC_ST_01095		5:3 FTCA	2000 ppb
					PFC_ST_01096		7:3 FTCA	2000 ppb
					PFC_ST_01097		6:2 FTCA	2000 ppb
					PFC_ST_01098		8:2 FTCA	2000 ppb
					PFC_ST_01099 PFC_ST_01103		10:2 FTCA PFECA F	2000 ppb
					PFC_SI_01103 PFC ST 01104		PFECA A	2000 ppb 2000 ppb
					PFC ST 01105		PFECA B	2000 ppb
					PFC ST 01106	0.2 mL		1780 ppb
					PFC ST 01107		PFECHS	1844 ppb
					PFC ST 01223	0.2 mL		1832 ppb
					PFC ST 01367		6:2 FTUCA	2000 ppb
					PFC ST 01368		8:2 FTUCA	2000 ppb
					PFC ST 01369		10:2 FTUCA	2000 ppb
PFC ST 01094	11/12/25	Welling	ton Laboratories, Lot	FPrPA1020	(Purchased Rea		3:3 FTCA	50000 ng/mL
PFC ST 01095	11/11/25		ton Laboratories, Lot		(Purchased Rea		5:3 FTCA	50000 ng/mL
PFC ST 01096	11/12/25	Welling	ton Laboratories, Lot	FHpPA1020	(Purchased Rea	gent)	7:3 FTCA	50000 ng/mL
PFC ST 01097	03/08/24	Wellin	gton Laboratories, Lot	FHEA0321	(Purchased Rea	gent)	6:2 FTCA	50000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

			Reagent	Parent Reagen	t		
Reagent ID	Exp Prep Date Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
PFC ST 01098	08/18/24 Welli	ngton Laboratories, Lot	FOEA0821	(Purchased Reage	nt)	8:2 FTCA	50000 ng/mL
PFC ST 01099	07/07/23 Welli	ngton Laboratories, Lot	FDEA0720	(Purchased Reage	nt)	10:2 FTCA	50000 ng/mL
PFC ST 01103	03/31/25 Welling	ton Laboratories, Lot F	F40PeA0320	(Purchased Reage	nt)	PFECA F	50000 ng/mL
PFC ST 01104	03/31/25 Welling	ton Laboratories, Lot F	F50HxA0320	(Purchased Reage	nt)	PFECA A	50000 ng/mL
PFC ST 01105	03/31/25 Welling	ton Laboratories, Lot 3	60PFHpA0320	(Purchased Reage	nt)	PFECA B	50000 ng/mL
PFC ST 01106	05/13/25 Wellin	gton Laboratories, Lot	PFEESA0520	(Purchased Reage	nt)	PES	44500 ppb
PFC ST 01107		gton Laboratoires, Lot		(Purchased Reage		PFECHS	46100 ppb
PFC ST 01223	07/12/26 Wellin	gton Laboratories, Lot	LPFPrS0721	(Purchased Reage	nt)	PFPrS	45800 ppb
PFC ST 01367	09/03/23 Wellir	gton Laboratories, Lot	FHUEA0921	(Purchased Reage	nt)	6:2 FTUCA	50000 ng/mL
PFC ST 01368		gton Laboratories, Lot		(Purchased Reage		8:2 FTUCA	50000 ng/mL
PFC ST 01369	03/29/23 Wellir	gton Laboratories, Lot	FDUEA1021	(Purchased Reage		10:2 FTUCA	50000 ng/mL
PFC ST 01549		ton Laboratories, Lot 5		(Purchased Reage		11Cl-PF3OUdS	1860 ng/mL
		,		,	•	9C1-PF3ONS	1860 ng/mL
						DONA	1890 ng/mL
						HFPODA	2000 ng/mL
						NETFOSAA	2000 ng/mL
						NMeFOSAA	2000 ng/mL
						Perfluorobutanesulfonic acid	1770 ng/mL
						Perfluorodecanoic acid	2000 ng/mL
						Perfluorododecanoic acid	2000 ng/mL
						Perfluoroheptanoic acid	2000 ng/mL
						Perfluorohexanesulfonic acid	1824 ng/mL
						Perfluorohexanoic acid	2000 ng/mL
						Perfluorononanoic acid	2000 ng/mL
						Perfluorooctanesulfonic acid	1851 ng/mL
						Perfluorooctanoic acid	2000 ng/mL
						Perfluorotetradecanoic acid	2000 ng/mL
						Perfluorotridecanoic acid	2000 ng/mL
						Perfluoroundecanoic acid	2000 ng/mL
.PFC ST 01219	01/13/26 Welling	ton Laboratories, Lot M	DEXCCEQUI21	(Purchased Reage	n+1	13C2 PFTeDA	2000 ng/mil
.116_51_01219	01/13/20 Welling	con Laboracorres, Loc M.	TRCCESUIZI	(rurchased Keage	:11 C)	13C2-PFDoDA	2000 ppb
						13C3 PFBS	1860 ppb
						13C3 PFHxS	1892 ppb
						13C4 PFBA	2000 ppb
						13C4 FFBA	2000 ppb 2000 ppb
						13C5 PFHxA	2000 ppb 2000 ppb
						13C5 PFRAA	
						13C6 PFDA	2000 ppb
						13C7 PFUNA	2000 ppb
						13C7 PFUNA 13C8 PFOA	2000 ppb
						13C8 PFOA 13C8 PFOS	2000 ppb
							1912 ppb
DEC 0E 01240	04/26/26 Mallin	tan Talanataniaa Tel M	DEACCT COE1C	(December and December)		13C9 PFNA	2000 ppb
.PFC_ST_01249	04/26/26 Welling	ton Laboratories, Lot M	PFACCISUSI6	(Purchased Reage	:I1 L)	13C2 PFDA	2000 ng/mL
						13C2 PFOA	2000 ng/mL
						13C3-PFBA	2000 ng/mL
						13C4 PFOS	1913 ng/mL
PFC_STD_XMOD3_00018	09/10/22 06/10/22	Methanol, Lot ED663-U	S 10 mL P	FC_IN_00701	0.05 mL	d5-NEtPFOSA	10 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

		ent	Parent Reag	Reagent				
Concentration	Analyte C	Volume Added	Reagent ID	Final Volume	Dilutant Used	Prep Date	Exp Date	Reagent ID
10 pp	13C3 HFPO-DA							
9.58 pp	M2-8:2 FTS							
9.5 pp	M2-6:2 FTS							
10 pp	d3-NMePFOSA							
10 pp	13C-6:2 FTCA							
10 pp	13C-10:2 FTCA							
10 pp	13C-8:2 FTCA							
10 pp	d3-NMeFOSAA							
10 pp	d5-NEtFOSAA							
10 pp	d7-N-MeFOSE-M							
10 pp	d9-N-EtFOSE-M							
10 pp	13C8 FOSA							
9.34 pp	M2-4:2 FTS							
10 pp	13C-6:2 FTUCA							
10 pp	13C-8:2 FTUCA							
10 pp	13C-10:2 FTUCA							
2 pp	PFECA G	1 mT.	PFC IN 00703					
2 pr	PPF Acid	1 1112	110_111_00703					
2 pp	MTP							
2 pr	PFMOAA							
2 pp	R-EVE							
2 pr	R-PSDA							
2 pr	Hydrolyzed PSDA							
2 pr	PFO2HxA							
2 pp	NVHOS							
2 pr	PF030A							
2 pp	PFO4DA							
2 pr	Hydro-EVE Acid							
2 pp	EVE Acid							
2 pr	R-PSDCA							
2 pr	Hydro-PS Acid							
2 pr	PS Acid							
2 pr	TAF							
2 pr	PMPA							
2 pp	PEPA							
2 pr	Perfluorooctadecanoic acid	1 mL	PFC IN 00705					
	N-ethylperfluoro-1-octanesulfo	1 1112	110_111_00703					
19 2	namide							
2 pg	NMeFOSA							
	1H, 1H, 2H, 2H-perfluorodecanesul							
1.310 PF	fonic acid (8:2)							
1.928 pp	1H, 1H, 2H, 2H-perfluorododecanes ulfonic acid (10:2)							
2 pp	2-							
	(N-ethylperfluoro-1-octanesulf onamido) ethanol							
2 pp	2-							
	(N-methylperfluoro-1-octanesul fonamido) ethanol							

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				B	Parent Reag	gent		
	Exp	Prep	Dilutant	Reagent Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							Perfluorododecanesulfonic acid	1.936 ppb
							(PFDoS)	
							Perfluorohexadecanoic acid	2 ppb
							Perfluorooctanesulfonamide	2 ppb
							1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	1.868 ppb
							1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	1.896 ppb
							Perfluorobutanoic acid	2 ppb
							Perfluoropentanoic acid	2 ppb
							Perfluorodecanesulfonic acid	1.928 ppb
							Perfluoroheptanesulfonic acid	1.904 ppb
							Perfluorononanesulfonic acid	1.92 ppb
							Perfluoropentanesulfonic acid	1.876 ppb
							3:3 FTCA	2 ppb
							5:3 FTCA	2 ppb
							7:3 FTCA	2 ppb
							6:2 FTCA	2 ppb
							8:2 FTCA	2 ppb
							10:2 FTCA	2 ppb
							PFECA F	2 ppb
							PFECA A	2 ppb
							PFECA B	2 ppb
							PES	1.78 ppb
							PFECHS	1.844 ppb
							PFPrS	1.832 ppb
							6:2 FTUCA	2 ppb
							8:2 FTUCA	2 ppb
							10:2 FTUCA	2 ppb
							11Cl-PF3OUdS	1.86 ppb
							9C1-PF3ONS	1.86 ppb
							DONA	1.89 ppb
							HFPODA	2 ppb
							NETFOSAA	2 ppb
							NMeFOSAA	2 ppb
							Perfluorobutanesulfonic acid	1.77 ppb
							Perfluorodecanoic acid	2 ppb
							Perfluorododecanoic acid	2 ppb
							Perfluoroheptanoic acid	2 ppb
							Perfluorohexanesulfonic acid	1.824 ppb
							Perfluorohexanoic acid	2 ppb
							Perfluorononanoic acid	2 ppb
							Perfluorooctanesulfonic acid	1.851 ppb
							Perfluorooctanoic acid	2 ppb
							Perfluorotetradecanoic acid	2 ppb
							Perfluorotridecanoic acid	2 ppb
							Perfluoroundecanoic acid	2 ppb 10 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

					Daniel Danie			
				Reagent	Parent Read	Jenc .		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
							13C2-PFDoDA	10 ppb
							13C3 PFBS	9.3 ppb
							13C3 PFHxS	9.46 ppb
							13C4 PFBA	10 ppb
							13C4 PFHpA	10 ppb
							13C5 PFHxA	10 ppb
							13C5 PFPeA	10 ppb
							13C6 PFDA	10 ppb
							13C7 PFUnA	10 ppb
							13C8 PFOA	10 ppb
							13C8 PFOS	9.56 ppb
							13C9 PFNA	10 ppb
					PFC ST 01249	0.025 mL		5 ppb
					1-1-1		13C2 PFOA	5 ppb
							13C3-PFBA	5 ppb
							13C4 PFOS	4.7825 ppb
.PFC IN 00701	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mT ₁	PFC ST 00981	0.2 mT	d5-NEtPFOSA	2000 ppb
	,,			,	PFC ST 00984		13C3 HFPO-DA	2000 ppb
					PFC ST 00985		M2-8:2 FTS	1916 ppb
					PFC ST 00986		M2-6:2 FTS	1900 ppb
					PFC ST 01081		d3-NMePFOSA	2000 ppb
					PFC ST 01108		13C-6:2 FTCA	2000 ppb
					PFC ST 01109		13C-10:2 FTCA	2000 ppb
					PFC ST 01113		13C-8:2 FTCA	2000 ppb
					PFC ST 01215		d3-NMeFOSAA	2000 ppb
					PFC ST 01216		d5-NEtFOSAA	2000 ppb
					PFC ST 01293		d7-N-MeFOSE-M	2000 ppb
					PFC ST 01295		d9-N-EtFOSE-M	2000 ppb
					PFC ST 01411		13C8 FOSA	2000 ppb
					PFC ST 01412		M2-4:2 FTS	1868 ppb
					PFC ST 01467		13C-6:2 FTUCA	2000 ppb
					PFC ST 01468		13C-8:2 FTUCA	2000 ppb
					PFC ST 01469		13C-10:2 FTUCA	2000 ppb
PFC ST 00981	11/23/25	We	ellington Laboratories, I	ot	(Purchased Re		d5-NEtPFOSA	50000 ng/mL
			dNEtFOSA1120M					
PFC_ST_00984	05/13/24		on Laboratories, Lot M3H		(Purchased Re	-	13C3 HFPO-DA	50000 ng/mL
PFC_ST_00985	12/17/25		on Laboratories, Lot M28		(Purchased Re		M2-8:2 FTS	47900 ng/mL
PFC_ST_00986	05/14/26		on Laboratories, Lot M26		(Purchased Re		M2-6:2 FTS	47500 ng/mL
PFC_ST_01081	04/04/23	We	ellington Laboratories, I dNMeFOSA0421M	ot	(Purchased Re	agent)	d3-NMePFOSA	50000 ng/mL
PFC ST 01108	04/04/23	Welling	ton Laboratories, Lot ME	THEA0421	(Purchased Re	agent)	13C-6:2 FTCA	50000 ppb
PFC ST 01109	04/04/23		ton Laboratories, Lot ME		(Purchased Re		13C-10:2 FTCA	50000 ppb
PFC ST 01113	04/04/23		ton Laboratories, Lot ME		(Purchased Re		13C-8:2 FTCA	50000 ppb
PFC_ST_01215	04/04/23		ellington Laboratories, I		(Purchased Re		d3-NMeFOSAA	50000 ng/mL
DEC CH 01216	04/04/23	Ta7	d3NMeFOSAA0521	0+	(Durahaga 7 Da	200+1	d5-NEtFOSAA	E0000 x /
PFC_ST_01216	04/04/23	we	ellington Laboratories, I d5NEtFOSAA0921	ıO L	(Purchased Re	agent)	UJ-NECFUSAA	50000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Rea	gent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
PFC_ST_01293	02/10/23	W∈	ellington Laboratories, I d7NMeFOSE1220M	Lot	(Purchased Re	eagent)	d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01295	02/10/23	W∈	ellington Laboratories, I d9NEtFOSE1220M	Lot	(Purchased Re	eagent)	d9-N-EtFOSE-M	50000 ng/mL
PFC_ST_01411	10/12/26		on Laboratories, Lot M81		(Purchased Re	eagent)	13C8 FOSA	50000 ng/mL
PFC_ST_01412	10/13/26		on Laboratories, Lot M24		(Purchased Re		M2-4:2 FTS	46700 ng/mL
PFC_ST_01467	03/22/23		ton Laboratories, Lot MF		(Purchased Re		13C-6:2 FTUCA	50000 ppb
PFC_ST_01468	03/22/23		ton Laboratories, Lot MF		(Purchased Re		13C-8:2 FTUCA	50000 ppb
PFC_ST_01469	03/22/23		ton Laboratories, Lot MF		(Purchased Re		13C-10:2 FTUCA	50000 ppb
.PFC_IN_00703	10/13/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC_IN_00702	0.05 mL	PFECA G	20 ppb
							PPF Acid	20 ppb
							MTP	20 ppb
							PFMOAA	20 ppb
							R-EVE	20 ppb
							R-PSDA	20 ppb
							Hydrolyzed PSDA	20 ppb
							PFO2HxA	20 ppb
							NVHOS	20 ppb
							PFO3OA	20 ppb
							PFO4DA	20 ppb
							Hydro-EVE Acid	20 ppb
							EVE Acid	20 ppb
							R-PSDCA	20 ppb
							Hydro-PS Acid	20 ppb
							PS Acid	20 ppb
							TAF	20 ppb
							PMPA	20 ppb
							PEPA	20 ppb
PFC IN 00702	10/13/22	06/10/22	Methanol, Lot ED663-US	5 mT.	PFC IN 00698	1 mL	1	2000 ppb
1.110_111_00702	10/13/22	00/10/22	licenanci, Ecc Ebcco co		110_111_00000	1 1112	PPF Acid	2000 ppb
							MTP	2000 ppb
							PFMOAA	2000 ppb
							R-EVE	2000 ppb
							R-PSDA	2000 ppb 2000 ppb
							Hydrolyzed PSDA	2000 ppb
							PFO2HxA	2000 ppb 2000 ppb
							NVHOS	2000 ppb
								2000 ppb
							PFO3OA	2000 ppb
							PFO4DA	2000 ppb
							Hydro-EVE Acid	2000 ppb
							EVE Acid	2000 ppb
							R-PSDCA	2000 ppb
							Hydro-PS Acid	2000 ppb
							PS Acid	2000 ppb
							TAF	2000 ppb
							PMPA	2000 ppb
							PEPA	2000 ppb
PFC_IN_00698	10/13/22	06/09/22	Methanol, Lot ED319-US	10 mL	PFC_ST_00199	0.1 mL	PFECA G	10000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
					PFC ST 00329	0.1 mL	PPF Acid	10000 ppb
					PFC ST 00332	0.1 mL	MTP	10000 ppb
					PFC ST 01117	0.1 mL	PFMOAA	10000 ppb
					PFC ST 01118	0.1 mL	R-EVE	10000 ppb
					PFC ST 01119	0.1 mL	R-PSDA	10000 ppb
					PFC ST 01120	0.1 mL	Hydrolyzed PSDA	10000 ppb
					PFC ST 01121	0.1 mL	PFO2HxA	10000 ppb
					PFC ST 01122	0.1 mL	NVHOS	10000 ppb
					PFC ST 01124	0.1 mL	PFO3OA	10000 ppb
					PFC ST 01127	0.1 mL	PFO4DA	10000 ppb
					PFC ST 01128	0.1 mL	Hydro-EVE Acid	10000 ppb
					PFC ST 01129		EVE Acid	10000 ppb
					PFC ST 01130		R-PSDCA	10000 ppb
					PFC ST 01131	0.1 mL	Hydro-PS Acid	10000 ppb
					PFC ST 01132		PS Acid	10000 ppb
					PFC ST 01133	0.1 mL	TAF	10000 ppb
					PFC ST 01134	0.1 mL	PMPA	10000 ppb
					PFC ST 01135	0.1 mL	PEPA	10000 ppb
PFC ST 00199	02/26/23		Chemours, Lot N/A	1	(Purchased Rea	agent)	PFECA G	1000000 ug/L
PFC ST 00329	02/26/23		Chemours, Lot N/A		(Purchased Rea	agent)	PPF Acid	1000000 ug/L
PFC ST 00332	02/26/23		Chemours, Lot N/A		(Purchased Rea	agent)	MTP	1000000 ug/L
PFC ST 01117	10/13/22		Chemours, Lot N/A		(Purchased Rea	agent)	PFMOAA	1000000 ug/L
PFC ST 01118	10/13/22		Chemours, Lot N/A		(Purchased Rea	agent)	R-EVE	1000000 ug/L
PFC ST 01119	10/13/22		Chemours, Lot N/A		(Purchased Rea	agent)	R-PSDA	1000000 ug/L
PFC ST 01120	10/13/22		Chemours, Lot N/A		(Purchased Rea	agent)	Hydrolyzed PSDA	1000000 ug/L
PFC_ST_01121	10/13/22		Chemours, Lot N/A		(Purchased Rea	agent)	PFO2HxA	1000000 ug/L
PFC_ST_01122	10/13/22		Chemours, Lot N/A		(Purchased Rea	agent)	NVHOS	1000000 ug/L
PFC_ST_01124	10/13/22		Chemours, Lot N/A		(Purchased Rea	agent)	PFO3OA	1000000 ug/L
PFC_ST_01127	10/13/22		Chemours, Lot N/A		(Purchased Rea	agent)	PFO4DA	1000000 ug/L
PFC_ST_01128	10/13/22		Chemours, Lot N/A		(Purchased Rea	agent)	Hydro-EVE Acid	1000000 ug/L
PFC_ST_01129	10/13/22		Chemours, Lot N/A		(Purchased Rea	agent)	EVE Acid	1000000 ug/L
PFC_ST_01130	10/13/22		Chemours, Lot N/A		(Purchased Rea	-	R-PSDCA	1000000 ug/L
PFC_ST_01131	10/13/22		Chemours, Lot N/A		(Purchased Rea		Hydro-PS Acid	1000000 ug/L
PFC_ST_01132	10/13/22		Chemours, Lot N/A		(Purchased Rea	-	PS Acid	1000000 ug/L
PFC_ST_01133	10/13/22		Chemours, Lot N/A		(Purchased Rea	- ·	TAF	1000000 ug/L
PFC_ST_01134	10/13/22		Chemours, Lot N/A		(Purchased Rea	-	PMPA	1000000 ug/L
PFC_ST_01135	10/13/22		Chemours, Lot N/A		(Purchased Rea		PEPA	1000000 ug/L
.PFC_IN_00705	12/09/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC_IN_00704	0.2 mL	Perfluorooctadecanoic acid	20 ng/mL
							N-ethylperfluoro-1-octanesulfo namide	20 ng/mL
							NMeFOSA	20 ng/mL
							1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	19.16 ng/mL
							1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	19.28 ng/mL
							2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	20 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent _	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
3							2-	20 ng/mL
							(N-methylperfluoro-1-octanesul fonamido) ethanol	20 119/1111
							Perfluorododecanesulfonic acid (PFDoS)	
							Perfluorohexadecanoic acid	20 ng/mL
							Perfluorooctanesulfonamide	20 ng/mL
							1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	18.68 ng/mL
							1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	18.96 ng/mL
							Perfluorobutanoic acid	20 ng/mL
							Perfluoropentanoic acid	20 ng/mL
							Perfluorodecanesulfonic acid	19.28 ng/mL
							Perfluoroheptanesulfonic acid	19.04 ng/mL
							Perfluorononanesulfonic acid	19.2 ng/mL
							Perfluoropentanesulfonic acid	18.76 ng/mL
							3:3 FTCA	20 ng/mL
							5:3 FTCA	20 ng/mL
							7:3 FTCA	20 ng/mL
							6:2 FTCA	20 ng/mL
							8:2 FTCA	20 ng/mL
							10:2 FTCA	20 ng/mL
							PFECA F	20 ng/mL
							PFECA A	20 ng/mL
							PFECA B	20 ng/mL
							PES	17.8 ng/mL
							PFECHS	18.44 ng/mL
							PFPrS	18.32 ng/mL
							6:2 FTUCA	20 ng/mL
							8:2 FTUCA	20 ng/mL
							10:2 FTUCA	20 ng/mL
							11Cl-PF3OUdS	18.6 ng/mL
							9Cl-PF3ONS	18.6 ng/mL
							DONA	18.9 ng/mL
							HFPODA	20 ng/mL
							NETFOSAA	20 ng/mL
							NMeFOSAA	20 ng/mL
							Perfluorobutanesulfonic acid	17.7 ng/mL
							Perfluorodecanoic acid	20 ng/mL
							Perfluorododecanoic acid	20 ng/mL
							Perfluoroheptanoic acid	20 ng/mL
							Perfluorohexanesulfonic acid	18.24 ng/mL
							Perfluorohexanoic acid	20 ng/mL
							Perfluorononanoic acid	20 ng/mL
							Perfluorooctanesulfonic acid	18.51 ng/mL
							Perfluorooctanoic acid	20 ng/mL
							Perfluorotetradecanoic acid	20 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	gent					
	Exp	Prep	Dilutant	Final		Volume					
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration			
							Perfluorotridecanoic acid	20 ng/mL			
							Perfluoroundecanoic acid	20 ng/mL			
PFC_IN_00704	12/09/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC_IN_00699	1.25 mL	Perfluorooctadecanoic acid	500 ng/mL			
							N-ethylperfluoro-1-octanesulfo namide	500 ng/mL			
							NMeFOSA	500 ng/mL			
							1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	479 ng/mL			
							1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)				
						2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	500 ng/mL				
							2- (N-methylperfluoro-1-octanesul fonamido) ethanol				
							Perfluorododecanesulfonic acid (PFDoS)	484 ng/mL			
							Perfluorohexadecanoic acid	500 ng/mL			
							Perfluorooctanesulfonamide	500 ng/mL			
					1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)						
							1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	474 ng/mL			
								Perfluorobutanoic acid	500 ng/mL		
							Perfluorodecanesulfonic acid	482 ng/mL			
							Perfluoroheptanesulfonic acid	476 ng/mL			
							Perfluorononanesulfonic acid	480 ng/mL			
							Perfluoropentanesulfonic acid	469 ng/mL			
					PFC_IN_00700	1.25 mL	3:3 FTCA	500 ng/mL			
							5:3 FTCA	500 ng/mL			
							7:3 FTCA	500 ng/mL 500 ng/mL			
							6:2 FTCA 8:2 FTCA	500 ng/mL			
							10:2 FTCA	500 ng/mL			
							PFECA F	500 ng/mL			
							PFECA A	500 ng/mL			
							PFECA B	500 ng/mL			
							PES	445 ng/mL			
							PFECHS	461 ng/mL			
							PFPrS	458 ng/mL			
							6:2 FTUCA	500 ng/mL			
						8:2 FTUCA	500 ng/mL				
					10:2 FTUCA	500 ng/mL					
				PFC ST 01549	1.25 mL	11Cl-PF3OUdS	465 ng/mL				
					= = ' '		9C1-PF3ONS	465 ng/mL			
							DONA	472.5 ng/mL			
							HFPODA	500 ng/mL			

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	rent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							NETFOSAA	500 ng/mI
							NMeFOSAA	500 ng/mI
							Perfluorobutanesulfonic acid	442.5 ng/mI
							Perfluorodecanoic acid	500 ng/mI
							Perfluorododecanoic acid	500 ng/mI
							Perfluoroheptanoic acid	500 ng/mI
							Perfluorohexanesulfonic acid	456 ng/mI
							Perfluorohexanoic acid	500 ng/ml
							Perfluorononanoic acid	500 ng/mI
							Perfluorooctanesulfonic acid	462.75 ng/ml
							Perfluorooctanoic acid	500 ng/mI
							Perfluorotetradecanoic acid	500 ng/mI
							Perfluorotridecanoic acid	500 ng/mI
							Perfluoroundecanoic acid	500 ng/mI
PFC IN 00699	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mL	PFC ST 00747	0.2 mL	Perfluorooctadecanoic acid	2000 ng/ml
					PFC_ST_00971	0.2 mL	N-ethylperfluoro-1-octanesulfo namide	2000 ng/ml
					PFC ST 00972		NMeFOSA	2000 ng/m
					PFC_ST_00976	0.2 mL	1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	1916 ng/ml
					PFC_ST_00977	0.2 mL	1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	1928 ng/ml
					PFC_ST_01073	0.2 mL		2000 ng/mI
					PFC_ST_01082	0.2 mL	2- (N-methylperfluoro-1-octanesul fonamido) ethanol	2000 ng/mI
					PFC_ST_01224	0.2 mL	Perfluorododecanesulfonic acid (PFDoS)	1936 ng/mI
					PFC ST 01226	0.2 mL	Perfluorohexadecanoic acid	2000 ng/ml
					PFC ST 01227	0.2 mL	Perfluorooctanesulfonamide	2000 ng/m
					PFC_ST_01228	0.2 mL	1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	1868 ng/ml
					PFC_ST_01229	0.2 mL	1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	1896 ng/ml
					PFC ST 01232	0.2 mL	Perfluorobutanoic acid	2000 ng/ml
					PFC ST 01233		Perfluoropentanoic acid	2000 ng/ml
					PFC ST 01234		Perfluorodecanesulfonic acid	1928 ng/mI
					PFC ST 01235	0.2 mL	Perfluoroheptanesulfonic acid	1904 ng/mI
					PFC ST 01236	0.2 mL	Perfluorononanesulfonic acid	1920 ng/m]
					PFC ST 01237	0.2 mL	Perfluoropentanesulfonic acid	1876 ng/mI
PFC ST 00747	11/13/25	Welling	ton Laboratories, Lot PE	ODA1020	(Purchased Rea	agent)	Perfluorooctadecanoic acid	50000 ng/mI
PFC_ST_00971	11/23/25		on Laboratories, Lot NEt		(Purchased Rea		N-ethylperfluoro-1-octanesulfo	
PFC ST 00972	10/20/25	Wellingto	on Laboratories, Lot NMe	FOSA1020M	(Purchased Rea	agent)	NMeFOSA	50000 ng/mI
PFC_ST_00976	12/01/25		ton Laboratories, Lot 82		(Purchased Rea		1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	47900 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reager	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
PFC_ST_00977	03/03/26	Welling	ton Laboratories, Lot	102FTS0221	(Purchased Reag	ent)	1H, 1H, 2H, 2H-perfluorododecanes ulfonic acid (10:2)	
PFC_ST_01073	06/02/26	2	on Laboratories, Lot Ni		(Purchased Reag	ent)	2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	
PFC_ST_01082		_	on Laboratories, Lot NI		(Purchased Reag		2- (N-methylperfluoro-1-octanesul fonamido) ethanol	50000 ng/mL
PFC_ST_01224	02/16/23	Welling	ton Laboratories, Lot 1	LPFDoS0721	(Purchased Reag	ent)	Perfluorododecanesulfonic acid (PFDoS)	, , , ,
PFC ST 01226	05/07/26	Wellingt	ton Laboratories, Lot 1	PFHxDA0421	(Purchased Reag	ent)	Perfluorohexadecanoic acid	50000 ng/mL
PFC ST 01227	08/10/26		ton Laboratories, Lot		(Purchased Reag	ent)	Perfluorooctanesulfonamide	50000 ng/mL
PFC_ST_01228	10/04/26	_	ton Laboratories, Lot		(Purchased Reag		1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	
PFC_ST_01229	06/09/26	Welling	ton Laboratories, Lot	62FTS0521	(Purchased Reag		1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	47400 ng/mL
PFC ST 01232	10/04/26	Welling	gton Laboratories, Lot	PFBA1021	(Purchased Reag		Perfluorobutanoic acid	50000 ng/mL
PFC ST 01233	08/10/26	Welling	ton Laboratories, Lot	PFPeA0721	(Purchased Reag		Perfluoropentanoic acid	50000 ng/mL
PFC ST 01234	08/19/26		ton Laboratories, Lot		(Purchased Reag		Perfluorodecanesulfonic acid	48200 ng/mL
PFC ST 01235	07/09/26		ton Laboratories, Lot 1		(Purchased Reag		Perfluoroheptanesulfonic acid	47600 ng/mL
PFC ST 01236	10/19/26	Welling	ton Laboratories, Lot	LPFNS1021	(Purchased Reag	ent)	Perfluorononanesulfonic acid	48000 ng/mL
PFC ST 01237	07/12/26	Wellingt	ton Laboratories, Lot 1	LPFPeS0721	(Purchased Reag	ent)	Perfluoropentanesulfonic acid	46900 ng/mL
PFC IN 00700	12/09/22	06/09/22	Methanol, Lot ED319-US	S 5 mL	PFC ST 01094	0.2 mL	3:3 FTCA	2000 ppb
					PFC ST 01095	0.2 mL	5:3 FTCA	2000 ppb
					PFC ST 01096	0.2 mL	7:3 FTCA	2000 ppb
					PFC ST 01097	0.2 mL	6:2 FTCA	2000 ppb
					PFC ST 01098	0.2 mL	8:2 FTCA	2000 ppb
					PFC ST 01099	0.2 mL	10:2 FTCA	2000 ppb
					PFC ST 01103		PFECA F	2000 ppb
					PFC ST 01104	0.2 mL	PFECA A	2000 ppb
					PFC ST 01105		PFECA B	2000 ppb
					PFC ST 01106	0.2 mL	PES	1780 ppb
					PFC ST 01107		PFECHS	1844 ppb
					PFC ST 01223		PFPrS	1832 ppb
					PFC ST 01367	0.2 mL	6:2 FTUCA	2000 ppb
					PFC ST 01368	0.2 mL	8:2 FTUCA	2000 ppb
					PFC ST 01369	0.2 mL	10:2 FTUCA	2000 ppb
PFC ST 01094	11/12/25	Welling	ton Laboratories, Lot	FPrPA1020	(Purchased Reag		3:3 FTCA	50000 ng/mL
PFC ST 01095	11/11/25		ton Laboratories, Lot		(Purchased Reag		5:3 FTCA	50000 ng/mL
PFC ST 01096	11/12/25		ton Laboratories, Lot		(Purchased Reag	ent)	7:3 FTCA	50000 ng/mL
PFC ST 01097	03/08/24		gton Laboratories, Lot		(Purchased Reag		6:2 FTCA	50000 ng/mL
PFC ST 01098	08/18/24	Welling	gton Laboratories, Lot	FOEA0821	(Purchased Reag		8:2 FTCA	50000 ng/mL
PFC ST 01099	07/07/23	Welling	gton Laboratories, Lot	FDEA0720	(Purchased Reag		10:2 FTCA	50000 ng/mL
PFC ST 01103	03/31/25		on Laboratories, Lot P		(Purchased Reag		PFECA F	50000 ng/mL
PFC ST 01104	03/31/25		on Laboratories, Lot P		(Purchased Reag		PFECA A	50000 ng/mL
PFC ST 01105	03/31/25		on Laboratories, Lot 3		(Purchased Reag		PFECA B	50000 ng/mL
PFC ST 01106	05/13/25	Welling	ton Laboratories, Lot	PFEESA0520	(Purchased Reag		PES	44500 ppb
PFC ST 01107	04/06/26		ton Laboratoires, Lot 1		(Purchased Reag		PFECHS	46100 ppb
PFC ST 01223	07/12/26		ton Laboratories, Lot 1		(Purchased Reag		PFPrS	45800 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reage	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
PFC ST 01367	09/03/23	Wellington I	aboratories, Lot F	HUEA0921	(Purchased Rea	gent)	6:2 FTUCA	50000 ng/mL
PFC ST 01368	03/29/23	Wellington I	aboratories, Lot F	OUEA0321	(Purchased Rea	gent)	8:2 FTUCA	50000 ng/mL
PFC ST 01369	03/29/23	Wellington I	aboratories, Lot F	DUEA1021	(Purchased Rea	gent)	10:2 FTUCA	50000 ng/mL
PFC ST 01549	06/01/24	Wellington Lal	poratories, Lot 537	7PDSR10521	(Purchased Rea	gent)	11Cl-PF3OUdS	1860 ng/mL
		-				_	9C1-PF3ONS	1860 ng/mL
							DONA	1890 ng/mL
							HFPODA	2000 ng/mL
							NEtFOSAA	2000 ng/mL
							NMeFOSAA	2000 ng/mL
							Perfluorobutanesulfonic acid	1770 ng/mL
							Perfluorodecanoic acid	2000 ng/mL
							Perfluorododecanoic acid	2000 ng/mL
							Perfluoroheptanoic acid	2000 ng/mL
							Perfluorohexanesulfonic acid	1824 ng/mL
							Perfluorohexanoic acid	2000 ng/mL
							Perfluorononanoic acid	2000 ng/mL
							Perfluorooctanesulfonic acid	1851 ng/mL
							Perfluorooctanoic acid	2000 ng/mL
							Perfluorotetradecanoic acid	2000 ng/mL
							Perfluorotridecanoic acid	2000 ng/mL
							Perfluoroundecanoic acid	2000 ng/mL
.PFC_ST_01219	01/13/26	Wellington Lal	ooratories, Lot MPE	FACCES0121	(Purchased Rea	gent)	13C2 PFTeDA	2000 ppb
							13C2-PFDoDA	2000 ppb
							13C3 PFBS	1860 ppb
							13C3 PFHxS	1892 ppb
							13C4 PFBA	2000 ppb
							13C4 PFHpA	2000 ppb
							13C5 PFHxA	2000 ppb
							13C5 PFPeA	2000 ppb
							13C6 PFDA	2000 ppb
							13C7 PFUnA	2000 ppb
							13C8 PFOA	2000 ppb
							13C8 PFOS	1912 ppb
							13C9 PFNA	2000 ppb
.PFC_ST_01249	04/26/26	Wellington Lal	ooratories, Lot MPE	FACCIS0516	(Purchased Rea	gent)	13C2 PFDA	2000 ng/mL
							13C2 PFOA	2000 ng/mL
							13C3-PFBA	2000 ng/mL
							13C4 PFOS	1913 ng/mL
PFC STD XMOD4 00018	09/10/22	06/10/22 Metha	anol, Lot ED663-US	10 mL PF	C IN 00699	0.04 mL	Perfluorooctadecanoic acid	8 ppb
							N-ethylperfluoro-1-octanesulfo	8 ppb
							namide	
							NMeFOSA	8 ppb
							1H, 1H, 2H, 2H-perfluorodecanesul	7.664 ppb
							fonic acid (8:2)	
							1H,1H,2H,2H-perfluorododecanes	7.712 ppb
							ulfonic acid (10:2)	

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	rent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	8 ppl
							2- (N-methylperfluoro-1-octanesul fonamido) ethanol	8 ppl
							Perfluorododecanesulfonic acid (PFDoS)	7.744 ppk
							Perfluorohexadecanoic acid	8 ppl
							Perfluorooctanesulfonamide	8 ppl
							1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	7.472 ppk
							1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	7.584 ppk
							Perfluorobutanoic acid	8 ppl
							Perfluoropentanoic acid	8 ppl
							Perfluorodecanesulfonic acid	7.712 ppk
							Perfluoroheptanesulfonic acid	7.616 ppk
							Perfluorononanesulfonic acid	7.68 ppk
							Perfluoropentanesulfonic acid	7.504 ppl
					PFC IN 00700	0.04 mL	3:3 FTCA	8 ppl
							5:3 FTCA	8 ppl
							7:3 FTCA	8 ppk
							6:2 FTCA	8 ppl
							8:2 FTCA	8 ppl
							10:2 FTCA	8 ppl
							PFECA F	8 ppk
							PFECA A	8 ppk
							PFECA B	8 ppk
							PES	7.12 ppk
							PFECHS	7.376 ppk
							PFPrS	7.328 ppk
							6:2 FTUCA	8 ppl
							8:2 FTUCA	8 ppl
							10:2 FTUCA	8 ppl
					PFC_IN_00701	0.05 mL	d5-NEtPFOSA	10 ppk
							13C3 HFPO-DA	10 ppk
							M2-8:2 FTS	9.58 ppk
							M2-6:2 FTS	9.5 ppk
							d3-NMePFOSA	10 ppk
							13C-6:2 FTCA	10 ppk
							13C-10:2 FTCA	10 ppk
							13C-8:2 FTCA	10 ppk
							d3-NMeFOSAA	10 ppk
							d5-NEtFOSAA	10 ppk
							d7-N-MeFOSE-M	10 ppk
							d9-N-EtFOSE-M	10 ppk
							13C8 FOSA	10 ppk
							M2-4:2 FTS	9.34 ppk

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							13C-6:2 FTUCA	10 pp
							13C-8:2 FTUCA	10 ppl
							13C-10:2 FTUCA	10 pp
					PFC IN 00702	0.04 mL	PFECA G	8 pp
							PPF Acid	8 pp
							MTP	8 pp
							PFMOAA	8 pp
							R-EVE	8 pp
							R-PSDA	8 pp
							Hydrolyzed PSDA	8 pp
							PFO2HxA	8 pp
							NVHOS	8 pp
							PFO3OA	8 pp
							PFO4DA	8 pp
							Hydro-EVE Acid	8 pp
							EVE Acid	8 pp
							R-PSDCA	8 pp
							Hydro-PS Acid	8 pp
							PS Acid	8 pp
							TAF	8 pp
							PMPA	8 pp
							PEPA	8 pp
					PFC ST 01219	0 05 mT.	13C2 PFTeDA	10 pp
					110_51_01219	0.03 1111	13C2-PFDoDA	10 pp
							13C3 PFBS	9.3 pp
							13C3 PFHxS	9.46 pp
							13C4 PFBA	10 pp
							13C4 PFHpA	10 pp
							13C5 PFHxA	10 pp
							13C5 PFPeA	10 pp
							13C6 PFDA	10 pp
							13C7 PFUnA	10 pp
							13C8 PFOA	10 pp
							13C8 PFOS	9.56 pp
							13C9 PFNA	10 pp
					PFC ST 01249	0 025 mT.	13C2 PFDA	5 pp
					116_51_01249	0.025 1111	13C2 PFOA	5 pp
							13C3-PFBA	5 pp.
							13C4 PFOS	4.7825 pp
					PFC ST 01549	0 04 mT	11Cl-PF3OUdS	7.44 pp.
					0_50-5-7	0.04 1111	9C1-PF3ONS	7.44 ppl
							DONA	7.44 ppi
							HFPODA	8 pp
							NETFOSAA	8 pp
							NMeFOSAA	8 pp
							Perfluorobutanesulfonic acid	7.08 pp
							Perfluorodecanoic acid	
								8 pp
		1			l		Perfluorododecanoic acid	8 pp

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Read	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Perfluoroheptanoic acid	8 ppb
							Perfluorohexanesulfonic acid	7.296 ppb
							Perfluorohexanoic acid	8 ppb
							Perfluorononanoic acid	8 ppb
							Perfluorooctanesulfonic acid	7.404 ppb
							Perfluorooctanoic acid	8 ppb
							Perfluorotetradecanoic acid	8 ppb
							Perfluorotridecanoic acid	8 ppb
							Perfluoroundecanoic acid	8 ppb
.PFC IN 00699	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mL	PFC ST 00747		Perfluorooctadecanoic acid	2000 ng/mL
					PFC_ST_00971	0.2 mL	N-ethylperfluoro-1-octanesulfo namide	
					PFC ST 00972		NMeFOSA	2000 ng/mL
					PFC_ST_00976		1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	_
					PFC_ST_00977	0.2 mL	1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	1928 ng/mL
					PFC_ST_01073	0.2 mL	2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	2000 ng/mL
					PFC_ST_01082	0.2 mL	2- (N-methylperfluoro-1-octanesul fonamido) ethanol	2000 ng/mL
					PFC_ST_01224	0.2 mL	Perfluorododecanesulfonic acid (PFDoS)	, , , , , , , , , , , , , , , , , , , ,
					PFC ST 01226	0.2 mL	Perfluorohexadecanoic acid	2000 ng/mL
					PFC ST 01227		Perfluorooctanesulfonamide	2000 ng/mL
					PFC_ST_01228		1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	1868 ng/mL
					PFC_ST_01229	0.2 mL	1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	1896 ng/mL
					PFC_ST_01232		Perfluorobutanoic acid	2000 ng/mL
					PFC_ST_01233		Perfluoropentanoic acid	2000 ng/mL
					PFC_ST_01234		Perfluorodecanesulfonic acid	1928 ng/mL
					PFC_ST_01235		Perfluoroheptanesulfonic acid	1904 ng/mL
					PFC_ST_01236		Perfluorononanesulfonic acid	1920 ng/mL
					PFC_ST_01237		Perfluoropentanesulfonic acid	1876 ng/mL
PFC_ST_00747	11/13/25		ton Laboratories, Lot PF		(Purchased Re		Perfluorooctadecanoic acid	50000 ng/mL
PFC_ST_00971	11/23/25	Wellingt	on Laboratories, Lot NEt	FOSA1120M	(Purchased Re	agent)	N-ethylperfluoro-1-octanesulfo namide	50000 ng/mL
PFC ST 00972	10/20/25		on Laboratories, Lot NMe		(Purchased Re	agent)	NMeFOSA	50000 ng/mL
PFC_ST_00976	12/01/25	_	ton Laboratories, Lot 82		(Purchased Re	agent)	1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	
PFC_ST_00977	03/03/26	Welling	ton Laboratories, Lot 10	2FTS0221	(Purchased Re	agent)	1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	48200 ng/mL
PFC_ST_01073	06/02/26	Wellingto	on Laboratories, Lot NEt	FOSE0521M	(Purchased Re	agent)	2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	50000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

Reagent IDPFC_ST_01082 PFC_ST_01224 PFC_ST_01226	Exp Date 06/02/26	Prep Date Wellingto	Dilutant Used on Laboratories, Lot N	Reagent Final Volume	Reagent ID	Volume		
PFC_ST_01224PFC_ST_01226		Wellingto	on Laboratories, Lot N		icagene ib	Added	Analyte	Concentration
PFC_ST_01226	02/16/23			NMeFOSE0521M	(Purchased Read	gent)	2- (N-methylperfluoro-1-octanesul fonamido) ethanol	50000 ng/mL
		Wellingt	ton Laboratories, Lot	LPFDoS0721	(Purchased Read	gent)	Perfluorododecanesulfonic acid (PFDoS)	48400 ng/mL
DEC 0E 01000	05/07/26	Wellingt	ton Laboratories, Lot	PFHxDA0421	(Purchased Read	gent)	Perfluorohexadecanoic acid	50000 ng/mL
PFC ST 01227	08/10/26	Welling	ton Laboratories, Lot	FOSA0721I	(Purchased Read	gent)	Perfluorooctanesulfonamide	50000 ng/mL
PFC_ST_01228	10/04/26	_	ton Laboratories, Lot		(Purchased Read		1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	3.
PFC_ST_01229	06/09/26	Welling	ton Laboratories, Lot	62FTS0521	(Purchased Read	gent)	1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	47400 ng/mL
PFC_ST_01232	10/04/26		gton Laboratories, Lot		(Purchased Read		Perfluorobutanoic acid	50000 ng/mL
PFC_ST_01233	08/10/26		ton Laboratories, Lot		(Purchased Read		Perfluoropentanoic acid	50000 ng/mL
PFC_ST_01234	08/19/26		ton Laboratories, Lot		(Purchased Read		Perfluorodecanesulfonic acid	48200 ng/mL
PFC_ST_01235	07/09/26		ton Laboratories, Lot		(Purchased Read		Perfluoroheptanesulfonic acid	47600 ng/mL
PFC_ST_01236	10/19/26		ton Laboratories, Lot		(Purchased Read		Perfluorononanesulfonic acid	48000 ng/mL
PFC_ST_01237	07/12/26	Wellingt	ton Laboratories, Lot	LPFPeS0721	(Purchased Read		Perfluoropentanesulfonic acid	46900 ng/mL
.PFC_IN_00700	12/09/22	06/09/22	Methanol, Lot ED319-U	JS 5 mL	PFC_ST_01094		3:3 FTCA	2000 ppb
					PFC_ST_01095		5:3 FTCA	2000 ppb
					PFC_ST_01096		7:3 FTCA	2000 ppb
					PFC_ST_01097	0.2 mL	6:2 FTCA	2000 ppb
					PFC_ST_01098		8:2 FTCA	2000 ppb
					PFC_ST_01099	0.2 mL	10:2 FTCA	2000 ppb
					PFC_ST_01103		PFECA F	2000 ppb
					PFC_ST_01104		PFECA A	2000 ppb
					PFC_ST_01105		PFECA B	2000 ppb
					PFC_ST_01106	0.2 mL		1780 ppb
					PFC_ST_01107		PFECHS	1844 ppb
					PFC_ST_01223	0.2 mL	PFPrS	1832 ppb
					PFC_ST_01367		6:2 FTUCA	2000 ppb
I					PFC_ST_01368	0.2 mL	8:2 FTUCA	2000 ppb
					PFC_ST_01369		10:2 FTUCA	2000 ppb
PFC_ST_01094	11/12/25		ton Laboratories, Lot		(Purchased Read		3:3 FTCA	50000 ng/mL
PFC_ST_01095	11/11/25		ton Laboratories, Lot		(Purchased Read		5:3 FTCA	50000 ng/mL
PFC_ST_01096	11/12/25		ton Laboratories, Lot		(Purchased Read	, ,	7:3 FTCA	50000 ng/mL
PFC_ST_01097	03/08/24		gton Laboratories, Lot		(Purchased Read		6:2 FTCA	50000 ng/mL
PFC_ST_01098	08/18/24		gton Laboratories, Lot		(Purchased Read		8:2 FTCA	50000 ng/mL
PFC_ST_01099	07/07/23		gton Laboratories, Lot		(Purchased Read	gent)	10:2 FTCA	50000 ng/mL
PFC_ST_01103	03/31/25		on Laboratories, Lot		(Purchased Read		PFECA F	50000 ng/mL
PFC_ST_01104	03/31/25		on Laboratories, Lot		(Purchased Read		PFECA A	50000 ng/mL
PFC_ST_01105	03/31/25		on Laboratories, Lot 3		(Purchased Read	, ,	PFECA B	50000 ng/mL
PFC_ST_01106	05/13/25		ton Laboratories, Lot		(Purchased Read		PES	44500 ppb
PFC_ST_01107	04/06/26		ton Laboratoires, Lot		(Purchased Read	gent)	PFECHS	46100 ppb
PFC_ST_01223	07/12/26		ton Laboratories, Lot		(Purchased Read		PFPrS	45800 ppb
PFC_ST_01367	09/03/23		ton Laboratories, Lot		(Purchased Read		6:2 FTUCA	50000 ng/mL
PFC_ST_01368	03/29/23		ton Laboratories, Lot		(Purchased Read		8:2 FTUCA	50000 ng/mL
PFC_ST_01369 .PFC IN 00701	03/29/23		ton Laboratories, Lot Methanol, Lot ED319-U		(Purchased Read PFC ST 00981		10:2 FTUCA d5-NEtPFOSA	50000 ng/mL 2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	rent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
reagene 1D	Date	Date	0364	VOTUNE	PFC ST 00984		13C3 HFPO-DA	
					PFC_ST_00984 PFC_ST_00985		M2-8:2 FTS	2000 ppb 1916 ppb
					PFC_ST_00986		M2-6:2 FTS	1910 ppb 1900 ppb
					PFC_ST_00980		d3-NMePFOSA	2000 ppb
					PFC ST 01108		13C-6:2 FTCA	2000 ppb 2000 ppb
					PFC ST 01109		13C-10:2 FTCA	2000 ppb 2000 ppb
					PFC_ST_01103		13C-8:2 FTCA	2000 ppb 2000 ppb
					PFC ST 01215		d3-NMeFOSAA	2000 ppb 2000 ppb
					PFC ST 01216		d5-NEtFOSAA	2000 ppb 2000 ppb
					PFC ST 01293		d7-N-MeFOSE-M	2000 ppb 2000 ppb
					PFC ST 01295		d9-N-EtFOSE-M	2000 ppb 2000 ppb
					PFC ST 01411		13C8 FOSA	2000 ppb 2000 ppb
					PFC_SI_01411 PFC_ST_01412		M2-4:2 FTS	1868 ppb
					PFC_ST_01412 PFC_ST_01467		13C-6:2 FTUCA	2000 ppb
					PFC_SI_01467		13C-8:2 FTUCA	2000 ppb 2000 ppb
					PFC_ST_01468 PFC_ST_01469		13C-8:2 FTUCA 13C-10:2 FTUCA	2000 ppb 2000 ppb
DEC CH 00001	11/23/25	ToT o	l ellington Laboratories,	T o t	(Purchased Rea		d5-NEtPFOSA	50000 ng/mL
PFC_ST_00981	11/23/23	WE	dNEtFOSA1120M	LOC	(Fulchased Rea	agent)	d3-NECPFOSA	JUUUU IIG/IIIL
PFC ST 00984	05/13/24	Wellingt	on Laboratories, Lot M3H	HFPODA0521	(Purchased Rea	agent)	13C3 HFPO-DA	50000 ng/mL
PFC ST 00985	12/17/25	Wellingt	on Laboratories, Lot M2	82FTS1220	(Purchased Rea	agent)	M2-8:2 FTS	47900 ng/mL
PFC ST 00986	05/14/26	Wellingt	on Laboratories, Lot M2	62FTS0521	(Purchased Rea	agent)	M2-6:2 FTS	47500 ng/mL
PFC_ST_01081	04/04/23	We	ellington Laboratories, dNMeFOSA0421M	Lot	(Purchased Rea	agent)	d3-NMePFOSA	50000 ng/mL
PFC ST 01108	04/04/23	Welling	gton Laboratories, Lot M	FHEA0421	(Purchased Rea	agent)	13C-6:2 FTCA	50000 ppb
PFC ST 01109	04/04/23		gton Laboratories, Lot M		(Purchased Rea	agent)	13C-10:2 FTCA	50000 ppb
PFC ST 01113	04/04/23	Welling	gton Laboratories, Lot M	FOEA1020	(Purchased Rea	agent)	13C-8:2 FTCA	50000 ppb
PFC_ST_01215	04/04/23		ellington Laboratories, d3NMeFOSAA0521		(Purchased Rea	agent)	d3-NMeFOSAA	50000 ng/mL
PFC_ST_01216	04/04/23	We	ellington Laboratories, d5NEtFOSAA0921	Lot	(Purchased Rea	agent)	d5-NEtFOSAA	50000 ng/mL
PFC_ST_01293	02/10/23	₩€	ellington Laboratories, d7NMeFOSE1220M	Lot	(Purchased Rea	agent)	d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01295	02/10/23	₩€	ellington Laboratories, d9NEtFOSE1220M	Lot	(Purchased Rea	agent)	d9-N-EtFOSE-M	50000 ng/mL
PFC_ST_01411	10/12/26		ton Laboratories, Lot M8		(Purchased Rea		13C8 FOSA	50000 ng/mL
PFC_ST_01412	10/13/26		on Laboratories, Lot M24		(Purchased Rea		M2-4:2 FTS	46700 ng/mL
PFC_ST_01467	03/22/23		ton Laboratories, Lot ME		(Purchased Rea		13C-6:2 FTUCA	50000 ppb
PFC_ST_01468	03/22/23		ton Laboratories, Lot ME		(Purchased Rea		13C-8:2 FTUCA	50000 ppb
PFC_ST_01469	03/22/23	Welling	ton Laboratories, Lot ME		(Purchased Rea		13C-10:2 FTUCA	50000 ppb
.PFC_IN_00702	10/13/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC_IN_00698	1 mL	PFECA G	2000 ppb
							PPF Acid	2000 ppb
							MTP	2000 ppb
							PFMOAA	2000 ppb
							R-EVE	2000 ppb
							R-PSDA	2000 ppb
							Hydrolyzed PSDA	2000 ppb
							PFO2HxA	2000 ppb
I							NVHOS	2000 ppb
1							PFO3OA	2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							PFO4DA	2000 ppb
							Hydro-EVE Acid	2000 ppb
							EVE Acid	2000 ppb
							R-PSDCA	2000 ppb
							Hydro-PS Acid	2000 ppb
							PS Acid	2000 ppb
							TAF	2000 ppb
							PMPA	2000 ppb
							PEPA	2000 ppb
PFC IN 00698	10/13/22	06/09/22 N	Methanol, Lot ED319-US	10 mT	PFC ST 00199	0 1 mT	PFECA G	10000 ppb
FFC_IN_00090	10/13/22	00/09/22	Methanol, Lot ED319-05	10 1111	PFC_SI_00199		PPF Acid	
						0.1 mL		10000 ppb
					PFC_ST_00332			10000 ppb
					PFC_ST_01117		PFMOAA	10000 ppb
					PFC_ST_01118	0.1 mL		10000 ppb
					PFC_ST_01119		R-PSDA	10000 ppb
					PFC_ST_01120		Hydrolyzed PSDA	10000 ppb
					PFC_ST_01121		PFO2HxA	10000 ppb
					PFC_ST_01122	0.1 mL		10000 ppb
					PFC_ST_01124		PFO3OA	10000 ppb
					PFC_ST_01127		PFO4DA	10000 ppb
					PFC_ST_01128		Hydro-EVE Acid	10000 ppb
					PFC_ST_01129	0.1 mL	EVE Acid	10000 ppb
					PFC_ST_01130	0.1 mL	R-PSDCA	10000 ppb
					PFC ST 01131	0.1 mL	Hydro-PS Acid	10000 ppb
					PFC ST 01132	0.1 mL	PS Acid	10000 ppb
					PFC ST 01133	0.1 mL	TAF	10000 ppb
					PFC ST 01134	0.1 mL	PMPA	10000 ppb
					PFC ST 01135	0.1 mL	PEPA	10000 ppb
PFC ST 00199	02/26/23		Chemours, Lot N/A		(Purchased Rea	agent)	PFECA G	1000000 ug/L
PFC ST 00329	02/26/23		Chemours, Lot N/A		(Purchased Rea		PPF Acid	1000000 ug/L
PFC ST 00332	02/26/23		Chemours, Lot N/A		(Purchased Rea		MTP	1000000 ug/L
PFC ST 01117	10/13/22		Chemours, Lot N/A		(Purchased Rea		PFMOAA	1000000 ug/L
PFC ST 01118	10/13/22		Chemours, Lot N/A		(Purchased Rea		R-EVE	1000000 ug/L
PFC ST 01119	10/13/22		Chemours, Lot N/A		(Purchased Rea		R-PSDA	1000000 ug/L
PFC ST 01120	10/13/22		Chemours, Lot N/A		(Purchased Rea		Hydrolyzed PSDA	1000000 ug/L
PFC ST 01121	10/13/22		Chemours, Lot N/A		(Purchased Re		PFO2HxA	1000000 ug/L
PFC ST 01122	10/13/22		Chemours, Lot N/A		(Purchased Re		NVHOS	1000000 ug/L
PFC ST 01124	10/13/22		Chemours, Lot N/A		(Purchased Re		PFO3OA	1000000 ug/L
PFC_SI_01124	10/13/22		Chemours, Lot N/A		(Purchased Re		PFO4DA	1000000 ug/L
PFC_SI_01127	10/13/22		Chemours, Lot N/A		(Purchased Re		Hydro-EVE Acid	1000000 ug/L
PFC_SI_01128	10/13/22		Chemours, Lot N/A		(Purchased Re		EVE Acid	1000000 ug/L
PFC_SI_01129	10/13/22		Chemours, Lot N/A		(Purchased Re		R-PSDCA	1000000 ug/L
PFC_ST_01130	10/13/22		Chemours, Lot N/A		(Purchased Re		Hvdro-PS Acid	
PFC_ST_01131 PFC_ST_01132			•		,		2	1000000 ug/L
	10/13/22		Chemours, Lot N/A		(Purchased Rea		PS Acid	1000000 ug/L
PFC_ST_01133	10/13/22		Chemours, Lot N/A		(Purchased Re		TAF	1000000 ug/L
PFC_ST_01134	10/13/22		Chemours, Lot N/A		(Purchased Rea		PMPA	1000000 ug/L
PFC ST 01135 .PFC ST 01219	10/13/22		Chemours, Lot N/A n Laboratories, Lot MPF.		(Purchased Re	agent)	PEPA	1000000 ug/L 2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Dongont	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Reagent Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
							13C2-PFDoDA	2000 ppb
							13C3 PFBS	1860 ppb
							13C3 PFHxS	1892 ppb
							13C4 PFBA	2000 ppb
							13C4 PFHpA	2000 ppb
							13C5 PFHxA	2000 ppb
							13C5 PFPeA	2000 ppb
							13C6 PFDA	2000 ppb
							13C7 PFUnA	2000 ppb
							13C8 PFOA	2000 ppb
							13C8 PFOS	1912 ppb
							13C9 PFNA	2000 ppb
.PFC ST 01249	04/26/26	Wellingt	on Laboratories, Lot MP	FACCISO516	(Purchased Rea	agent)	13C2 PFDA	2000 ng/mL
1110_01_01219	01/20/20	Weilinge	on Edbordeorres, Ede in	11100100010	(raremasea nee	rgene,	13C2 PFOA	2000 ng/mL
							13C3-PFBA	2000 ng/mL
							13C4 PFOS	1913 ng/mL
.PFC ST 01549	06/01/24	Wellingt	on Laboratories, Lot 53	7pnsp10521	(Purchased Rea	(rent)	11Cl-PF3OUdS	1860 ng/mL
1.110_51_01545	00/01/24	Wellinge	on Edboracorres, Eoc 33	71 DDR10321	(rarenasea nee	igene,	9C1-PF3ONS	1860 ng/mL
							DONA	1890 ng/mL
							HFPODA	2000 ng/mL
							NETFORA	2000 ng/mL
							NMEFOSAA	2000 ng/mL
							Perfluorobutanesulfonic acid	1770 ng/mL
							Perfluorodecanoic acid	
								2000 ng/mL
							Perfluorododecanoic acid	2000 ng/mL
							Perfluoroheptanoic acid	2000 ng/mL
							Perfluorohexanesulfonic acid	1824 ng/mL
							Perfluorohexanoic acid	2000 ng/mL
							Perfluorononanoic acid	2000 ng/mL
							Perfluorooctanesulfonic acid	1851 ng/mL
							Perfluorooctanoic acid	2000 ng/mL
							Perfluorotetradecanoic acid	2000 ng/mL
							Perfluorotridecanoic acid	2000 ng/mL
							Perfluoroundecanoic acid	2000 ng/mL
PFC_STD_XMOD5_00017	09/10/22	06/10/22	Methanol, Lot ED663-US	10 mL	PFC IN 00699	0.1 mL	Perfluorooctadecanoic acid	20 ppb
							N-ethylperfluoro-1-octanesulfo	20 ppb
							namide	
							NMeFOSA	20 ppb
							1H, 1H, 2H, 2H-perfluorodecanesul fonic acid (8:2)	19.16 ppb
							1H, 1H, 2H, 2H-perfluorododecanes ulfonic acid (10:2)	19.28 ppb
							2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	20 ppb
							2- (N-methylperfluoro-1-octanesul fonamido) ethanol	20 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Read	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							Perfluorododecanesulfonic acid (PFDoS)	19.36 ppb
							Perfluorohexadecanoic acid	20 ppb
							Perfluorooctanesulfonamide	20 ppb
							1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	18.68 ppb
							1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	18.96 ppb
							Perfluorobutanoic acid	20 ppb
							Perfluoropentanoic acid	20 ppb
							Perfluorodecanesulfonic acid	19.28 ppb
							Perfluoroheptanesulfonic acid	19.04 ppb
							Perfluorononanesulfonic acid	19.2 ppb
							Perfluoropentanesulfonic acid	18.76 ppb
					PFC_IN_00700	0.1 mL	3:3 FTCA	20 ppb
							5:3 FTCA	20 ppb
							7:3 FTCA	20 ppb
							6:2 FTCA	20 ppb
							8:2 FTCA	20 ppb
							10:2 FTCA	20 ppb
							PFECA F	20 ppb
							PFECA A	20 ppb
							PFECA B	20 ppb
							PES	17.8 ppb
							PFECHS PFPrS	18.44 ppb 18.32 ppb
							6:2 FTUCA	20 ppb
							8:2 FTUCA	20 ppb 20 ppb
							10:2 FTUCA	20 ppb 20 ppb
					PFC IN 00701	0 05 mT.	d5-NEtPFOSA	10 ppb
					110_111_00701	0.00 1112	13C3 HFPO-DA	10 ppb
							M2-8:2 FTS	9.58 ppb
							M2-6:2 FTS	9.5 ppb
							d3-NMePFOSA	10 ppb
							13C-6:2 FTCA	10 ppb
							13C-10:2 FTCA	10 ppb
							13C-8:2 FTCA	10 ppb
							d3-NMeFOSAA	10 ppb
							d5-NEtFOSAA	10 ppb
							d7-N-MeFOSE-M	10 ppb
							d9-N-EtFOSE-M	10 ppb
							13C8 FOSA	10 ppb
							M2-4:2 FTS	9.34 ppb
							13C-6:2 FTUCA	10 ppb
							13C-8:2 FTUCA	10 ppb
							13C-10:2 FTUCA	10 ppb
					PFC_IN_00702	0.1 mL	PFECA G	20 ppb
							PPF Acid	20 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added		Concentration
							MTP	20 ppk
							PFMOAA	20 ppk
							R-EVE	20 ppk
							R-PSDA	20 ppk
							Hydrolyzed PSDA	20 ppk
							PFO2HxA	20 ppk
							NVHOS	20 ppk
							PFO3OA	20 ppk
							PFO4DA	20 ppk
							Hydro-EVE Acid	20 ppk
							EVE Acid	20 ppk
							R-PSDCA	20 ppk
							Hydro-PS Acid	20 ppk
							PS Acid	20 ppk
							TAF	20 ppk
							PMPA	20 ppk
							PEPA	20 ppk
					PFC ST 01219	0.05 mL	13C2 PFTeDA	10 ppk
							13C2-PFDoDA	10 ppk
							13C3 PFBS	9.3 ppk
							13C3 PFHxS	9.46 ppk
							13C4 PFBA	10 ppk
							13C4 PFHpA	10 ppk
							13C5 PFHxA	10 ppk
							13C5 PFPeA	10 ppk
							13C6 PFDA	10 ppk
							13C7 PFUnA	10 ppk
							13C8 PFOA	10 ppk
							13C8 PFOS	9.56 ppk
							13C9 PFNA	10 ppk
					PFC ST 01249	0.025 mL	13C2 PFDA	5 ppk
					1 -1 -1		13C2 PFOA	5 ppk
							13C3-PFBA	5 ppk
							13C4 PFOS	4.7825 ppk
					PFC ST 01549	0.1 mL	11Cl-PF3OUdS	18.6 ppk
					1 -1 -1 1		9C1-PF3ONS	18.6 ppk
							DONA	18.9 ppk
							HFPODA	20 ppk
							NETFOSAA	20 ppk
							NMeFOSAA	20 ppk
							Perfluorobutanesulfonic acid	17.7 ppk
							Perfluorodecanoic acid	20 ppk
							Perfluorododecanoic acid	20 ppk
							Perfluoroheptanoic acid	20 ppk
							Perfluorohexanesulfonic acid	18.24 ppk
							Perfluorohexanoic acid	20 ppk
							Perfluorononanoic acid	20 ppk
		1			1		Perfluorooctanesulfonic acid	18.51 ppk

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		Concentration
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	
							Perfluorooctanoic acid	20 ppb
							Perfluorotetradecanoic acid	20 ppb
							Perfluorotridecanoic acid	20 ppb
							Perfluoroundecanoic acid	20 ppb
.PFC IN 00699	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mL	PFC ST 00747	0.2 mL	Perfluorooctadecanoic acid	2000 ng/mL
			•		PFC_ST_00971	0.2 mL	N-ethylperfluoro-1-octanesulfo namide	2000 ng/mL
					PFC ST 00972	0.2 mT	NMeFOSA	2000 ng/mL
					PFC_ST_00976		1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	1916 ng/mL
					PFC_ST_00977		1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	
					PFC_ST_01073	0.2 mL	2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	2000 ng/mL
					PFC_ST_01082	0.2 mL	2- (N-methylperfluoro-1-octanesul fonamido) ethanol	2000 ng/mL
					PFC_ST_01224		Perfluorododecanesulfonic acid (PFDoS)	J.
					PFC ST 01226	0.2 mL	Perfluorohexadecanoic acid	2000 ng/mL
					PFC ST 01227	0.2 mL	Perfluorooctanesulfonamide	2000 ng/mL
					PFC_ST_01228		1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	1868 ng/mL
					PFC_ST_01229		1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	1896 ng/mL
					PFC ST 01232	0.2 mL	Perfluorobutanoic acid	2000 ng/mL
					PFC ST 01233		Perfluoropentanoic acid	2000 ng/mL
					PFC ST 01234	0.2 mL	Perfluorodecanesulfonic acid	1928 ng/mL
					PFC ST 01235	0.2 mL	Perfluoroheptanesulfonic acid	1904 ng/mL
					PFC ST 01236	0.2 mL	Perfluorononanesulfonic acid	1920 ng/mL
					PFC ST 01237	0.2 mL	Perfluoropentanesulfonic acid	1876 ng/mL
PFC ST 00747	11/13/25	Welling	ton Laboratories, Lot F	FODA1020	(Purchased Rea	igent)	Perfluorooctadecanoic acid	50000 ng/mL
PFC_ST_00971	11/23/25	Wellingto	on Laboratories, Lot NE	tFOSA1120M	(Purchased Rea	igent)	N-ethylperfluoro-1-octanesulfo namide	50000 ng/mL
PFC ST 00972	10/20/25	Wellingto	on Laboratories, Lot NMe	eFOSA1020M	(Purchased Rea	igent)	NMeFOSA	50000 ng/mL
PFC_ST_00976	12/01/25	_	ton Laboratories, Lot 8		(Purchased Rea	<i>,</i>	1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	
PFC_ST_00977	03/03/26	_	ton Laboratories, Lot 1		(Purchased Rea		1H, 1H, 2H, 2H-perfluorododecanes ulfonic acid (10:2)	48200 ng/mL
PFC_ST_01073	06/02/26	_	on Laboratories, Lot NE		(Purchased Rea		2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	50000 ng/mL
PFC_ST_01082		_	on Laboratories, Lot NM		(Purchased Rea		2- (N-methylperfluoro-1-octanesul fonamido) ethanol	50000 ng/mL
PFC_ST_01224	02/16/23	,	ton Laboratories, Lot L		(Purchased Rea		Perfluorododecanesulfonic acid (PFDoS)	J.
PFC_ST_01226	05/07/26		ton Laboratories, Lot P		(Purchased Rea		Perfluorohexadecanoic acid	50000 ng/mL
PFC ST 01227	08/10/26	Welling	ton Laboratories, Lot F	OSA0721I	(Purchased Rea	igent)	Perfluorooctanesulfonamide	50000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
PFC_ST_01228	10/04/26		gton Laboratories, Lot		(Purchased Read		1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	
PFC_ST_01229	06/09/26	Welling	gton Laboratories, Lot	62FTS0521	(Purchased Reac	gent)	1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	47400 ng/mL
PFC_ST_01232	10/04/26		gton Laboratories, Lot		(Purchased Read	gent)	Perfluorobutanoic acid	50000 ng/mL
PFC_ST_01233	08/10/26		gton Laboratories, Lot		(Purchased Read		Perfluoropentanoic acid	50000 ng/mL
PFC_ST_01234	08/19/26		ton Laboratories, Lot		(Purchased Read		Perfluorodecanesulfonic acid	48200 ng/mL
PFC_ST_01235	07/09/26		ton Laboratories, Lot I		(Purchased Read		Perfluoroheptanesulfonic acid	47600 ng/mL
PFC_ST_01236	10/19/26		ston Laboratories, Lot		(Purchased Read		Perfluorononanesulfonic acid	48000 ng/mL
PFC_ST_01237	07/12/26		ton Laboratories, Lot I		(Purchased Read	, ,	Perfluoropentanesulfonic acid	46900 ng/mL
.PFC_IN_00700	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mL			3:3 FTCA	2000 ppb
					PFC_ST_01095		5:3 FTCA	2000 ppb
					PFC_ST_01096		7:3 FTCA	2000 ppb
					PFC_ST_01097		6:2 FTCA	2000 ppb
					PFC_ST_01098		8:2 FTCA	2000 ppb
					PFC_ST_01099		10:2 FTCA	2000 ppb
					PFC_ST_01103		PFECA F	2000 ppb
					PFC_ST_01104		PFECA A	2000 ppb
					PFC_ST_01105		PFECA B	2000 ppb
					PFC_ST_01106	0.2 mL		1780 ppb
					PFC_ST_01107		PFECHS	1844 ppb
					PFC_ST_01223		PFPrS	1832 ppb
					PFC_ST_01367		6:2 FTUCA	2000 ppb
					PFC_ST_01368		8:2 FTUCA	2000 ppb
					PFC_ST_01369		10:2 FTUCA	2000 ppb
PFC_ST_01094	11/12/25		ston Laboratories, Lot		(Purchased Read		3:3 FTCA	50000 ng/mL
PFC_ST_01095	11/11/25		ton Laboratories, Lot		(Purchased Read		5:3 FTCA	50000 ng/mI
PFC_ST_01096	11/12/25		ston Laboratories, Lot		(Purchased Read	, ,	7:3 FTCA	50000 ng/mI
PFC_ST_01097	03/08/24		gton Laboratories, Lot		(Purchased Read		6:2 FTCA	50000 ng/mL
PFC_ST_01098	08/18/24		gton Laboratories, Lot		(Purchased Read		8:2 FTCA	50000 ng/mI
PFC_ST_01099	07/07/23		gton Laboratories, Lot		(Purchased Read		10:2 FTCA	50000 ng/mL
PFC_ST_01103	03/31/25		on Laboratories, Lot P		(Purchased Read		PFECA F	50000 ng/mL
PFC_ST_01104	03/31/25		on Laboratories, Lot P		(Purchased Read		PFECA A	50000 ng/mL
PFC_ST_01105	03/31/25		on Laboratories, Lot 36		(Purchased Read		PFECA B	50000 ng/mL
PFC_ST_01106	05/13/25		ton Laboratories, Lot B		(Purchased Read		PES	44500 ppb
PFC_ST_01107	04/06/26		ton Laboratoires, Lot E		(Purchased Read		PFECHS	46100 ppb
PFC_ST_01223	07/12/26		ton Laboratories, Lot I		(Purchased Read		PFPrS	45800 ppb
PFC_ST_01367	09/03/23		ton Laboratories, Lot		(Purchased Read		6:2 FTUCA	50000 ng/mL
PFC_ST_01368	03/29/23		ton Laboratories, Lot		(Purchased Read	gent)	8:2 FTUCA	50000 ng/mL
PFC_ST_01369	03/29/23		ton Laboratories, Lot		(Purchased Read		10:2 FTUCA	50000 ng/mL
.PFC_IN_00701	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mL	PFC_ST_00981		d5-NEtPFOSA	2000 ppb
					PFC_ST_00984		13C3 HFPO-DA	2000 ppb
					PFC_ST_00985		M2-8:2 FTS	1916 ppb
					PFC_ST_00986		M2-6:2 FTS	1900 ppb
					PFC_ST_01081		d3-NMePFOSA	2000 ppb
					PFC_ST_01108		13C-6:2 FTCA	2000 ppb
					PFC_ST_01109		13C-10:2 FTCA	2000 ppb
					PFC_ST_01113	0.2 mL	13C-8:2 FTCA	2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					PFC_ST_01215	0.2 mL	d3-NMeFOSAA	2000 ppb
					PFC_ST_01216	0.2 mL	d5-NEtFOSAA	2000 ppb
					PFC_ST_01293	0.2 mL	d7-N-MeFOSE-M	2000 ppb
					PFC_ST_01295	0.2 mL	d9-N-EtFOSE-M	2000 ppb
					PFC_ST_01411		13C8 FOSA	2000 ppb
					PFC_ST_01412		M2-4:2 FTS	1868 ppb
					PFC_ST_01467		13C-6:2 FTUCA	2000 ppb
					PFC_ST_01468		13C-8:2 FTUCA	2000 ppb
					PFC_ST_01469		13C-10:2 FTUCA	2000 ppb
PFC_ST_00981	11/23/25	₩e	ellington Laboratories, 1 dNEtFOSA1120M	Lot	(Purchased Read	gent)	d5-NEtPFOSA	50000 ng/mL
PFC ST 00984	05/13/24		on Laboratories, Lot M3H		(Purchased Read		13C3 HFPO-DA	50000 ng/mL
PFC ST 00985	12/17/25	Wellingt	ton Laboratories, Lot M28	82FTS1220	(Purchased Read		M2-8:2 FTS	47900 ng/mL
PFC_ST_00986	05/14/26		ton Laboratories, Lot M2		(Purchased Read		M2-6:2 FTS	47500 ng/mL
PFC_ST_01081	04/04/23		ellington Laboratories, 1 dNMeFOSA0421M		(Purchased Read		d3-NMePFOSA	50000 ng/mL
PFC ST 01108	04/04/23	Welling	gton Laboratories, Lot M	FHEA0421	(Purchased Read	gent)	13C-6:2 FTCA	50000 ppb
PFC ST 01109	04/04/23	Welling	gton Laboratories, Lot M	FDEA0817	(Purchased Read	gent)	13C-10:2 FTCA	50000 ppb
PFC_ST_01113	04/04/23	Welling	gton Laboratories, Lot M	FOEA1020	(Purchased Read	gent)	13C-8:2 FTCA	50000 ppb
PFC_ST_01215	04/04/23	₩€	ellington Laboratories, 1 d3NMeFOSAA0521	Lot	(Purchased Read	gent)	d3-NMeFOSAA	50000 ng/mL
PFC_ST_01216	04/04/23	We	ellington Laboratories, 1 d5NEtFOSAA0921	Lot	(Purchased Read	gent)	d5-NEtFOSAA	50000 ng/mL
PFC_ST_01293	02/10/23	We	ellington Laboratories, 1 d7NMeFOSE1220M	Lot	(Purchased Read	gent)	d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01295	02/10/23	We	ellington Laboratories, 1 d9NEtFOSE1220M	Lot	(Purchased Read	gent)	d9-N-EtFOSE-M	50000 ng/mL
PFC ST 01411	10/12/26	Wellingt	on Laboratories, Lot M81	FOSA0921I	(Purchased Read	gent)	13C8 FOSA	50000 ng/mL
PFC ST 01412	10/13/26	Wellingt	on Laboratories, Lot M24	2FTS01021	(Purchased Read	gent)	M2-4:2 FTS	46700 ng/mL
PFC ST 01467	03/22/23		ton Laboratories, Lot MF		(Purchased Read	gent)	13C-6:2 FTUCA	50000 ppb
PFC_ST_01468	03/22/23	Welling	ton Laboratories, Lot MF	OUEA1121	(Purchased Read	gent)	13C-8:2 FTUCA	50000 ppb
PFC_ST_01469	03/22/23		ton Laboratories, Lot MF		(Purchased Read		13C-10:2 FTUCA	50000 ppb
.PFC_IN_00702	10/13/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC_IN_00698	1 mL	PFECA G	2000 ppb
							PPF Acid	2000 ppb
							MTP	2000 ppb
							PFMOAA	2000 ppb
							R-EVE	2000 ppb
							R-PSDA	2000 ppb
							Hydrolyzed PSDA	2000 ppb
							PFO2HxA	2000 ppb
							NVHOS	2000 ppb
							PF030A	2000 ppb
							PFO4DA	2000 ppb
							Hydro-EVE Acid	2000 ppb
							EVE Acid	2000 ppb
							R-PSDCA	2000 ppb
							Hydro-PS Acid	2000 ppb
							PS Acid	2000 ppb
							TAF	2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

			Reagent	Parent Read	gent ————		
Reagent ID	Exp Prep Date Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
						PMPA	2000 ppb
						PEPA	2000 ppb
PFC_IN_00698	10/13/22 06/09/2	2 Methanol, Lot ED319-US	10 mL			PFECA G	10000 ppb
				PFC_ST_00329	0.1 mL	PPF Acid	10000 ppb
				PFC_ST_00332	0.1 mL	MTP	10000 ppb
				PFC_ST_01117		PFMOAA	10000 ppb
				PFC_ST_01118	0.1 mL		10000 ppb
				PFC_ST_01119	0.1 mL	R-PSDA	10000 ppb
				PFC_ST_01120	0.1 mL	Hydrolyzed PSDA	10000 ppb
				PFC_ST_01121	0.1 mL	PFO2HxA	10000 ppb
				PFC_ST_01122	0.1 mL		10000 ppb
				PFC ST 01124		PFO3OA	10000 ppb
				PFC ST 01127	0.1 mL	PFO4DA	10000 ppb
				PFC ST 01128	0.1 mL	Hydro-EVE Acid	10000 ppb
				PFC ST 01129	0.1 mL	EVE Acid	10000 ppb
				PFC ST 01130	0.1 mL	R-PSDCA	10000 ppb
				PFC ST 01131	0.1 mL	Hydro-PS Acid	10000 ppb
				PFC ST 01132		PS Acid	10000 ppb
				PFC ST 01133	0.1 mL	TAF	10000 ppb
				PFC ST 01134	0.1 mL	PMPA	10000 ppb
				PFC ST 01135	0.1 mL		10000 ppb
PFC ST 00199	02/26/23	Chemours, Lot N/A		(Purchased Re		PFECA G	1000000 ug/L
PFC ST 00329	02/26/23	Chemours, Lot N/A		(Purchased Re		PPF Acid	1000000 ug/I
PFC ST 00332	02/26/23	Chemours, Lot N/A		(Purchased Re		MTP	1000000 ug/I
PFC ST 01117	10/13/22	Chemours, Lot N/A		(Purchased Re		PFMOAA	1000000 ug/I
PFC ST 01118	10/13/22	Chemours, Lot N/A		(Purchased Re		R-EVE	1000000 ug/L
PFC ST 01119	10/13/22	Chemours, Lot N/A		(Purchased Re		R-PSDA	1000000 ug/I
PFC ST 01120	10/13/22	Chemours, Lot N/A		(Purchased Re		Hydrolyzed PSDA	1000000 ug/I
PFC ST 01121	10/13/22	Chemours, Lot N/A		(Purchased Re		PFO2HxA	1000000 ug/I
PFC ST 01122	10/13/22	Chemours, Lot N/A		(Purchased Re		NVHOS	1000000 ug/I
PFC ST 01124	10/13/22	Chemours, Lot N/A		(Purchased Re		PFO3OA	1000000 ug/I
PFC ST 01127	10/13/22	Chemours, Lot N/A		(Purchased Re		PFO4DA	1000000 ug/I
PFC ST 01128	10/13/22	Chemours, Lot N/A		(Purchased Re		Hydro-EVE Acid	1000000 ug/I
PFC ST 01129	10/13/22	Chemours, Lot N/A		(Purchased Re		EVE Acid	1000000 ug/I
PFC ST 01130	10/13/22	Chemours, Lot N/A		(Purchased Re		R-PSDCA	1000000 ug/I
PFC ST 01131	10/13/22	Chemours, Lot N/A		(Purchased Re		Hydro-PS Acid	1000000 ug/I
PFC ST 01132	10/13/22	Chemours, Lot N/A		(Purchased Re		PS Acid	1000000 ug/I
PFC ST 01133	10/13/22	Chemours, Lot N/A		(Purchased Re		TAF	1000000 ug/I
PFC ST 01134	10/13/22	Chemours, Lot N/A		(Purchased Re		PMPA	1000000 ug/L
PFC ST 01135	10/13/22	Chemours, Lot N/A		(Purchased Re		PEPA	1000000 ug/I
.PFC ST 01219		ton Laboratories, Lot MPFA	ACCES0121	(Purchased Re		13C2 PFTeDA	2000 ppb
-1 -1	1 , 1, 1			, , , , , , , , , , , , , , , , , , , ,	J /	13C2-PFDoDA	2000 ppb
						13C3 PFBS	1860 ppb
						13C3 PFHxS	1892 ppb
						13C4 PFBA	2000 ppb
						13C4 PFHpA	2000 ppb
						13C5 PFHxA	2000 ppb
						13C5 PFPeA	2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

					Reagent	Parent Rea	gent		
Reagent ID	Exp Date	Prep Date		utant sed	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
								13C6 PFDA	2000 pph
								13C7 PFUnA	2000 ppk
								13C8 PFOA	2000 ppk
								13C8 PFOS	1912 ppk
								13C9 PFNA	2000 ppl
.PFC ST 01249	04/26/26	Wellingt	on Laborator	ries, Lot MP	FACCIS0516	(Purchased Re	eagent)	13C2 PFDA	2000 ng/m
								13C2 PFOA	2000 ng/m
							13C3-PFBA	2000 ng/ml	
								13C4 PFOS	1913 ng/ml
PFC ST 01549	06/01/24	Wellingt	on Laborator	ries, Lot 53	7PDSR10521	(Purchased Re	eagent)	11Cl-PF3OUdS	1860 ng/ml
				·			· .	9C1-PF3ONS	1860 ng/mI
								DONA	1890 ng/mI
								HFPODA	2000 ng/mI
								NEtFOSAA	2000 ng/ml
								NMeFOSAA	2000 ng/mI
								Perfluorobutanesulfonic acid	1770 ng/mI
								Perfluorodecanoic acid	2000 ng/mI
								Perfluorododecanoic acid	2000 ng/mI
								Perfluoroheptanoic acid	2000 ng/mI
								Perfluorohexanesulfonic acid	1824 ng/mI
								Perfluorohexanoic acid	2000 ng/mI
								Perfluorononanoic acid	2000 ng/mI
								Perfluorooctanesulfonic acid	1851 ng/mI
								Perfluorooctanoic acid	2000 ng/mI
								Perfluorotetradecanoic acid	2000 ng/ml
								Perfluorotridecanoic acid	2000 ng/ml
								Perfluoroundecanoic acid	2000 ng/ml
PFC_STD_XMOD6_00018	09/10/22	06/10/22	Methanol, I	Lot ED663-US	10 mL	PFC_IN_00699	0.25 mL	Perfluorooctadecanoic acid	50 ppk
								N-ethylperfluoro-1-octanesulfo namide	50 ppk
								NMeFOSA	50 ppk
								1H, 1H, 2H, 2H-perfluorodecanesul fonic acid (8:2)	
								1H, 1H, 2H, 2H-perfluorododecanes ulfonic acid (10:2)	48.2 ppk
								2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	
								2- (N-methylperfluoro-1-octanesul fonamido) ethanol	
								Perfluorododecanesulfonic acid (PFDoS)	
								Perfluorohexadecanoic acid	50 ppk
								Perfluorooctanesulfonamide	50 ppk
								1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	46.7 ppk

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	rent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
							1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	47.4 ppb
							Perfluorobutanoic acid	50 ppb
							Perfluoropentanoic acid	50 pph
							Perfluorodecanesulfonic acid	48.2 ppb
							Perfluoroheptanesulfonic acid	47.6 ppb
							Perfluorononanesulfonic acid	48 ppb
							Perfluoropentanesulfonic acid	46.9 ppb
					PFC_IN_00700	0.25 mL	3:3 FTCA	50 pph
							5:3 FTCA	50 ppb
							7:3 FTCA	50 ppb
							6:2 FTCA	50 ppb
							8:2 FTCA	50 pph
							10:2 FTCA	50 pph
							PFECA F	50 ppb
							PFECA A	50 pph
							PFECA B	50 ppb
							PES	44.5 ppb
							PFECHS	46.1 ppb
							PFPrS	45.8 ppb
							6:2 FTUCA	50 ppb
							8:2 FTUCA	50 ppb
							10:2 FTUCA	50 pph
					PFC IN 00701	0.05 mL	d5-NEtPFOSA	10 ppb
							13C3 HFPO-DA	10 ppb
							M2-8:2 FTS	9.58 pph
							M2-6:2 FTS	9.5 ppb
							d3-NMePFOSA	10 ppb
							13C-6:2 FTCA	10 ppb
							13C-10:2 FTCA	10 ppb
							13C-8:2 FTCA	10 ppb
							d3-NMeFOSAA	10 ppb
							d5-NEtFOSAA	10 ppb
							d7-N-MeFOSE-M	10 ppb
							d9-N-EtFOSE-M	10 ppb
							13C8 FOSA	10 ppb
							M2-4:2 FTS	9.34 ppb
							13C-6:2 FTUCA	10 ppb
							13C-8:2 FTUCA	10 ppb
							13C-10:2 FTUCA	10 ppb
					PFC_IN_00702	0.25 mL	PFECA G	50 ppb
							PPF Acid	50 ppb
							MTP	50 ppb
							PFMOAA	50 ppb
							R-EVE	50 ppb
							R-PSDA	50 ppb
							Hydrolyzed PSDA	50 ppb
							PFO2HxA	50 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added		Concentration
							NVHOS	50 pg
							PFO3OA	50 pr
							PFO4DA	50 pg
							Hydro-EVE Acid	50 pg
							EVE Acid	50 pg
							R-PSDCA	50 p
							Hydro-PS Acid	50 p
							PS Acid	50 p
							TAF	50 p
							PMPA	50 p
							PEPA	50 p
					PFC ST 01219	0 05 mT	13C2 PFTeDA	10 p
					110_31_01213	0.03 1111	13C2-PFDoDA	10 p
							13C3 PFBS	9.3 p
							13C3 PFBS	9.46 p
							13C4 PFBA	9.40 p
								10 p
							13C4 PFHpA 13C5 PFHxA	10 p
								10 p
							13C5 PFPeA	10 p
							13C6 PFDA	10 p
							13C7 PFUnA	10 p
							13C8 PFOA	10 pp
							13C8 PFOS	9.56 p
							13C9 PFNA	10 pp
					PFC_ST_01249	0.025 mL	13C2 PFDA	5 pg
							13C2 PFOA	5 p
							13C3-PFBA	5 p
							13C4 PFOS	4.7825 p
					PFC_ST_01549	0.25 mL	11Cl-PF3OUdS	46.5 p
							9C1-PF3ONS	46.5 p
							DONA	47.25 p
							HFPODA	50 p
							NETFOSAA	50 p
							NMeFOSAA	50 p
							Perfluorobutanesulfonic acid	44.25 p
							Perfluorodecanoic acid	50 p
							Perfluorododecanoic acid	50 p
							Perfluoroheptanoic acid	50 p
							Perfluorohexanesulfonic acid	45.6 p
							Perfluorohexanoic acid	50 p
							Perfluorononanoic acid	50 p
							Perfluorooctanesulfonic acid	46.275 p
							Perfluorooctanoic acid	50 p
							Perfluorotetradecanoic acid	50 p
							Perfluorotridecanoic acid	50 pg
							Perfluoroundecanoic acid	50 pr
IN 00699	10/00/00	06/00/00 16	ethanol, Lot ED319-US	. +	PFC_ST_00747		Perfluorooctadecanoic acid	2000 ng/i

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reage	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					PFC_ST_00971	0.2 mL	N-ethylperfluoro-1-octanesulfo namide	2000 ng/mL
					PFC ST 00972	0.2 mL	NMeFOSA	2000 ng/mL
					PFC_ST_00976	0.2 mL	1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	1916 ng/mL
					PFC_ST_00977		1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	1928 ng/mL
					PFC_ST_01073	0.2 mL	2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	2000 ng/mL
					PFC_ST_01082	0.2 mL	2- (N-methylperfluoro-1-octanesul fonamido) ethanol	2000 ng/mL
					PFC_ST_01224		Perfluorododecanesulfonic acid (PFDoS)	1936 ng/mL
					PFC_ST_01226		Perfluorohexadecanoic acid	2000 ng/mL
					PFC_ST_01227		Perfluorooctanesulfonamide	2000 ng/mL
					PFC_ST_01228		1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	1868 ng/mL
					PFC_ST_01229		1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	1896 ng/mL
					PFC_ST_01232		Perfluorobutanoic acid	2000 ng/mL
					PFC_ST_01233		Perfluoropentanoic acid	2000 ng/mL
					PFC_ST_01234		Perfluorodecanesulfonic acid	1928 ng/mL
					PFC_ST_01235	0.2 mL	Perfluoroheptanesulfonic acid	1904 ng/mL
					PFC_ST_01236		Perfluorononanesulfonic acid	1920 ng/mL
					PFC_ST_01237		Perfluoropentanesulfonic acid	1876 ng/mL
PFC_ST_00747	11/13/25		ton Laboratories, Lot P		(Purchased Read	, ,	Perfluorooctadecanoic acid	50000 ng/mL
PFC_ST_00971	11/23/25		on Laboratories, Lot NEt		(Purchased Read		N-ethylperfluoro-1-octanesulfo namide	50000 ng/mL
PFC_ST_00972	10/20/25		on Laboratories, Lot NMe		(Purchased Read	, ,	NMeFOSA	50000 ng/mL
PFC_ST_00976	12/01/25	-	gton Laboratories, Lot 8		(Purchased Read		1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	47900 ng/mL
PFC_ST_00977	03/03/26	_	ton Laboratories, Lot 10		(Purchased Read		1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	48200 ng/mL
PFC_ST_01073	06/02/26	_	on Laboratories, Lot NEt		(Purchased Read		2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	50000 ng/mL
PFC_ST_01082			on Laboratories, Lot NMe		(Purchased Reag		2- (N-methylperfluoro-1-octanesul fonamido) ethanol	50000 ng/mL
PFC_ST_01224	02/16/23		ton Laboratories, Lot LI		(Purchased Read		Perfluorododecanesulfonic acid (PFDoS)	
PFC_ST_01226	05/07/26		ton Laboratories, Lot PI		(Purchased Read		Perfluorohexadecanoic acid	50000 ng/mL
PFC_ST_01227	08/10/26		ston Laboratories, Lot F		(Purchased Read		Perfluorooctanesulfonamide	50000 ng/mL
PFC_ST_01228	10/04/26	_	ston Laboratories, Lot 4		(Purchased Read		1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	46700 ng/mL
PFC_ST_01229	06/09/26	_	gton Laboratories, Lot 6		(Purchased Read		1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	47400 ng/mL
PFC_ST_01232	10/04/26	Wellin	gton Laboratories, Lot B	PFBA1021	(Purchased Read	gent)	Perfluorobutanoic acid	50000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
PFC ST 01233	08/10/26	Welling	ton Laboratories, Lot	PFPeA0721	(Purchased Rea	agent)	Perfluoropentanoic acid	50000 ng/mL
PFC ST 01234	08/19/26		ton Laboratories, Lot		(Purchased Rea	agent)	Perfluorodecanesulfonic acid	48200 ng/mL
PFC ST 01235	07/09/26		ton Laboratories, Lot		(Purchased Rea		Perfluoroheptanesulfonic acid	47600 ng/mL
PFC ST 01236	10/19/26		ton Laboratories, Lot		(Purchased Rea	,	Perfluorononanesulfonic acid	48000 ng/mL
PFC ST 01237	07/12/26		ton Laboratories, Lot		(Purchased Rea		Perfluoropentanesulfonic acid	46900 ng/mL
.PFC IN 00700	12/09/22		Methanol, Lot ED319-U		-		3:3 FTCA	2000 ppb
	, ,	, ,	,		PFC ST 01095		5:3 FTCA	2000 ppb
					PFC ST 01096		7:3 FTCA	2000 ppb
					PFC ST 01097		6:2 FTCA	2000 ppb
					PFC ST 01098		8:2 FTCA	2000 ppb
					PFC ST 01099		10:2 FTCA	2000 ppb
					PFC ST 01103		PFECA F	2000 ppb
					PFC ST 01104	0.2 mL	PFECA A	2000 ppb
					PFC ST 01105		PFECA B	2000 ppb
					PFC ST 01106	0.2 mL		1780 ppb
					PFC ST 01107		PFECHS	1844 ppb
					PFC ST 01223	0.2 mL	PFPrS	1832 ppb
					PFC ST 01367	0.2 mL	6:2 FTUCA	2000 ppb
					PFC ST 01368	0.2 mL	8:2 FTUCA	2000 ppb
					PFC ST 01369		10:2 FTUCA	2000 ppb
PFC ST 01094	11/12/25	Welling	gton Laboratories, Lot	FPrPA1020	(Purchased Rea	agent)	3:3 FTCA	50000 ng/mL
PFC ST 01095	11/11/25		gton Laboratories, Lot		(Purchased Rea		5:3 FTCA	50000 ng/mL
PFC ST 01096	11/12/25	Welling	gton Laboratories, Lot	FHpPA1020	(Purchased Rea	agent)	7:3 FTCA	50000 ng/mL
PFC ST 01097	03/08/24	Wellin	gton Laboratories, Lot	t FHEA0321	(Purchased Rea	agent)	6:2 FTCA	50000 ng/mL
PFC ST 01098	08/18/24	Wellin	gton Laboratories, Lot	t FOEA0821	(Purchased Rea		8:2 FTCA	50000 ng/mL
PFC ST 01099	07/07/23	Wellin	gton Laboratories, Lot	t FDEA0720	(Purchased Rea	agent)	10:2 FTCA	50000 ng/mL
PFC_ST_01103	03/31/25	Wellingt	on Laboratories, Lot	PF40PeA0320	(Purchased Rea	agent)	PFECA F	50000 ng/mL
PFC_ST_01104	03/31/25		on Laboratories, Lot		(Purchased Rea		PFECA A	50000 ng/mL
PFC_ST_01105	03/31/25		on Laboratories, Lot 3		(Purchased Rea		PFECA B	50000 ng/mL
PFC_ST_01106	05/13/25		ton Laboratories, Lot		(Purchased Rea		PES	44500 ppb
PFC_ST_01107	04/06/26		ton Laboratoires, Lot		(Purchased Rea	- , , , , , , , , , , , , , , , , , , ,	PFECHS	46100 ppb
PFC_ST_01223	07/12/26		ton Laboratories, Lot		(Purchased Rea		PFPrS	45800 ppb
PFC_ST_01367	09/03/23		gton Laboratories, Lot		(Purchased Rea		6:2 FTUCA	50000 ng/mL
PFC_ST_01368	03/29/23	Welling	gton Laboratories, Lot	FOUEA0321	(Purchased Rea		8:2 FTUCA	50000 ng/mL
PFC_ST_01369	03/29/23		ton Laboratories, Lot		(Purchased Rea	,	10:2 FTUCA	50000 ng/mL
.PFC_IN_00701	12/09/22	06/09/22	Methanol, Lot ED319-0	JS 5 mL	PFC_ST_00981		d5-NEtPFOSA	2000 ppb
					PFC_ST_00984		13C3 HFPO-DA	2000 ppb
					PFC_ST_00985		M2-8:2 FTS	1916 ppb
					PFC_ST_00986		M2-6:2 FTS	1900 ppb
					PFC_ST_01081		d3-NMePFOSA	2000 ppb
					PFC_ST_01108		13C-6:2 FTCA	2000 ppb
					PFC_ST_01109		13C-10:2 FTCA	2000 ppb
					PFC_ST_01113		13C-8:2 FTCA	2000 ppb
					PFC_ST_01215		d3-NMeFOSAA	2000 ppb
					PFC_ST_01216		d5-NEtFOSAA	2000 ppb
					PFC_ST_01293		d7-N-MeFOSE-M	2000 ppb
					PFC_ST_01295		d9-N-EtFOSE-M	2000 ppb
					PFC_ST_01411	U.2 mL	13C8 FOSA	2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	ent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					PFC_ST_01412	0.2 mL	M2-4:2 FTS	1868 ppb
					PFC_ST_01467	0.2 mL	13C-6:2 FTUCA	2000 ppb
					PFC_ST_01468		13C-8:2 FTUCA	2000 ppb
					PFC_ST_01469		13C-10:2 FTUCA	2000 ppb
PFC_ST_00981	11/23/25		ellington Laboratories, 1 dNEtFOSA1120M		(Purchased Rea		d5-NEtPFOSA	50000 ng/mL
PFC_ST_00984	05/13/24		on Laboratories, Lot M3H		(Purchased Rea		13C3 HFPO-DA	50000 ng/mL
PFC_ST_00985	12/17/25		on Laboratories, Lot M28		(Purchased Rea	- ·	M2-8:2 FTS	47900 ng/mL
PFC_ST_00986	05/14/26		on Laboratories, Lot M20		(Purchased Rea		M2-6:2 FTS	47500 ng/mL
PFC_ST_01081	04/04/23		ellington Laboratories, I dNMeFOSA0421M		(Purchased Rea		d3-NMePFOSA	50000 ng/mL
PFC_ST_01108	04/04/23		ton Laboratories, Lot MI		(Purchased Rea		13C-6:2 FTCA	50000 ppb
PFC_ST_01109	04/04/23	Welling	ton Laboratories, Lot MI	FDEA0817	(Purchased Rea	,	13C-10:2 FTCA	50000 ppb
PFC_ST_01113	04/04/23		ton Laboratories, Lot MI		(Purchased Rea	,	13C-8:2 FTCA	50000 ppb
PFC_ST_01215	04/04/23		ellington Laboratories, 1 d3NMeFOSAA0521		(Purchased Rea		d3-NMeFOSAA	50000 ng/mL
PFC_ST_01216	04/04/23		ellington Laboratories, 1 d5NEtFOSAA0921		(Purchased Rea		d5-NEtFOSAA	50000 ng/mL
PFC_ST_01293	02/10/23	W∈	ellington Laboratories, 1 d7NMeFOSE1220M	Lot	(Purchased Rea	agent)	d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01295	02/10/23	W∈	llington Laboratories, 1	Lot	(Purchased Rea	agent)	d9-N-EtFOSE-M	50000 ng/mL
PFC ST 01411	10/12/26	Wellingt	on Laboratories, Lot M81	FOSA0921I	(Purchased Rea	agent)	13C8 FOSA	50000 ng/mL
PFC ST 01412	10/13/26	Wellingt	on Laboratories, Lot M24	2FTS01021	(Purchased Rea	agent)	M2-4:2 FTS	46700 ng/mL
PFC_ST_01467	03/22/23		ton Laboratories, Lot MF		(Purchased Rea		13C-6:2 FTUCA	50000 ppb
PFC_ST_01468	03/22/23		ton Laboratories, Lot MF		(Purchased Rea		13C-8:2 FTUCA	50000 ppb
PFC_ST_01469	03/22/23		ton Laboratories, Lot MF		(Purchased Rea		13C-10:2 FTUCA	50000 ppb
.PFC_IN_00702	10/13/22	06/10/22	Methanol, Lot ED663-US	5 mL	PFC_IN_00698	1 mL	PFECA G	2000 ppb
							PPF Acid	2000 ppb
							MTP	2000 ppb
							PFMOAA	2000 ppb
							R-EVE	2000 ppb
							R-PSDA	2000 ppb
							Hydrolyzed PSDA	2000 ppb
							PFO2HxA	2000 ppb
							NVHOS	2000 ppb
							PF030A	2000 ppb
							PFO4DA	2000 ppb
							Hydro-EVE Acid	2000 ppb
							EVE Acid	2000 ppb
							R-PSDCA Hydro-PS Acid	2000 ppb 2000 ppb
							PS Acid	2000 ppb 2000 ppb
							TAF	2000 ppb 2000 ppb
							PMPA	2000 ppb 2000 ppb
							PEPA	2000 ppb 2000 ppb
PFC IN 00698	10/13/22	06/09/22	Methanol, Lot ED319-US	10 mT	PFC ST 00199	0 1 mT	PEPA PFECA G	10000 ppb
rc_in_00090	10/13/22	00/03/22	Ficcination, not ED319-05	10 1111	PFC_ST_00199		PPF Acid	10000 ppb
					PFC ST 00332	0.1 mL		10000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	gent		
	Exp	Prep	Dilutant	Final		Volume		
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
					PFC ST 01117	0.1 mL	PFMOAA	10000 ppb
					PFC_ST_01118	0.1 mL	R-EVE	10000 ppb
					PFC_ST_01119	0.1 mL	R-PSDA	10000 ppb
					PFC_ST_01120	0.1 mL	Hydrolyzed PSDA	10000 ppb
					PFC_ST_01121		PFO2HxA	10000 ppb
					PFC_ST_01122		NVHOS	10000 ppb
					PFC_ST_01124		PFO3OA	10000 ppb
					PFC_ST_01127		PFO4DA	10000 ppb
					PFC_ST_01128	0.1 mL	Hydro-EVE Acid	10000 ppb
					PFC_ST_01129		EVE Acid	10000 ppb
					PFC_ST_01130		R-PSDCA	10000 ppb
					PFC_ST_01131		Hydro-PS Acid	10000 ppb
					PFC_ST_01132		PS Acid	10000 ppb
					PFC_ST_01133	0.1 mL	TAF	10000 ppb
					PFC_ST_01134	0.1 mL		10000 ppb
					PFC_ST_01135	0.1 mL	PEPA	10000 ppb
PFC_ST_00199	02/26/23		Chemours, Lot N/A		(Purchased Rea	agent)	PFECA G	1000000 ug/L
PFC_ST_00329	02/26/23		Chemours, Lot N/A		(Purchased Rea		PPF Acid	1000000 ug/L
PFC_ST_00332	02/26/23		Chemours, Lot N/A		(Purchased Rea	<i></i>	MTP	1000000 ug/L
PFC_ST_01117	10/13/22		Chemours, Lot N/A		(Purchased Rea		PFMOAA	1000000 ug/L
PFC_ST_01118	10/13/22		Chemours, Lot N/A		(Purchased Rea		R-EVE	1000000 ug/L
PFC_ST_01119	10/13/22		Chemours, Lot N/A		(Purchased Rea		R-PSDA	1000000 ug/L
PFC_ST_01120	10/13/22		Chemours, Lot N/A		(Purchased Rea		Hydrolyzed PSDA	1000000 ug/L
PFC_ST_01121	10/13/22		Chemours, Lot N/A		(Purchased Rea		PFO2HxA	1000000 ug/L
PFC_ST_01122	10/13/22		Chemours, Lot N/A		(Purchased Rea		NVHOS	1000000 ug/L
PFC_ST_01124	10/13/22		Chemours, Lot N/A		(Purchased Rea		PFO3OA	1000000 ug/L
PFC_ST_01127	10/13/22		Chemours, Lot N/A		(Purchased Rea		PFO4DA	1000000 ug/L
PFC_ST_01128	10/13/22		Chemours, Lot N/A		(Purchased Rea		Hydro-EVE Acid	1000000 ug/L
PFC_ST_01129	10/13/22		Chemours, Lot N/A		(Purchased Rea		EVE Acid	1000000 ug/L
PFC_ST_01130	10/13/22		Chemours, Lot N/A		(Purchased Rea		R-PSDCA	1000000 ug/L
PFC_ST_01131	10/13/22		Chemours, Lot N/A		(Purchased Rea		Hydro-PS Acid	1000000 ug/L
PFC_ST_01132	10/13/22		Chemours, Lot N/A		(Purchased Rea		PS Acid	1000000 ug/L
PFC_ST_01133	10/13/22		Chemours, Lot N/A		(Purchased Rea		TAF	1000000 ug/L
PFC_ST_01134	10/13/22		Chemours, Lot N/A		(Purchased Rea		PMPA	1000000 ug/L
PFC_ST_01135	10/13/22		Chemours, Lot N/A		(Purchased Rea		PEPA	1000000 ug/L
.PFC_ST_01219	01/13/26 0	Wellingto	n Laboratories, Lot MPFACO	CES0121	(Purchased Rea	agent)	13C2 PFTeDA	2000 ppb
							13C2-PFDoDA	2000 ppb
							13C3 PFBS	1860 ppb
							13C3 PFHxS	1892 ppb
							13C4 PFBA	2000 ppb
							13C4 PFHpA	2000 ppb
							13C5 PFHxA	2000 ppb
							13C5 PFPeA	2000 ppb
							13C6 PFDA	2000 ppb
							13C7 PFUnA	2000 ppb
							13C8 PFOA	2000 ppb
							13C8 PFOS	1912 ppb
							13C9 PFNA	2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reage	ent		
	Exp	Prep	Dilutant	Final		Volume	_ , ,	
Reagent ID	Date	Date	Used	Volume	Reagent ID	Added	Analyte	Concentration
.PFC_ST_01249	04/26/26	Wellingto	n Laboratories, Lot MP	FACCIS0516	(Purchased Rea	gent)	13C2 PFDA	2000 ng/mL
							13C2 PFOA	2000 ng/mL
							13C3-PFBA	2000 ng/mL
							13C4 PFOS	1913 ng/mL
.PFC_ST_01549	06/01/24	Wellingto	n Laboratories, Lot 53	7PDSR10521	(Purchased Rea	gent)	11Cl-PF3OUdS	1860 ng/mL
							9C1-PF3ONS	1860 ng/mL
							DONA	1890 ng/mL
							HFPODA	2000 ng/mL
							NETFOSAA	2000 ng/mL
							NMeFOSAA	2000 ng/mL
							Perfluorobutanesulfonic acid	1770 ng/mL
							Perfluorodecanoic acid	2000 ng/mL
							Perfluorododecanoic acid	2000 ng/mL
							Perfluoroheptanoic acid	2000 ng/mL
							Perfluorohexanesulfonic acid	1824 ng/mL
							Perfluorohexanoic acid	2000 ng/mL
							Perfluorononanoic acid	2000 ng/mL
							Perfluorooctanesulfonic acid	1851 ng/mL
							Perfluorooctanoic acid	2000 ng/mL
							Perfluorotetradecanoic acid	2000 ng/mL
							Perfluorotridecanoic acid	2000 ng/mL
							Perfluoroundecanoic acid	2000 ng/mL
PFC_STD_XMOD7_00018	09/10/22	06/10/22	Methanol, Lot ED663-US	10 mL	PFC IN 00699	0.5 mL	Perfluorooctadecanoic acid	100 ppb
			·				N-ethylperfluoro-1-octanesulfo	100 ppb
							namide	
							NMeFOSA	100 ppb
							1H, 1H, 2H, 2H-perfluorodecanesul fonic acid (8:2)	95.8 ppb
							1H, 1H, 2H, 2H-perfluorododecanes ulfonic acid (10:2)	96.4 ppb
							2-	100 ppb
							(N-ethylperfluoro-1-octanesulf	
							onamido) ethanol	
							2-	100 ppb
							(N-methylperfluoro-1-octanesul	
							fonamido) ethanol	
							Perfluorododecanesulfonic acid (PFDoS)	
							Perfluorohexadecanoic acid	100 ppb
							Perfluorooctanesulfonamide	100 ppb
							1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	
							1H, 1H, 2H, 2H-perfluorooctanesul fonic acid (6:2)	94.8 ppb
							Perfluorobutanoic acid	100 ppb
							Perfluoropentanoic acid	100 ppb
							Perfluorodecanesulfonic acid	96.4 ppb
		1					Perfluoroheptanesulfonic acid	95.2 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

			Reagent	Parent Reag	ent				
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration	
							Perfluorononanesulfonic acid	96 ppk	
							Perfluoropentanesulfonic acid	93.8 ppk	
					PFC_IN_00700	0.5 mL	3:3 FTCA	100 ppk	
							5:3 FTCA	100 pph	
							7:3 FTCA	100 ppk	
							6:2 FTCA	100 ppk	
							8:2 FTCA	100 ppb	
							10:2 FTCA	100 ppk	
							PFECA F	100 ppb	
							PFECA A	100 ppb	
							PFECA B	100 ppb	
							PES	89 ppb	
							PFECHS	92.2 ppk	
							PFPrS	91.6 ppk	
							6:2 FTUCA	100 ppk	
							8:2 FTUCA	100 ppk	
							10:2 FTUCA	100 ppk	
					PFC_IN_00701	0.05 mL	d5-NEtPFOSA	10 ppk	
							13C3 HFPO-DA	10 ppk	
							M2-8:2 FTS	9.58 ppb	
							M2-6:2 FTS	9.5 ppk	
							d3-NMePFOSA	10 ppk	
							13C-6:2 FTCA	10 ppk	
							13C-10:2 FTCA	10 ppk	
							13C-8:2 FTCA	10 ppk	
							d3-NMeFOSAA	10 ppk	
							d5-NEtFOSAA	10 ppk	
							d7-N-MeFOSE-M	10 ppk	
							d9-N-EtFOSE-M	10 ppk	
							13C8 FOSA	10 ppk	
							M2-4:2 FTS	9.34 ppk	
							13C-6:2 FTUCA	10 ppk	
							13C-8:2 FTUCA	10 ppk	
							13C-10:2 FTUCA	10 ppk	
					PFC IN 00702	0.5 mL	PFECA G	100 ppk	
							PPF Acid	100 ppk	
							MTP	100 ppk	
							PFMOAA	100 ppk	
							R-EVE	100 ppk	
							R-PSDA	100 ppk	
							Hydrolyzed PSDA	100 ppk	
							PFO2HxA	100 ppk	
							NVHOS	100 ppk	
							PFO3OA	100 ppk	
							PFO4DA	100 ppk	
							Hydro-EVE Acid	100 ppk	
							EVE Acid	100 ppk	
		1			1		R-PSDCA	100 ppk	

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reag	gent			
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration	
							Hydro-PS Acid	100 ppb	
							PS Acid	100 ppb	
							TAF	100 ppb	
							PMPA	100 ppb	
							PEPA	100 ppb	
					PFC ST 01219	0.05 mL	13C2 PFTeDA	10 ppb	
							13C2-PFDoDA	10 ppb	
							13C3 PFBS	9.3 ppb	
							13C3 PFHxS	9.46 ppb	
							13C4 PFBA	10 ppb	
							13C4 PFHpA	10 ppb	
							13C5 PFHxA	10 ppb	
							13C5 PFPeA	10 ppb	
							13C6 PFDA	10 ppb	
							13C7 PFUnA	10 ppb	
							13C8 PFOA	10 ppb	
							13C8 PFOS	9.56 ppb	
							13C9 PFNA	10 ppb	
					PFC ST 01249	0 025 mT	13C2 PFDA	5 ppb	
					FFC_51_01249	0.025 1111	13C2 PFOA	5 ppb	
							13C3-PFBA		
							13C4 PFOS	5 ppb	
					DEC CE 01540	0 FT	11Cl-PF3OUdS	4.7825 ppb	
					PFC_ST_01549	0.5 ML	9C1-PF3OUGS	93 ppb	
								93 ppb	
							DONA HFPODA	94.5 ppb	
								100 ppb	
							NETFOSAA	100 ppb	
							NMeFOSAA	100 ppb	
							Perfluorobutanesulfonic acid	88.5 ppb	
							Perfluorodecanoic acid	100 ppb	
							Perfluorododecanoic acid	100 ppb	
							Perfluoroheptanoic acid	100 ppb	
							Perfluorohexanesulfonic acid	91.2 ppb	
							Perfluorohexanoic acid	100 ppb	
							Perfluorononanoic acid	100 ppb	
							Perfluorooctanesulfonic acid	92.55 ppb	
							Perfluorooctanoic acid	100 ppb	
							Perfluorotetradecanoic acid	100 ppb	
							Perfluorotridecanoic acid	100 ppb	
							Perfluoroundecanoic acid	100 ppb	
.PFC_IN_00699	12/09/22	06/09/22 N	Methanol, Lot ED319-US	5 mL	PFC_ST_00747		Perfluorooctadecanoic acid	2000 ng/mL	
					PFC_ST_00971	0.2 mL	N-ethylperfluoro-1-octanesulfo namide	2000 ng/mL	
					PFC ST 00972	0.2	NMeFOSA	2000 ng/mL	
							1H,1H,2H,2H-perfluorodecanesul	1916 ng/mL	
					PFC_ST_00976		fonic acid (8:2)		
					PFC_ST_00977	0.2 mL	1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	1928 ng/mL	

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

Reagent ID	Exp Prepose Date		Reagent Final Volume	Reagent ID PFC_ST_01073 PFC_ST_01082 PFC_ST_01224 PFC_ST_01226 PFC_ST_01227 PFC_ST_01228 PFC_ST_01229	0.2 mL 0.2 mL 0.2 mL	(N-ethylperfluoro-1-octanesulf onamido) ethanol 2- (N-methylperfluoro-1-octanesul fonamido) ethanol Perfluorododecanesulfonic acid (PFDoS) Perfluorohexadecanoic acid Perfluorooctanesulfonamide 1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	Concentration 2000 ng/mL 2000 ng/mL 2000 ng/mL 2000 ng/mL 2000 ng/mL 2000 ng/mL 1868 ng/mL
				PFC_ST_01082 PFC_ST_01224 PFC_ST_01226 PFC_ST_01227 PFC_ST_01228	0.2 mL 0.2 mL 0.2 mL 0.2 mL 0.2 mL	(N-ethylperfluoro-1-octanesulf onamido) ethanol 2- (N-methylperfluoro-1-octanesul fonamido) ethanol Perfluorododecanesulfonic acid (PFDoS) Perfluorohexadecanoic acid Perfluorooctanesulfonamide 1H, 1H, 2H, 2H-perfluorohexanesul fonic acid (4:2)	2000 ng/mL 1936 ng/mL 2000 ng/mL 2000 ng/mL 1868 ng/mL
				PFC_ST_01224 PFC_ST_01226 PFC_ST_01227 PFC_ST_01228	0.2 mL 0.2 mL 0.2 mL 0.2 mL	(N-methylperfluoro-1-octanesul fonamido) ethanol Perfluorododecanesulfonic acid (PFDoS) Perfluorohexadecanoic acid Perfluoroctanesulfonamide 1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	1936 ng/mL 2000 ng/mL 2000 ng/mL 1868 ng/mL
				PFC ST 01226 PFC ST 01227 PFC ST 01228	0.2 mL 0.2 mL 0.2 mL	(PFDoS) Perfluorohexadecanoic acid Perfluorooctanesulfonamide 1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	2000 ng/mL 2000 ng/mL 1868 ng/mL
				PFC_ST_01227 PFC_ST_01228	0.2 mL 0.2 mL	Perfluorooctanesulfonamide 1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	2000 ng/mL 1868 ng/mL
				PFC_ST_01228	0.2 mL	1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	1868 ng/mL
						fonic acid (4:2)	_
				PFC_ST_01229	0.2 mL	1 77 1 77 0 77 0 77 51	1896 ng/mT
						1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	
			1	PFC_ST_01232		Perfluorobutanoic acid	2000 ng/mL
				PFC_ST_01233		Perfluoropentanoic acid	2000 ng/mL
				PFC_ST_01234		Perfluorodecanesulfonic acid	1928 ng/mL
				PFC_ST_01235		Perfluoroheptanesulfonic acid	1904 ng/mL
				PFC_ST_01236	0.2 mL	Perfluorononanesulfonic acid	1920 ng/mL
				PFC_ST_01237		Perfluoropentanesulfonic acid	1876 ng/mL
			(Purchased Rea		Perfluorooctadecanoic acid	50000 ng/mL	
		ngton Laboratories, Lot NE		(Purchased Rea	igent)	N-ethylperfluoro-1-octanesulfo namide	50000 ng/mL
	10/20/25 Welli	ngton Laboratories, Lot NMe	eFOSA1020M	(Purchased Rea		NMeFOSA	50000 ng/mL
	12/01/25 Well	ington Laboratories, Lot 8	32FTS1120	(Purchased Rea	igent)	1H,1H,2H,2H-perfluorodecanesul fonic acid (8:2)	47900 ng/mL
PFC_ST_00977	03/03/26 Well	ington Laboratories, Lot 1	02FTS0221	(Purchased Reagent)		1H,1H,2H,2H-perfluorododecanes ulfonic acid (10:2)	48200 ng/mL
		ngton Laboratories, Lot NE		(Purchased Reagent)		2- (N-ethylperfluoro-1-octanesulf onamido) ethanol	50000 ng/mL
PFC_ST_01082	06/02/26 Welli	ngton Laboratories, Lot NM	eFOSE0521M	(Purchased Reagent)		2- (N-methylperfluoro-1-octanesul fonamido) ethanol	50000 ng/mL
PFC_ST_01224	02/16/23 Well	ington Laboratories, Lot L	PFDoS0721	(Purchased Rea		Perfluorododecanesulfonic acid (PFDoS)	48400 ng/mL
		ington Laboratories, Lot P		(Purchased Rea		Perfluorohexadecanoic acid	50000 ng/mL
	08/10/26 Well	ington Laboratories, Lot F	FOSA0721I	(Purchased Rea		Perfluorooctanesulfonamide	50000 ng/mL
PFC_ST_01228	10/04/26 Well	ington Laboratories, Lot 4	12FTS0921	(Purchased Rea	igent)	1H,1H,2H,2H-perfluorohexanesul fonic acid (4:2)	46700 ng/mL
PFC_ST_01229		ington Laboratories, Lot 6		(Purchased Rea	igent)	1H,1H,2H,2H-perfluorooctanesul fonic acid (6:2)	47400 ng/mL
		lington Laboratories, Lot		(Purchased Rea	<i></i>	Perfluorobutanoic acid	50000 ng/mL
		ington Laboratories, Lot F		(Purchased Rea		Perfluoropentanoic acid	50000 ng/mL
		ington Laboratories, Lot I		(Purchased Rea		Perfluorodecanesulfonic acid	48200 ng/mL
		ington Laboratories, Lot L		(Purchased Rea		Perfluoroheptanesulfonic acid	47600 ng/mL
		ington Laboratories, Lot I		(Purchased Rea	, ,	Perfluorononanesulfonic acid	48000 ng/mL
		ington Laboratories, Lot L		(Purchased Rea		Perfluoropentanesulfonic acid	46900 ng/mL
.PFC_IN_00700	12/09/22 06/09/	22 Methanol, Lot ED319-US	5 mL	PFC_ST_01094 PFC_ST_01095		3:3 FTCA 5:3 FTCA	2000 ppb 2000 ppb

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

SDG No.: _____

				Descent	Parent Read	gent		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Reagent Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					PFC ST 01096	0.2 mT ₁	7:3 FTCA	2000 ppb
					PFC ST 01097		6:2 FTCA	2000 ppb
					PFC ST 01098		8:2 FTCA	2000 ppb
					PFC ST 01099		10:2 FTCA	2000 ppb
					PFC ST 01103		PFECA F	2000 ppb
					PFC ST 01104		PFECA A	2000 ppb
					PFC ST 01105		PFECA B	2000 ppb
					PFC ST 01106	0.2 mL	PES	1780 ppb
					PFC ST 01107	0.2 mL	PFECHS	1844 ppb
					PFC ST 01223	0.2 mL		1832 ppb
					PFC ST 01367		6:2 FTUCA	2000 ppb
					PFC ST 01368		8:2 FTUCA	2000 ppb
					PFC ST 01369		10:2 FTUCA	2000 ppb
PFC ST 01094	11/12/25	Welling	gton Laboratories, Lot Fl	PrPA1020	(Purchased Re		3:3 FTCA	50000 ng/mL
PFC ST 01095	11/11/25		ton Laboratories, Lot Fl		(Purchased Re		5:3 FTCA	50000 ng/mL
PFC ST 01096	11/12/25		gton Laboratories, Lot Fl		(Purchased Re		7:3 FTCA	50000 ng/mL
PFC ST 01097	03/08/24		gton Laboratories, Lot F		(Purchased Re		6:2 FTCA	50000 ng/mL
PFC ST 01098	08/18/24		gton Laboratories, Lot F		(Purchased Re		8:2 FTCA	50000 ng/mL
PFC ST 01099	07/07/23		gton Laboratories, Lot F		(Purchased Re		10:2 FTCA	50000 ng/mL
PFC ST 01103	03/31/25		ton Laboratories, Lot PF		(Purchased Re		PFECA F	50000 ng/mL
PFC ST 01104	03/31/25		ton Laboratories, Lot PF		(Purchased Re		PFECA A	50000 ng/mL
PFC ST 01105	03/31/25		on Laboratories, Lot 360		(Purchased Re		PFECA B	50000 ng/mL
PFC ST 01106	05/13/25		ton Laboratories, Lot PF	-	(Purchased Re		PES	44500 ppb
PFC ST 01107	04/06/26		ton Laboratoires, Lot PF		(Purchased Re		PFECHS	46100 ppb
PFC ST 01223	07/12/26		ton Laboratories, Lot LP		(Purchased Re		PFPrS	45800 ppb
PFC ST 01367	09/03/23		ton Laboratories, Lot Fl		(Purchased Re		6:2 FTUCA	50000 ng/mL
PFC ST 01368	03/29/23		gton Laboratories, Lot Fo		(Purchased Re		8:2 FTUCA	50000 ng/mL
PFC ST 01369	03/29/23		ton Laboratories, Lot Fl		(Purchased Re		10:2 FTUCA	50000 ng/mL
.PFC_IN_00701	12/09/22	06/09/22	Methanol, Lot ED319-US	5 mI	PFC ST 00981	0.2 mL	d5-NEtPFOSA	2000 ppb
					PFC ST 00984	0.2 mL	13C3 HFPO-DA	2000 ppb
					PFC ST 00985	0.2 mL	M2-8:2 FTS	1916 ppb
					PFC ST 00986	0.2 mL	M2-6:2 FTS	1900 ppb
					PFC ST 01081	0.2 mL	d3-NMePFOSA	2000 ppb
					PFC ST 01108	0.2 mL	13C-6:2 FTCA	2000 ppb
					PFC ST 01109		13C-10:2 FTCA	2000 ppb
					PFC ST 01113		13C-8:2 FTCA	2000 ppb
					PFC ST 01215		d3-NMeFOSAA	2000 ppb
					PFC ST 01216		d5-NEtFOSAA	2000 ppb
					PFC ST 01293		d7-N-MeFOSE-M	2000 ppb
					PFC ST 01295		d9-N-EtFOSE-M	2000 ppb
					PFC ST 01411		13C8 FOSA	2000 ppb
					PFC ST 01412		M2-4:2 FTS	1868 ppb
					PFC ST 01467		13C-6:2 FTUCA	2000 ppb
					PFC ST 01468		13C-8:2 FTUCA	2000 ppb
					PFC ST 01469		13C-10:2 FTUCA	2000 ppb
PFC_ST_00981	11/23/25	W∈	ellington Laboratories, I dNEtFOSA1120M	Lot	(Purchased Re		d5-NEtPFOSA	50000 ng/mL
PFC ST 00984	05/13/24	Wellingt	on Laboratories, Lot M3H	IFPODA0521	(Purchased Re	agent)	13C3 HFPO-DA	50000 ng/mL

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

				Reagent	Parent Reager	nt		
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	- Analyte	Concentration
PFC ST 00985	12/17/25		n Laboratories, Lot M		(Purchased Reag		M2-8:2 FTS	47900 ng/mL
PFC ST 00986	05/14/26		n Laboratories, Lot M		(Purchased Reag		M2-6:2 FTS	47500 ng/mL
PFC ST 01081	04/04/23		lington Laboratories,		(Purchased Reag		d3-NMePFOSA	50000 ng/mL
			dNMeFOSA0421M					
PFC_ST_01108	04/04/23		on Laboratories, Lot		(Purchased Reag	,	13C-6:2 FTCA	50000 ppb
PFC_ST_01109	04/04/23		on Laboratories, Lot		(Purchased Reag		13C-10:2 FTCA	50000 ppb
PFC_ST_01113	04/04/23		on Laboratories, Lot		(Purchased Reag		13C-8:2 FTCA	50000 ppb
PFC_ST_01215	04/04/23	Wel	lington Laboratories, d3NMeFOSAA0521	Lot	(Purchased Reag	rent)	d3-NMeFOSAA	50000 ng/mL
PFC_ST_01216	04/04/23	Wel	<pre>lington Laboratories, d5NEtFOSAA0921</pre>	Lot	(Purchased Reag	ent)	d5-NEtFOSAA	50000 ng/mL
PFC_ST_01293	02/10/23	Wel	lington Laboratories, d7NMeFOSE1220M	Lot	(Purchased Reag	ent)	d7-N-MeFOSE-M	50000 ng/mL
PFC_ST_01295	02/10/23	Wel	lington Laboratories, d9NEtFOSE1220M	Lot	(Purchased Reag	ent)	d9-N-EtFOSE-M	50000 ng/mL
PFC ST 01411	10/12/26	Wellingto	n Laboratories, Lot M	18FOSA0921I	(Purchased Reag	ent)	13C8 FOSA	50000 ng/mL
PFC ST 01412	10/13/26	Wellingtor	n Laboratories, Lot M	242FTS01021	(Purchased Reag	ent)	M2-4:2 FTS	46700 ng/mL
PFC ST 01467	03/22/23	Wellingto	on Laboratories, Lot I	MFHUEA0322	(Purchased Reag	ent)	13C-6:2 FTUCA	50000 ppb
PFC ST 01468	03/22/23		on Laboratories, Lot I		(Purchased Reag	ent)	13C-8:2 FTUCA	50000 ppb
PFC ST 01469	03/22/23	Wellingto	on Laboratories, Lot I	MFDUEA1221	(Purchased Reag	ent)	13C-10:2 FTUCA	50000 ppb
.PFC IN 00702	10/13/22	06/10/22 N	Methanol, Lot ED663-U	S 5 mL	PFC IN 00698		PFECA G	2000 ppb
			•				PPF Acid	2000 ppb
							MTP	2000 ppb
							PFMOAA	2000 ppb
							R-EVE	2000 ppb
							R-PSDA	2000 ppb
							Hydrolyzed PSDA	2000 ppb
							PFO2HxA	2000 ppb
							NVHOS	2000 ppb
							PFO3OA	2000 ppb
							PFO4DA	2000 ppb
							Hydro-EVE Acid	2000 ppb
							EVE Acid	2000 ppb
							R-PSDCA	2000 ppb
						1	Hydro-PS Acid	2000 ppb
							PS Acid	2000 ppb
							TAF	2000 ppb
							PMPA	2000 ppb
							PEPA	2000 ppb
PFC IN 00698	10/13/22	06/09/22 N	Methanol, Lot ED319-U	S 10 mT.	PFC ST 00199	0.1 mT	PFECA G	10000 ppb
	10,10,22	-0,00,22			PFC ST 00329		PPF Acid	10000 ppb
					PFC ST 00332	0.1 mI		10000 ppb
					PFC ST 01117		PFMOAA	10000 ppb
					PFC ST 01117		R-EVE	10000 ppb
					PFC ST 01119		R-PSDA	10000 ppb
					PFC ST 01120		Hydrolyzed PSDA	10000 ppb
					PFC ST 01121		PFO2HxA	10000 ppb
					PFC ST 01122		NVHOS	10000 ppb
I		I		1	110_01_01122	1 0.1 1111	. 11,1100	l 10000 bbp

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

		Re	eagent	Parent Reac	gent		
	Exp Prep		inal		Volume		
Reagent ID	Date Date	Used Vo	olume	Reagent ID	Added	Analyte	Concentration
				PFC ST 01124	0.1 mL	PFO3OA	10000 ppb
				PFC ST 01127	0.1 mL	PFO4DA	10000 ppb
				PFC ST 01128	0.1 mL	Hydro-EVE Acid	10000 ppb
				PFC ST 01129	0.1 mL	EVE Acid	10000 ppb
				PFC ST 01130		R-PSDCA	10000 ppb
				PFC ST 01131	0.1 mL	Hydro-PS Acid	10000 ppb
				PFC ST 01132	0.1 mL	PS Acid	10000 ppb
				PFC ST 01133	0.1 mL	TAF	10000 ppb
				PFC ST 01134	0.1 mL	PMPA	10000 ppb
				PFC ST 01135	0.1 mL	PEPA	10000 ppb
PFC ST 00199	02/26/23	Chemours, Lot N/A		(Purchased Re	agent)	PFECA G	1000000 ug/L
PFC ST 00329	02/26/23	Chemours, Lot N/A		(Purchased Re		PPF Acid	1000000 ug/L
PFC ST 00332	02/26/23	Chemours, Lot N/A		(Purchased Re	agent)	MTP	1000000 ug/L
PFC ST 01117	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	PFMOAA	1000000 ug/L
PFC ST 01118	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	R-EVE	1000000 ug/L
PFC ST 01119	10/13/22	Chemours, Lot N/A		(Purchased Re		R-PSDA	1000000 ug/L
PFC ST 01120	10/13/22	Chemours, Lot N/A		(Purchased Re		Hydrolyzed PSDA	1000000 ug/L
PFC ST 01121	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	PFO2HxA	1000000 ug/L
PFC ST 01122	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	NVHOS	1000000 ug/L
PFC ST 01124	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	PFO3OA	1000000 ug/L
PFC ST 01127	10/13/22	Chemours, Lot N/A		(Purchased Re		PFO4DA	1000000 ug/L
PFC ST 01128	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	Hydro-EVE Acid	1000000 ug/L
PFC ST 01129	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	EVE Acid	1000000 ug/L
PFC ST 01130	10/13/22	Chemours, Lot N/A		(Purchased Re		R-PSDCA	1000000 ug/L
PFC ST 01131	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	Hydro-PS Acid	1000000 ug/L
PFC ST 01132	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	PS Acid	1000000 ug/L
PFC ST 01133	10/13/22	Chemours, Lot N/A		(Purchased Re		TAF	1000000 ug/L
PFC ST 01134	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	PMPA	1000000 ug/L
PFC ST 01135	10/13/22	Chemours, Lot N/A		(Purchased Re	agent)	PEPA	1000000 ug/L
.PFC ST 01219	01/13/26 Wellin	gton Laboratories, Lot MPFACCE	ES0121	(Purchased Re	agent)	13C2 PFTeDA	2000 ppb
						13C2-PFDoDA	2000 ppb
						13C3 PFBS	1860 ppb
						13C3 PFHxS	1892 ppb
						13C4 PFBA	2000 ppb
						13C4 PFHpA	2000 ppb
						13C5 PFHxA	2000 ppb
						13C5 PFPeA	2000 ppb
						13C6 PFDA	2000 ppb
						13C7 PFUnA	2000 ppb
						13C8 PFOA	2000 ppb
						13C8 PFOS	1912 ppb
						13C9 PFNA	2000 ppb
.PFC_ST_01249	04/26/26 Wellin	gton Laboratories, Lot MPFACCI	IS0516	(Purchased Re	agent)	13C2 PFDA	2000 ng/mL
						13C2 PFOA	2000 ng/mL
						13C3-PFBA	2000 ng/mL
						13C4 PFOS	1913 ng/mL
.PFC_ST_01549	06/01/24 Wellin	gton Laboratories, Lot 537PDSR	R10521	(Purchased Re	agent)	11Cl-PF3OUdS	1860 ng/mL
						9C1-PF3ONS	1860 ng/mL

Lab Name: Eu	rofins Lancaster	Laboratories En	y Job No	.: 240-168405-1
SDG No.:			_	

				Reagent	Parent Reagent			
Reagent ID	Exp Date	Prep Date	Dilutant Used	Final Volume	Reagent ID	Volume Added	Analyte	Concentration
					I		DONA	1890 ng/mL
							HFPODA	2000 ng/mL
							NETFOSAA	2000 ng/mL
							NMeFOSAA	2000 ng/mL
							Perfluorobutanesulfonic acid	1770 ng/mL
							Perfluorodecanoic acid	2000 ng/mL
							Perfluorododecanoic acid	2000 ng/mL
							Perfluoroheptanoic acid	2000 ng/mL
							Perfluorohexanesulfonic acid	1824 ng/mL
							Perfluorohexanoic acid	2000 ng/mL
							Perfluorononanoic acid	2000 ng/mL
							Perfluorooctanesulfonic acid	1851 ng/mL
							Perfluorooctanoic acid	2000 ng/mL
							Perfluorotetradecanoic acid	2000 ng/mL
							Perfluorotridecanoic acid	2000 ng/mL
							Perfluoroundecanoic acid	2000 ng/mL

Method PFC IDA

Fluorinated Hydrocarbons by Method PFAS IDA

FORM II PFAS SURROGATE RECOVERY

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-1684	05 - 1	L
---	--------	---

SDG No.:

Matrix: Water Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	C3PFBS #	13С5РНА#	HFPODA #	C3PFHS #	C4PFHA #	C8PFOA #	C8PFOS #	C9PFNA #
MSA-WC-MTW-061522	240-168405-1	174	70	64	116	79	91	86	67
MSA-WC-MTW-061522 RA	240-168405-1 RA	176	71	67	113	82	96	82	66
	MB 410-269643/1-A	91	91	81	88	96	89	96	92
	LCS 410-269643/2-A	92	96	93	96	100	96	90	92

	QC LIMITS
C3PFBS = 13C3 PFBS	16-200
13C5PHA = 13C5 PFHxA	24-179
HFPODA = 13C3 HFPO-DA	17-185
C3PFHS = 13C3 PFHxS	28-188
C4PFHA = 13C4 PFHpA	31-182
C8PFOA = 13C8 PFOA	48-162
C8PFOS = 13C8 PFOS	51-159
C9PFNA = 13C9 PFNA	51-167

Column to be used to flag recovery values

FORM II 537 IDA

FORM II PFAS SURROGATE RECOVERY

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-1684	05 - 1	L
---	--------	---

SDG No.:

Matrix: Water Level: Low

GC Column (1): Gemini C18 ID: 3 (mm)

Client Sample ID	Lab Sample ID	C6PFDA #	d3NMFOS#	13C7PUA#	d5NEFOS#	PFDoDA #	PFTDA #
MSA-WC-MTW-061522	240-168405-1	78	58	79	65	74	59
MSA-WC-MTW-061522 RA	240-168405-1 RA	86	64	78	70	73	62
	MB 410-269643/1-A	86	81	86	78	80	76
	LCS 410-269643/2-A	97	91	98	84	94	95

	QC LIMITS
C6PFDA = 13C6 PFDA	49-163
d3NMFOS = d3-NMeFOSAA	31-174
13C7PUA = 13C7 PFUnA	34-174
d5NEFOS = d5-NEtFOSAA	29-195
PFDoDA = 13C2-PFDoDA	17-176
PFTDA = 13C2 PFTeDA	10-179

 $\ensuremath{\text{\#}}$ Column to be used to flag recovery values

FORM II 537 IDA

FORM III PFAS LAB CONTROL SAMPLE RECOVERY

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1

Environment Testing, LLC

SDG No.:

Matrix: Water Level: Low Lab File ID: 22JUL02-03.d

Lab ID: LCS 410-269643/2-A Client ID:

	SPIKE	LCS	LCS	QC	
	ADDED	CONCENTRATION	용	LIMITS	#
COMPOUND	(ng/L)	(ng/L)	REC	REC	
Perfluorohexanoic acid	25.6	23.1	90	58-139	
Perfluoroheptanoic acid	25.6	22.3	87	59-145	
Perfluorooctanoic acid	25.6	24.2	95	51-145	
Perfluorononanoic acid	25.6	25.3	99	61-139	
Perfluorodecanoic acid	25.6	24.5	96	56-138	
Perfluorotridecanoic acid	25.6	21.0	82	58-146	
Perfluorotetradecanoic acid	25.6	22.8	89	62-139	
Perfluorobutanesulfonic acid	22.7	21.7	96	53-138	
Perfluorohexanesulfonic acid	23.3	18.8	80	58-134	
Perfluorooctanesulfonic acid	23.7	23.4	99	45-150	
NETFOSAA	25.6	23.5	92	55-134	
NMeFOSAA	25.6	24.9	97	59-140	
Perfluorododecanoic acid	25.6	23.6	92	59-143	
HFPODA	25.6	21.2	83	50-135	
9C1-PF3ONS	23.8	22.4	94	59-135	
11Cl-PF3OUdS	23.8	22.5	95	53-139	
DONA	24.2	22.3	92	55-143	
13C5 PFHxA	40.0	38.3	96	24-179	
13C4 PFHpA	40.0	39.9	100	31-182	
13C8 PFOA	40.0	38.3	96	48-162	
13C9 PFNA	40.0	36.7	92	51-167	
13C6 PFDA	40.0	38.8	97	49-163	
13C2-PFDoDA	40.0	37.5	94	17-176	
13C2 PFTeDA	40.0	37.9	95	10-179	
13C3 PFBS	37.2	34.1	92	16-200	
13C3 PFHxS	37.8	36.3	96	28-188	
13C8 PFOS	38.2	34.5	90	51-159	
d3-NMeFOSAA	40.0	36.5	91	31-174	
d5-NEtFOSAA	40.0	33.7	84	29-195	
13C3 HFPO-DA	40.0	37.1	93	17-185	
13C7 PFUnA	40.0	39.1	98	34-174	
Perfluoroundecanoic acid	25.6	23.4	91	60-141	

 $[\]mbox{\#}$ Column to be used to flag recovery and RPD values FORM III 537 IDA

FORM IV PFAS METHOD BLANK SUMMARY

Lab Name: Eurofins Lancaster Laboratories
Environment Testing, LLC

SDG No.:

Lab File ID: 22JUL02-02.d

Matrix: Water

Date Extracted: 06/27/2022 09:03

Instrument ID: 30733

Date Analyzed: 07/02/2022 16:00

Level: (Low/Med) Low

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:

		LAB	
CLIENT SAMPLE ID	LAB SAMPLE ID	FILE ID	DATE ANALYZED
	LCS 410-269643/2-A	22JUL02-03.	07/02/2022 16:13
		d	
MSA-WC-MTW-061522	240-168405-1	22JUL02-04.	07/02/2022 16:24
		d	
MSA-WC-MTW-061522 RA	240-168405-1 RA	22JUL06-05.	07/06/2022 12:07
		d	

Lab Name: Eurofins Lancaster Laboratories E Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Calibration Start Date: <u>07/01/2022</u> 13:08

GC Column: Gemini C18 50mm ID: 3 (mm) Calibration End Date: 07/01/2022 14:15

Calibration ID: 40358

		13C3PF	ВА	13PFO.	A	PFOS	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION M	EAN AREA AND MEAN RT	922691	3.84	1094207	5.54	1411986	5.86
UPPER LIMIT		1384037	4.24	1641311	5.94	2117979	6.26
LOWER LIMIT		461346	3.44	547104	5.14	705993	5.46
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICB 410-271695/8		851151	3.84	1077565	5.53	1289136	5.86
ICV 410-271695/9		887495	3.84	1136470	5.53	1291391	5.86
CCV 410-271895/1		919906	3.83	1056013	5.53	1282860	5.86
MB 410-269643/1-A		1074539	3.85	1274719	5.55	1556744	5.87
LCS 410-269643/2-A		1088495	3.84	1319257	5.54	1635053	5.86
240-168405-1	MSA-WC-MTW-061522	306304*3	3.84	671818	5.55	1258729	5.86
CCV 410-271895/14		932097	3.84	1165014	5.54	1381053	5.86

13C3PFBA = 13C3-PFBA 13PFOA = 13C2 PFOA PFOS = 13C4 PFOS

Area Limit = 50%-150% of internal standard area RT Limit = \pm 0.4 minutes of internal standard RT

Column used to flag values outside QC limits

Lab Name: Eurofins Lancaster Laboratories E Job No.: 240-168405-1

SDG No.:

GC Column: Gemini C18 50mm ID: 3 (mm) Calibration End Date: 07/01/2022 14:15

Calibration ID: 40358

		PFDA					
		AREA #	RT #	#	RT #	#	RT #
INITIAL CALIBRATION M	EAN AREA AND MEAN RT	962003	6.19				
UPPER LIMIT		1443005	6.59				
LOWER LIMIT		481002	5.79				
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICB 410-271695/8		920321	6.18				
ICV 410-271695/9		954982	6.18				
CCV 410-271895/1		961066	6.18				
MB 410-269643/1-A		1161259	6.19				
LCS 410-269643/2-A		1120252	6.17				
240-168405-1	MSA-WC-MTW-061522	907617	6.18				
CCV 410-271895/14		1003116	6.17				

PFDA = 13C2 PFDA

Area Limit = 50%-150% of internal standard area RT Limit = \pm 0.4 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: Eurofins Lancaster Laboratories E Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Calibration Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: 3 (mm) Calibration End Date: 07/04/2022 17:22

Calibration ID: 40369

		13C3PF	ВА	13PFO	A	PFOS	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
INITIAL CALIBRATION M	EAN AREA AND MEAN RT	840043	3.84	1003572	5.54	1340649	5.86
UPPER LIMIT		1260065	4.24	1505358	5.94	2010974	6.26
LOWER LIMIT		420022	3.44	501786	5.14	670325	5.46
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICB 410-272051/8		757376	3.84	966412	5.53	1187158	5.86
ICV 410-272051/9		787223	3.84	961449	5.54	1200347	5.86
CCV 410-272691/4		841845	3.84	949660	5.54	1207895	5.86
240-168405-1 RA	MSA-WC-MTW-061522 RA	295065*3	3.83	660493	5.54	1263676	5.86
CCV 410-272691/11		831505	3.84	1055426	5.54	1351326	5.86

13C3PFBA = 13C3-PFBA 13PFOA = 13C2 PFOA PFOS = 13C4 PFOS

Area Limit = 50%-150% of internal standard area RT Limit = \pm 0.4 minutes of internal standard RT

Column used to flag values outside QC limits

Lab Name: Eurofins Lancaster Laboratories E Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Calibration Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: 3 (mm) Calibration End Date: 07/04/2022 17:22

Calibration ID: 40369

		PFDA					
		AREA #	RT #	#	RT #	#	RT #
INITIAL CALIBRATION M	EAN AREA AND MEAN RT	937105	6.18				
UPPER LIMIT		1405658	6.58				
LOWER LIMIT		468553	5.78				
LAB SAMPLE ID	CLIENT SAMPLE ID						
ICB 410-272051/8		796894	6.17				
ICV 410-272051/9		810203	6.17				
CCV 410-272691/4		886821	6.18				
240-168405-1 RA	MSA-WC-MTW-061522 RA	918742	6.17				
CCV 410-272691/11		931518	6.18				

PFDA = 13C2 PFDA

Area Limit = 50%-150% of internal standard area RT Limit = \pm 0.4 minutes of internal standard RT

 $\ensuremath{\text{\#}}$ Column used to flag values outside QC limits

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1

Environment Testing, LLC

SDG No.:

Client Sample ID: MSA-WC-MTW-061522 Lab Sample ID: 240-168405-1

Matrix: Water Lab File ID: 22JUL02-04.d

Analysis Method: 537 IDA Date Collected: 06/15/2022 11:00

Extraction Method: 537 IDA Date Extracted: 06/27/2022 09:03

Sample wt/vol: 289.7(mL) Date Analyzed: 07/02/2022 16:24

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 4(uL) GC Column: Gemini C18 50mm ID: 3(mm)

% Moisture: _____ % Solids: _____ GPC Cleanup:(Y/N) N___

Cleanup Factor:

Analysis Batch No.: 271895 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
0110 110.			2	112	
307-24-4	Perfluorohexanoic acid	22		1.7	0.43
375-85-9	Perfluoroheptanoic acid	15		1.7	0.43
335-67-1	Perfluorooctanoic acid	8.5		1.7	0.43
375-95-1	Perfluorononanoic acid	3.2		1.7	0.43
335-76-2	Perfluorodecanoic acid	1.3	J	1.7	0.43
72629-94-8	Perfluorotridecanoic acid	0.43	U	1.7	0.43
376-06-7	Perfluorotetradecanoic acid	0.43	U	1.7	0.43
375-73-5	Perfluorobutanesulfonic acid	4.3	I	1.7	0.43
355-46-4	Perfluorohexanesulfonic acid	6.6		1.7	0.43
1763-23-1	Perfluorooctanesulfonic acid	2.4		1.7	0.43
2991-50-6	NETFOSAA	0.43	U	2.6	0.43
2355-31-9	NMeFOSAA	0.52	U	1.7	0.52
307-55-1	Perfluorododecanoic acid	0.54	J	1.7	0.43
13252-13-6	HFPODA	0.92	J	2.6	0.86
756426-58-1	9Cl-PF3ONS	0.43	U	1.7	0.43
763051-92-9	11Cl-PF3OUdS	0.43	U	1.7	0.43
919005-14-4	DONA	0.43	U	1.7	0.43
2058-94-8	Perfluoroundecanoic acid	1.1	J	1.7	0.43

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1 Environment Testing, LLC SDG No.: Client Sample ID: MSA-WC-MTW-061522 Lab Sample ID: 240-168405-1 Lab File ID: 22JUL02-04.d Matrix: Water Analysis Method: 537 IDA Date Collected: 06/15/2022 11:00 Extraction Method: 537 IDA Date Extracted: 06/27/2022 09:03 Sample wt/vol: 289.7(mL) Date Analyzed: 07/02/2022 16:24 Con. Extract Vol.: 1(mL) Dilution Factor: 1 GC Column: Gemini C18 50mm ID: 3(mm) Injection Volume: 4(uL) % Moisture: _____ % Solids: _____ GPC Cleanup: (Y/N) N Cleanup Factor:

CAS NO. ISOTOPE DILUTION %REC Q. LIMITS STL02577 13C5 PFHxA 70 24-179 STL01892 13C4 PFHpA 79 31-182 STL01052 13C8 PFOA 91 48-162 STL02578 13C9 PFNA 51-167 STL02579 13C6 PFDA 78 49-163 STL02703 13C2-PFDoDA 74 17-176 STL02116 13C2 PFTeDA 59 10-179 STL02337 13C3 PFBS 174 16-200 STL02581 13C3 PFHxS 116 28-188 STL01054 13C8 PFOS 86 51-159 STL02118 58 31-174 d3-NMeFOSAA 65 STL02117 d5-NEtFOSAA 29-195 STL02255 13C3 HFPO-DA 64 17-185 STL02580 13C7 PFUnA 34-174

Units: ng/L

Analysis Batch No.: 271895

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1

Environment Testing, LLC

SDG No.:

Client Sample ID: MSA-WC-MTW-061522 RA Lab Sample ID: 240-168405-1 RA

Matrix: Water Lab File ID: 22JUL06-05.d

Analysis Method: 537 IDA Date Collected: 06/15/2022 11:00

Extraction Method: 537 IDA Date Extracted: 06/27/2022 09:03

Sample wt/vol: 289.7(mL) Date Analyzed: 07/06/2022 12:07

Con. Extract Vol.: 1(mL) Dilution Factor: 1

Injection Volume: 4(uL) GC Column: Gemini C18 50mm ID: 3(mm)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N___

Cleanup Factor:

Analysis Batch No.: 272691 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	22		1.7	0.43
375-85-9	Perfluoroheptanoic acid	15		1.7	0.43
335-67-1	Perfluorooctanoic acid	7.3		1.7	0.43
375-95-1	Perfluorononanoic acid	3.4		1.7	0.43
335-76-2	Perfluorodecanoic acid	1.2	J	1.7	0.43
72629-94-8	Perfluorotridecanoic acid	0.43	U	1.7	0.43
376-06-7	Perfluorotetradecanoic acid	0.43	U	1.7	0.43
375-73-5	Perfluorobutanesulfonic acid	6.6	I	1.7	0.43
355-46-4	Perfluorohexanesulfonic acid	7.0		1.7	0.43
1763-23-1	Perfluorooctanesulfonic acid	2.3		1.7	0.43
2991-50-6	NETFOSAA	0.43	U	2.6	0.43
2355-31-9	NMeFOSAA	0.52	U	1.7	0.52
307-55-1	Perfluorododecanoic acid	0.57	J	1.7	0.43
13252-13-6	HFPODA	0.86	U	2.6	0.86
756426-58-1	9C1-PF3ONS	0.43	U	1.7	0.43
763051-92-9	11Cl-PF3OUdS	0.43	U	1.7	0.43
919005-14-4	DONA	0.43	U	1.7	0.43
2058-94-8	Perfluoroundecanoic acid	1.0	J	1.7	0.43

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1 Environment Testing, LLC SDG No.: Client Sample ID: MSA-WC-MTW-061522 RA Lab Sample ID: 240-168405-1 RA Matrix: Water Lab File ID: 22JUL06-05.d Analysis Method: 537 IDA Date Collected: 06/15/2022 11:00 Extraction Method: 537 IDA Date Extracted: 06/27/2022 09:03 Date Analyzed: 07/06/2022 12:07 Sample wt/vol: 289.7(mL) Con. Extract Vol.: 1(mL) Dilution Factor: 1 GC Column: Gemini C18 50mm ID: 3(mm) Injection Volume: 4(uL)

% Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N___

Cleanup Factor:

Analysis Batch No.: 272691 Units: ng/L

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02577	13C5 PFHxA	71		24-179
STL01892	13C4 PFHpA	82		31-182
STL01052	13C8 PFOA	96		48-162
STL02578	13C9 PFNA	66		51-167
STL02579	13C6 PFDA	86		49-163
STL02703	13C2-PFDoDA	73		17-176
STL02116	13C2 PFTeDA	62		10-179
STL02337	13C3 PFBS	176		16-200
STL02581	13C3 PFHxS	113		28-188
STL01054	13C8 PFOS	82		51-159
STL02118	d3-NMeFOSAA	64		31-174
STL02117	d5-NEtFOSAA	70		29-195
STL02255	13C3 HFPO-DA	67		17-185
STL02580	13C7 PFUnA	78		34-174

Lab Name: Eurofins Lancaster Laboratories En	<u>v</u> Job No.: <u>240-168405-1</u>	Analy Batch No.: 271695
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 410-271695/1	22JUL01XMCAL-01.d
Level 2	IC 410-271695/2	22JUL01XMCAL-02.d
Level 3	IC 410-271695/3	22JUL01XMCAL-03.d
Level 4	IC 410-271695/4	22JUL01XMCAL-04.d
Level 5	ICISAV 410-271695/5	22JUL01XMCAL-05.d
Level 6	IC 410-271695/6	22JUL01XMCAL-06.d
Level 7	IC 410-271695/7	22JUL01XMCAL-07.d

ANALYTE			RRF			CURVE		COEFFICIE	NT :	# MIN RRF	%RSD		AX	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	М1	М2			%F	.SD	OR COD		OR COD
MTP	0.0682	0.0654 0.0714	0.0669	0.0613	0.0697	AveI		0.067			4.8	2	0.0			
PPF Acid	0.4398 0.4037	0.3938 0.4034	0.4160	0.3734	0.4187	AveI		0.407			5.1	2	0.0			
PFMOAA	0.2057 0.2028	0.1969 0.2037	0.2006	0.1893	0.2037	AveI		0.200			2.8	2	0.0			
Perfluorobutanoic acid	1.0151 0.9122	0.9757 0.8799	0.9880	0.9083		D		0.949			5.2	2	0.0			
R-EVE	0.1571 0.1625	0.1640 0.1654	0.1574	0.1521	0.1593	AveI D		0.159			2.9	2	0.0			
R-PSDA	0.0287 0.0321	0.0303 0.0354	0.0272	0.0290	0.0297	AveI D		0.030			8.9	2	0.0			
Hydrolyzed PSDA	0.2106 0.1972	0.1982 0.2053	0.2018	0.1959		D		0.200			2.9	2	0.0			
PMPA	0.4395 0.4461	0.4684 0.4583	0.4851	0.4674		D		0.466			4.4	2	0.0			
Perfluoropropanesulfonic acid	0.4350 0.4334	0.4434 0.4310	0.4986	0.4418		D		0.446			5.3	2	0.0			
NVHOS	0.2827 0.2709	0.2825 0.2607	0.2919	0.2987	0.2859	D		0.281			4.5	2	0.0			
PFECA F	1.0776 0.9645	1.0915 0.8957		1.0376		D		1.034			7.5		0.0			
PFO2HxA	0.3486 0.3391	0.3251 0.3291		0.3121		D		0.331			3.5		0.0			
3:3 FTCA	0.0655 0.0683	0.0724 0.0618	0.0651	0.0698	0.0649	AveI D		0.066			5.3	2	0.0			

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1	Analy Batch No.: 271695
---	-------------------------

SDG No.:

Instrument ID: 30733 ___ GC Column: $\underline{\text{Gemini C18}}$ ID: $\underline{\text{3 (mm)}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

ANALYTE		RRF						COEFFICI	ENT	#	MIN RRF	%RSD			# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
Perfluoropentanoic acid	0.9831 1.0186	0.9555 0.9106	1.0173	1.0034	0.9550	AveI		0.977				4.1	20.	0	
Perfluorobutanesulfonic acid	1.1532 0.9877	1.0485 0.9552	1.1102	1.0221	1.0215	AveI		1.042				6.6	20.	0	
PEPA	0.1664 0.1965	0.2132 0.1882	0.2131	0.2076	0.1991			0.197				8.4	20.	0	
PFECA A	0.5988 0.5566	0.5868 0.5257	0.5942	0.6353	0.5654	AveI		0.580				6.0	20.	0	
Perfluoro (2-ethoxyethane) sulfonic acid	2.8919 2.3869	2.4911 2.2888	2.5220	2.5538	2.4588			2.513				7.5	20.	0	
PFECA B	0.7538	0.7726	0.8019	0.7199	0.7270	1		0.743				5.0	20.	0	
4:2 Fluorotelomer sulfonic acid	2.6802	2.1774	2.5355	2.4981	2.6270	AveI		2.503				7.8	20.	0	
Perfluorohexanoic acid	1.0712 0.8552	0.8515	0.8792	0.8401	0.9430	AveI		0.899				9.3	20.	0	
Perfluoropentanesulfonic acid	1.0885 0.9585	0.9596 0.8616	1.0338	0.9733	0.9952	AveI		0.981				7.2	20.	0	
PF030A	0.3680	0.4360	0.3916	0.3995	0.4401	AveI		0.403				6.4	20.	0	
HFPODA	0.9593 0.8444	0.8227	0.9471	0.8093	0.8580			0.877				6.8	20.	0	
R-PSDCA	2.2066 1.9783	2.0529 2.0116	2.2019	2.1747	2.0008			2.089				4.8	20.	0	
Hydro-EVE Acid	2.0974 2.1343	2.2348 2.0276	2.2795	2.1073	2.2367	AveI		2.159				4.3	20.	0	
Perfluoroheptanoic acid	1.1284	1.0640 1.0541	1.0543	1.0346	1.1968			1.079				5.7	20.	0	
Hydro-PS Acid	1.4598 1.6133	1.5179 1.6375	1.4579	1.5361	1.5185	AveI		1.534				4.5	20.	0	
Perfluorohexanesulfonic acid	1.1075 1.1124	1.0677 1.1687	1.1194	1.0273	1.1411	AveI		1.106				4.2	20.	0	
DONA	1.5440 1.5024		1.5208	1.5425	1.9811	AveI		1.658				10.9	20.	0	
PFECA G	2.0118 2.1910	2.4589	2.5660	2.4691	2.2891			2.271				10.8	20.	0	

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1	Analy Batch No.: 271695
---	-------------------------

SDG No.:

Instrument ID: 30733 GC Column: Gemini C18 ID: 3 (mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	# M3	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 1 LVL 2 LVL 3 LVL 4 LVL 5		TYPE	B M1 M2		М2				%RSD	OR COD	OR COD		
5:3 FTCA	0.2218 0.2172	0.1964 0.2251	0.2142	0.2121	0.2370	AveI		0.217				5.7	20.		
6:2 FTUCA	1.2448 1.0550	1.1959 1.0815				D		1.147				5.8	20.		
6:2 FTCA	0.9517 1.0942	1.1058		1.0884		D		1.072				5.7	20.)	
PFO4DA	0.7409 0.6853	0.6943 0.6539	0.7039	0.7165	0.7227	AveI		0.702				4.0	20.)	
PS Acid	0.5340 0.5310	0.5152 0.5088		0.5475		D		0.538				5.5	20.		
EVE Acid	1.8980 1.5863	2.0081 1.5121		1.8099		D		1.783				10.0	20.)	
Perfluoro-4-ethylcyclohexanesulfon ic acid	1.0316 1.2324		1.0345	1.0015	1.1071	AveI		1.088				10.2	20.)	
6:2 Fluorotelomer sulfonic acid	2.2708	2.5745	2.2288	2.4728	2.5602	AveI		2.421				6.7	20.)	
Perfluoroheptanesulfonic acid	1.0103 1.0256	1.0465	1.0233	0.9794	1.0567	AveI		1.019				2.6	20.)	
Perfluorooctanoic acid	1.2006 0.9448	1.0924	1.0434	0.9158	1.0144	AveI		1.017				10.4	20.)	
TAF	0.9041 0.7737	0.7676		0.7534		D		0.802				7.7	20.)	
Perfluorooctanesulfonic acid	1.1549 1.1054	1.0178 1.0288	1.1659	1.0922	1.1336	AveI		1.099				5.3	20.)	
Perfluorononanoic acid	1.1964 0.9462	0.9902	1.0025	0.9367	1.0145	AveI		0.998				9.6	20.)	
7:3 FTCA	2.2595	2.3546	2.3645	2.2283	2.3648	AveI		2.302				2.9	20.		
8:2 FTUCA	1.0716	0.9987	1.1305	0.9658	1.0941	AveI		1.052				6.5	20.		
8:2 FTCA	1.0944	0.9731	1.0362	1.0110	0.8973	AveI		1.002				7.3	20.		
9C1-PF3ONS	1.1257 1.1456	0.9405 1.1319	1.1525	1.0377	1.1415	AveI		1.096				7.2	20.		
Perfluorononanesulfonic acid	1.0306 1.2358		1.1814	1.1447	1.2601	AveI		1.147				7.3	20.		

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1	Analy Batch No.: 271695
---	-------------------------

SDG No.:

Instrument ID: 30733 GC Column: Gemini C18 ID: 3 (mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
Perfluorodecanoic acid	1.0337 1.0161	0.9792 0.9129	1.1780	1.0235	1.1124	AveI		1.036				8.3	20.	0	
8:2 Fluorotelomer sulfonic acid	3.9341	3.5740	3.3484	2.7667	3.4585	AveI		3.416				12.4	20.	0	
Perfluorooctanesulfonamide	1.0522 0.9901	1.0055 0.9957	1.1102	1.0691	1.0670	AveI		1.041				4.3	20.	0	
NMeFOSAA	0.7431	0.8421	0.9033	0.8242	0.9353	AveI		0.849				8.8	20.	0	
Perfluorodecanesulfonic acid	1.0334 1.1508	0.9784 1.0002	1.1581	1.0317	1.0864			1.062				6.7	20.	0	
Perfluoroundecanoic acid	0.9925 0.9577	0.8356 0.8436	1.1641	0.8469	0.9532	1.2		0.941				12.4	20.	0	
NETFOSAA	0.7116	0.8764	0.9347	0.7786	0.8816	AveI		0.836				10.7	20.	0	
10:2 FTUCA	0.8311	0.9009	1.0284	0.9443	0.8972	AveI		0.920				7.9	20.	0	
11Cl-PF3OUdS	0.8569 0.8280	0.7949 0.7926	0.8937	0.8311	0.8529	AveI		0.835				4.3	20.	0	
10:2 FTCA	1.2585	1.0588	1.2081	1.0644	0.9532	AveI		1.108				11.1	20.	0	
Perfluorododecanoic acid	0.9937 1.0468	0.9717 0.9242	1.0038	1.0148	1.1719	AveI		1.018				7.6	20.	0	
10:2 FTS	1.7024	2.2581	2.4642	2.1770	2.5105	AveI		2.222				14.5	20.	0	
NMeFOSE	1.0897 1.1194	1.0750 1.1193	1.0919	1.0831	1.2127	AveI		1.113				4.2	20.	0	
NMeFOSA	1.1053 0.9824	0.9955	0.9947	0.9690	0.9799			1.004				5.0	20.	0	
Perfluorododecanesulfonic acid	1.0430 0.9109	0.8750 0.8495	0.9690	0.8925	0.9073	AveI		0.921				7.1	20.	0	
NETFOSE	1.1464 1.1278	1.0359 1.0561	1.0829	1.0685	1.1098			1.089				3.7	20.	0	
Perfluorotridecanoic acid	0.8935 0.6669	0.7607 0.6294	0.7828	0.7236	0.7844	AveI		0.748				11.6	20.	0	
NETFOSA	1.3884	1.0845 1.2364	1.2871	1.1919	1.2286	AveI		1.230				7.6	20.	0	

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

Analy Batch No.: 271695

SDG No.:

Instrument ID: 30733 ___ GC Column: $\underline{\text{Gemini C18}}$ ID: $\underline{\text{3 (mm)}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

ANALYTE			RRF			CURVE	COEFFICIENT			#	MIN RRF	%RSD		XAN	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				્ર	RSD	OR COD		OR COD
Perfluorotetradecanoic acid	1.0844 0.8293			0.9193		D		0.907				10.1		20.0			
Perfluorohexadecanoic acid	1.4606 1.1044			1.2105		D		1.223				10.1		20.0			
Perfluorooctadecanoic acid	0.4947 0.5013	0.4719 0.5143	0.4664	0.4912	0.4968	AveI		0.491				3.4		20.0			
13C4 PFBA	1.2154 1.0874		1.1261	1.1297	1.0896	Ave		1.123				3.9		20.0			
13C5 PFPeA	1.1291		0.9909	0.9599	0.9871	Ave		1.000				6.3		20.0			
13C3 PFBS	1.8979 1.7492	1.8037 1.8023	1.8407	1.7517	1.8302	Ave		1.810				2.9		20.0			
M2-4:2 FTS	0.0855	0.0943	0.0852	0.0774	0.0768	Ave		0.083				8.5		20.0			
13C5 PFHxA	1.1362 1.2071	1.1435 1.3337	1.1735	1.1039	1.0459	Ave		1.163				7.8		20.0			
13C3 HFPO-DA	0.3404	0.3520 0.4313	0.3212	0.3325	0.3424	Ave		0.355				10.3		20.0			
13C3 PFHxS	1.6725 1.5057		1.6162	1.4769	1.3655	Ave		1.531				6.7		20.0			
13C4 PFHpA	1.1985 1.1050		1.2243	1.0861	0.9457	Ave		1.126				8.9		20.0			
13C2-2H-Perfluoro-2-octenoic acid	1.2030 1.1794	1.1261 1.2415	1.2581	1.1610	1.0487	Ave		1.174				6.1		20.0			
13C2-2-Perfluorohexylethanoic acid	0.1347 0.1262	0.1272	0.1233	0.1203	0.1074	Ave		0.123				7.4		20.0			
M2-6:2 FTS	0.0625	0.0622	0.0611	0.0528	0.0471	Ave		0.057				12.0		20.0			
13C8 PFOA	1.0431	1.0070 1.0788	1.0210	0.9994	0.8875	Ave		1.004				5.9		20.0			
13C8 PFOS	1.0990	1.0577	0.9589	1.0372	0.9648	Ave		1.019				6.1		20.0			
13C9 PFNA	0.7778 0.6445	0.7588	0.7195	0.7115	0.6550	Ave		0.702				7.7		20.0			
13C2-2H-Perfluoro-2-decenoic acid	1.1589	1.1864	1.0942	1.0681	0.9708	Ave		1.095				7.7		20.0			

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1 Analy Batch No.: 271695

SDG No.:

Instrument ID: 30733 GC Column: Gemini C18 ID: 3 (mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE COEFFICIENT		ENT	#	MIN RRF	%RSD		R^2	# MIN R^2	
	LVL 1 LVL 6	LVL 2 LVL 3 LVL 4 LVL 5 TYPE B M1		M2				%RSD	OR COD	OR COD					
13C2-2-Perfluorooctylethanoic acid	0.1217	0.1205	0.1171	0.1002	0.1067	Ave		0.113				8.3	20.0)	
13C6 PFDA	1.1941 0.9732	1.1376 0.9933	0.9832	0.9617	0.9729	Ave		1.030				9.1	20.0)	
M2-8:2 FTS	0.0584	0.0523	0.0512	0.0482	0.0436	Ave		0.050				10.7	20.0)	
13C8 FOSA	2.4408 2.2364	2.5135 2.2750	2.4115	2.2062	2.1888	Ave		2.324				5.5	20.0)	
d3-NMeFOSAA	0.4440	0.4406	0.4049	0.3967	0.4045	Ave		0.418				5.3	20.0)	
13C7 PFUnA	0.7623 0.6924	0.8083 0.7560	0.7004	0.7794	0.7383	Ave		0.748				5.5	20.0)	
d5-NEtFOSAA	0.3804	0.3719	0.3726	0.3307	0.3209	Ave		0.355				7.7	20.0)	
13C2-2H-Perfluoro-2-dodecenoic	1.0819	1.1076	0.9545	0.9282	0.8887	Ave		0.992				9.8	20.0)	
13C2-2-Perfluorodecylethanoic acid	0.0938	0.0893	0.0863	0.0794	0.0789	Ave		0.085				7.5	20.0)	
13C2-PFDoDA	0.5020 0.4579	0.5313 0.5208	0.4936	0.4419	0.4290	Ave		0.482				8.2	20.0)	
d7-N-MeFOSE-M	0.2778 0.2567	0.2957 0.2746	0.2675	0.2505	0.2432	Ave		0.266				6.8	20.0)	
d3-NMePFOSA	0.3237 0.3223	0.3288	0.3205	0.2936	0.3046	Ave		0.315				4.3	20.0)	
d9-N-EtFOSE-M	0.3201 0.2631	0.3326 0.2978	0.2857	0.2873	0.2783	Ave		0.295				8.2	20.0)	
d5-NEtPFOSA	0.3066 0.2753	0.2983 0.2792	0.2852	0.2809	0.2694	Ave		0.285				4.6	20.0)	
13C2 PFTeDA	0.4033 0.3785	0.4039 0.4150		0.3611	0.3650	Ave		0.390				5.5	20.0)	

Lab Name: Eurofins Lancaster Laboratories E	nv Job No.: 240-168405-1	Analy Batch No.: 271695
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

Calibration	Files		
LEVEL:	LAB SAMPLE ID:	LAB FILE ID:	
Level 1	IC 410-271695/1	22JUL01XMCAL-01.d	
Level 2	IC 410-271695/2	22JUL01XMCAL-02.d	
Level 3	IC 410-271695/3	22JUL01XMCAL-03.d	
Level 4	IC 410-271695/4	22JUL01XMCAL-04.d	
Level 5	ICISAV 410-271695/5	22JUL01XMCAL-05.d	
Level 6	IC 410-271695/6	22JUL01XMCAL-06.d	
Level 7	IC 410-271695/7	22JUL01XMCAL-07.d	

ANALYTE	IS REF	CURVE			RESPONSE			CONCENTRATION (NG/ML)					
		TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	
MTP		AveI	2884	7455	27183	107882	292838	0.200	0.500	2.00	8.00	20.0	
		D	650694	1297988				50.0	100				
PPF Acid		AveI	18603	44889	169063	656690	1759155	0.200	0.500	2.00	8.00	20.0	
		D	3938091	7332891				50.0	100				
PFMOAA		AveI	8699	22445	81506	332924	855734	0.200	0.500	2.00	8.00	20.0	
		D	1978605	3702121				50.0	100				
Perfluorobutanoic acid		AveI	42939	111233	401530	1597273	4057586	0.200	0.500	2.00	8.00	20.0	
		D	8899597	15995397				50.0	100				
R-EVE		AveI	6644	18699	63947	267479	669403	0.200	0.500	2.00	8.00	20.0	
		D	1585456	3006034				50.0	100				
R-PSDA		AveI	1893	5660	18094	79182	209874	0.200	0.500	2.00	8.00	20.0	
		D	503039	1044553				50.0	100				
Hydrolyzed PSDA		AveI	13910	37001	134066	534169	1370314	0.200	0.500	2.00	8.00	20.0	
		D	3095130	6048716				50.0	100				
PMPA		AveI	18592	53393	197147	821899	2089056	0.200	0.500	2.00	8.00	20.0	
		D	4352170	8330385				50.0	100				
Perfluoropropanesulfonic acid		AveI	16856	46297	185589	711713	1687307	0.183	0.458	1.83	7.33	18.3	
		D	3873154	7176881				45.8	91.6				

Lab Name: Eurofins Lancaster Laboratories En	<u>v</u> Job No.: <u>240-168405-1</u>	Analy Batch No.: 271695
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

ANALYTE	IS	CURVE			RESPONSE				CONCEN	TRATION (N	IG/ML)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
NVHOS		AveI	18671	52751	193872	814453	2017456	0.200	0.500	2.00	8.00	20.0
		D										
			4252041	7682202				50.0	100			
PFECA F		AveI	45579	124434	452286	1824617	4457931	0.200	0.500	2.00	8.00	20.0
		D	9409850	16281763				50.0	100			
PFO2HxA		AveI	14747	37059	133797	548854	1415593	0.200	0.500	2.00	8.00	20.0
		D										
			3308469	5981368				50.0	100			
3:3 FTCA		AveI	2574	7669	23289	104363	246831	0.200	0.500	2.00	8.00	20.0
		D										
			572811	989529				50.0	100			
Perfluoropentanoic acid		AveI	38630	101260	363790	1499238	3634395	0.200	0.500	2.00	8.00	20.0
		D	8545698	14588839				50.0	100			
Perfluorobutanesulfonic acid		AveI	67410	173261	652669	2466543	6379697	0.177	0.443	1.77	7.08	17.7
		D										
			13717429	24908504				44.3	88.5			
PEPA		AveI	7039	24299	86596	365068	836367	0.200	0.500	2.00	8.00	20.0
		D										
			1917460	3420779				50.0	100			
PFECA A		AveI	39548	109569	394709	1732316	3989479	0.200	0.500	2.00	8.00	20.0
		D	8734853	15491743				50.0	100			
Perfluoro (2-ethoxyethane)		AveI	169996	413957	1491000	6197632	15442356	0.178	0.445	1.78	7.12	17.8
sulfonic acid		D								_,,,		
Surrenze derd			33337346	60025124				44.5	89.0			
PFECA B		AveI	49791	144252	532700	1962954	5130058	0.200	0.500	2.00	8.00	20.0
		D										
			11614483	20242441				50.0	100			
4:2 Fluorotelomer sulfonic acid		AveI	9759	24078	90725	343588	923443	0.187	0.467	1.87	7.47	18.7
		D	+++++	+++++				+++++	+++++			
Perfluorohexanoic acid		Arro T	55521	122267	463736	1763986	4832819	0.200	0.500	2.00	8.00	20.0
		AveI D	33321	122207	100,00	1,00000	1002019	0.200	0.000	2.00	3.00	20.0
			9809408	17674716				50.0	100			

Lab Name: Eurofins Lancaster Laboratories Er	<u> 100 No.: 240-168405-1</u>	Analy Batch No.: 271695
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

ANALYTE	IS CURVE			RESPONSE				CONCEN	NTRATION (N	G/ML)						
	REF TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5					
Perfluoropentanesulfonic acid	AveI	67437	168068	644166	2489337	6587569	0.188	0.469	1.88	7.50	18.8					
	D															
		14109482	23813726				46.9	93.8								
PFO3OA	AveI	15567	49705	159149	702599	1848772	0.200	0.500	2.00	8.00	20.0					
	D	000000	5010000					100								
		3833837	7213289	406744	511010	1100511	50.0	100	2 22							
HFPODA	AveI	14896	36361	136711	511840	1439644	0.200	0.500	2.00	8.00	20.0					
	D	2062017	6040030				50.0	100								
R-PSDCA		2963817 145742	6049832 383300	1462631	5929999	14119270	0.200	0.500	2.00	8.00	20.0					
R-PSDCA	AveI	143/42	383300	1402031	5929999	14119270	0.200	0.500	2.00	8.00	20.0					
	D	31045099	59275267				50.0	100								
Hydro-EVE Acid	AveI	88719	254765	926377	3705719	9396627	0.200	0.500	2.00	8.00	20.0					
	D															
		20822287	36856260				50.0	100								
Perfluoroheptanoic acid	AveI	61691	163636	580160	2137286	5546059	0.200	0.500	2.00	8.00	20.0					
_	D															
		10742230	17958881				50.0	100								
Hydro-PS Acid	AveI	96416	283419	968437	4188721	10715564	0.200	0.500	2.00	8.00	20.0					
	D															
		25318554	48251911				50.0	100								
Perfluorohexanesulfonic acid	AveI	77059	182363	741570	2631813	6962895	0.182	0.456	1.82	7.30	18.2					
	D															
		14514910	26355700				45.6	91.2								
DONA	AveI	79767	252044	790834	3011263	8675900	0.189	0.473	1.89	7.56	18.9					
	D	14007644	00700505				47.0	04 5								
7770		14907644	28708595	1040700	4241055	0.61.6600	47.3	94.5	0.00	0.00						
PFECA G	AveI	85096	280315	1042788	4341955	9616690	0.200	0.500	2.00	8.00	20.0					
	D	21375088	34783739				50.0	100								
5:3 FTCA		12125	34783739	117894	438071	1098111	0.200	0.500	2.00	8.00	20.0					
J.J FICA	AveI	12123	30200	11/094	4300/1	1030111	0.200	0.500	2.00	0.00	20.0					
		2281154	3834502				50.0	100								
6:2 FTUCA	AveI	68314	169112	636018	2523666	6085079	0.200	0.500	2.00	8.00	20.0					
	D	00314	100112	030010	2020000	0000075	0.200	0.000	2.50	0.00	20.0					
		11823319	20825398				50.0	100								

Lab Na	ame: [Eurofins	Lancaster	Laboratories En	v Job No.:	240-168405-1			Analy Batch No.:	2716	695	
SDG No	o.: _											
Instr	ument	ID: 307	33		_ GC Columi	n: Gemini C18	ID:	3 (mm)	Heated Purge: (Y/	/N) <u>1</u>	N	

Calibration ID: 40358

Calibration Start Date: 07/01/2022 13:08 Calibration End Date: 07/01/2022 14:15

ANALYTE	IS						CONCENTRATION (NG/ML)					
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
6:2 FTCA		AveI D	5846	17670	59280	248956	590585	0.200	0.500	2.00	8.00	20.0
			1311700	+++++				50.0	+++++			
PFO4DA		AveI D	31339	79145	286062	1260005	3036111	0.200	0.500	2.00	8.00	20.0
			6685952	11886162				50.0	100			
PS Acid		AveI D	35270	96205	398269	1493042	3778759	0.200	0.500	2.00	8.00	20.0
			8333053	14992036				50.0	100			
EVE Acid		AveI D	80283	228915	772896	3182611	7420251	0.200	0.500	2.00	8.00	20.0
			15476245	27486024				50.0	100			
Perfluoro-4-ethylcyclohexanesulf onic acid		AveI	72565	167352	692844	2593993	6829855	0.184	0.461	1.84	7.38	18.4
onie dela			16257877	28383257				46.1	92.2			
6:2 Fluorotelomer sulfonic acid		AveI	6139	19073	58002	235350	560554	0.190	0.474	1.90	7.58	19.0
			+++++	+++++				+++++	+++++			
Perfluoroheptanesulfonic acid		AveI	73381	186582	707610	2619144	6730760	0.190	0.476	1.90	7.62	19.0
			13970027	23461033				47.6	95.2			
Perfluorooctanoic acid		AveI	57129	138145	478808	1741005	4411150	0.200	0.500	2.00	8.00	20.0
		D	8935427	15218583				50.0	100			
TAF		AveI	38243	95507	297923	1324909	3549258	0.200	0.500	2.00	8.00	20.0
		D	7548054	13953275				50.0	100			
Perfluorooctanesulfonic acid		AveI	65124	161952	619843	2523216	6492755	0.185	0.463	1.85	7.40	18.5
		D	14072274	25797320				46.3	92.6			
Perfluorononanoic acid		AveI D	51592	122120	432087	1604005	4262395	0.200	0.500	2.00	8.00	20.0
			8872735	14818395				50.0	100			
7:3 FTCA		AveI	13880	37625	131028	509681	1244712	0.200	0.500	2.00	8.00	20.0
		ח	2685888	++++				50.0	+++++			

Lab Name: Eurofins Lancaster Laboratories En	y Job No.: 240-168405-1	Analy Batch No.: 271695
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

ANALYTE	IS CURVE			RESPONSE				CONCEN	NTRATION (N	G/ML)	
	REF TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
8:2 FTUCA	AveI	46313	118896	457781	1709497	4461105	0.200	0.500	2.00	8.00	20.0
	D										
0.0.0		+++++	+++++	1.1.0.0.0	1.60051	100101	+++++	+++++	0.00	0.00	0.0.0
8:2 FTCA	AveI	4967	11762	44909	167951	402121	0.200	0.500	2.00	8.00	20.0
	D	+++++	+++++				+++++	+++++			
9C1-PF3ONS	AveI	63784	150377	615682	2408881	6569894	0.186	0.465	1.86	7.44	18.6
	D										
		14655584	28519619				46.5	93.0			
Perfluorononanesulfonic acid	AveI	60279	181555	651510	2742910	7486019	0.192	0.480	1.92	7.68	19.2
	D										
		16319471	28166722				48.0	96.0			
Perfluorodecanoic acid	AveI	46032	111781	428622	1631190	4545531	0.200	0.500	2.00	8.00	20.0
	D	0001106	45000560				500	4.00			
		9281196	15390763	60770	011706	607070	50.0	100	1 00	7.66	10.0
8:2 Fluorotelomer sulfonic acid	AveI	8210	17958	60770	211706	607072	0.192	0.479	1.92	7.66	19.2
	D	+++++	+++++				+++++	+++++			
Perfluorooctanesulfonamide	AveI	95778	253596	990840	3908765	9808640	0.200	0.500	2.00	8.00	20.0
	D										
		20782781	38450424				50.0	100			
NMeFOSAA	AveI	12305	37231	135369	541802	1588868	0.200	0.500	2.00	8.00	20.0
	D										
		+++++	+++++				+++++	+++++			
Perfluorodecanesulfonic acid	AveI	60696	162150	641294	2482624	6480946	0.193	0.482	1.93	7.71	19.3
	D	45050600	0.54.00.50.5					0.5.4			
		15259609	26123636	0.04.50.5	1000700	0.05.500.0	48.2	96.4	2 22		
Perfluoroundecanoic acid	AveI	28214	67778	301725	1093792	2955909	0.200	0.500	2.00	8.00	20.0
	D	6224289	10825915				50.0	100			
NETFOSAA	AveI	10094	32700	128901	426654	1188083	0.200	0.500	2.00	8.00	20.0
	D	10001	02.00	120001	120001	1100000			2.30	3.30	20.0
		+++++	+++++				+++++	+++++			
10:2 FTUCA	AveI	33531	100124	363277	1452432	3348808	0.200	0.500	2.00	8.00	20.0
	D										
		+++++	+++++				+++++	+++++			

Lab Name: Eurofins Lancaster Laboratories En	y Job No.: 240-168405-1	Analy Batch No.: 271695
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

ANALYTE	IS CURVE			RESPONSE				CONCEN	NTRATION (N	G/ML)	
	REF TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
11Cl-PF3OUdS	AveI	48553	127093	477454	1929172	4908809	0.186	0.465	1.86	7.44	18.6
	D	10500550	40054546								
10.0 FMC2		10592662	19971716 9483	38604	140014	315798	46.5 0.200	93.0	2.00	8.00	20.0
10:2 FTCA	AveI	4401	9483	38604	140014	315/98	0.200	0.500	2.00	8.00	20.0
	D	+++++	+++++				+++++	+++++			
Perfluorododecanoic acid	AveI	18605	51809	183349	743211	2111286	0.200	0.500	2.00	8.00	20.0
	D										
		4499056	8170673				50.0	100			
10:2 FTS	AveI	3575	11417	45002	167625	443436	0.193	0.482	1.93	7.71	19.3
	D										
		++++	++++				++++	++++			
NMeFOSE	AveI	11289	31899	108091	449627	1238523	0.200	0.500	2.00	8.00	20.0
	D	2696944	5218034				50.0	100			
NMeFOSA	7 . 7	13345	32848	117992	471441	1253582	0.200	0.500	2.00	8.00	20.0
NHELODA	AveI	13343	32040	11/332	4/1441	1233302	0.200	0.500	2.00	0.00	20.0
		2971646	+++++				50.0	+++++			
Perfluorododecanesulfonic acid	AveI	61517	145620	538846	2156451	5434989	0.194	0.484	1.94	7.74	19.4
	D										
		12129349	22280134				48.4	96.8			
NETFOSE	AveI	13685	34567	114502	508645	1297078	0.200	0.500	2.00	8.00	20.0
	D										
		2785256	5338918				50.0	100			
Perfluorotridecanoic acid	AveI	16729	40558	142989	529959	1413265	0.200	0.500	2.00	8.00	20.0
	D	2866351	5564333				50.0	100			
NETFOSA	AveI	15876	32457	135842	554803	1390271	0.200	0.500	2.00	8.00	20.0
	D										
		3085379	5859517				50.0	100			
Perfluorotetradecanoic acid	AveI	16311	36847	135281	550199	1398223	0.200	0.500	2.00	8.00	20.0
	D										
		2945775	5602419				50.0	100			
Perfluorohexadecanoic acid	AveI	21970	51462	174364	724454	1916577	0.200	0.500	2.00	8.00	20.0
	D	3923094	7740261				50.0	100			
		3923094	//40261				50.0	100			

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1 Analy Batch No.:	271695
--	--------

SDG No.:

Instrument ID: 30733 GC Column: Gemini C18 ID: 3(mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE			CONCENTRATION (NG/ML)					
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	
Perfluorooctadecanoic acid		AveI	7441	19124	69701	293946	761689	0.200	0.500	2.00	8.00	20.0	
		D	1500500	0.500.050.5				50.0	100				
1204 PEPA		7 -	1780780 2114930	3622736	2031933	2198116	2100536	50.0	100	10.0	10.0	10.0	
13C4 PFBA	13C3	Ave	2114930	2279972	2031933	2198116	2100536	10.0	10.0	10.0	10.0	10.0	
	PFBA		1951189	1817766				10.0	10.0				
13C5 PFPeA	13C3	Ave	1964754	2119591	1788004	1867710	1902907	10.0	10.0	10.0	10.0	10.0	
	PFBA												
			1677990	1602175				10.0	10.0				
13C3 PFBS	13C3	Ave	3071277	3472908	3088859	3169886	3281341	9.30	9.30	9.30	9.30	9.30	
	PFBA												
			2918931	2740387				9.30	9.30				
M2-4:2 FTS	13PF	Ave	182054	221158	178912	171924	175757	9.34	9.34	9.34	9.34	9.34	
	OA		+++++	+++++				++++	+++++				
13C5 PFHxA	13PF	Ave	2591464	2871946	2637263	2624615	2562446	10.0	10.0	10.0	10.0	10.0	
1000 11	OA	1110	2031101	2071310	2007200	2021010	2002110	10.0	10.0	10.0	10.0	10.0	
	011		2294034	2068722				10.0	10.0				
13C3 HFPO-DA	13PF	Ave	776434	883968	721719	790608	838974	10.0	10.0	10.0	10.0	10.0	
	OA												
			702006	668922				10.0	10.0				
13C3 PFHxS	13PF	Ave	3608674	3543460	3435839	3321886	3164775	9.46	9.46	9.46	9.46	9.46	
	OA		0707060	0220060				0.46	0.46				
13C4 PFHpA		Ave	2707068 2733501	2339262 3075756	2751338	2582213	2317104	9.46	9.46	10.0	10.0	10.0	
13C4 PrnpA	13PF	Ave	2/33301	3073736	2/31330	2302213	231/104	10.0	10.0	10.0	10.0	10.0	
	OA		2100062	1703764				10.0	10.0				
13C2-2H-Perfluoro-2-octenoic	13PF	Ave	2743918	2828244	2827282	2760482	2569257	10.0	10.0	10.0	10.0	10.0	
acid	OA												
			2241394	1925634				10.0	10.0				
13C2-2-Perfluorohexylethanoic	13PF	Ave	307143	319593	277068	285909	263175	10.0	10.0	10.0	10.0	10.0	
acid	OA												
MO 6 0 PEG			239752	+++++	120201	110001	100706	10.0	++++	0.50	0 50	^ = ^	
M2-6:2 FTS	13PF	Ave	135458	148482	130391	119221	109706	9.50	9.50	9.50	9.50	9.50	
	OA		+++++	+++++				+++++	+++++				

Lab	Name:	Euroiins	Lancaster	Laboratories	Env Job No.:	240-168405-1	Analy Batch No.: 271695
BDG	No.:						· · · · · · · · · · · · · · · · · · ·

Instrument ID: 30733 GC Column: Gemini C18 ID: 3 (mm) Heated Purge: (Y/N) N

ANALYTE	IS	CURVE			RESPONSE				CONCEN	ITRATION (N	G/ML)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
13C8 PFOA	13PF	Ave	2379189	2529115	2294418	2376215	2174322	10.0	10.0	10.0	10.0	10.0
	OA		1891533	1673328				10.0	10.0			
13C8 PFOS	PFOS	Ave	2912403	3287169	2745820	2982829	2958126	9.56	10.0 9.56	9.56	9.56	9.56
1300 1103	1105	Ave	2630072	2590161	2/43020	2302023	2330120	9.56	9.56	3.30	7.30	J.30
13C9 PFNA	PFOS	Ave	2156131	2466602	2155037	2140455	2100753	10.0	10.0	10.0	10.0	10.0
			1875475	1641298				10.0	10.0			
13C2-2H-Perfluoro-2-decenoic acid	PFDA	Ave	2160919	2380961	2024735	2212562	2038680	10.0	10.0	10.0	10.0	10.0
			+++++	+++++				+++++	+++++			
13C2-2-Perfluorooctylethanoic acid	PFDA	Ave	226919	241747	216704	207653	224066	10.0	10.0	10.0	10.0	10.0
			+++++	+++++				+++++	+++++			
13C6 PFDA	PFDA	Ave	2226671	2283039	1819224	1992245	2043155	10.0	10.0	10.0	10.0	10.0
			1826848	1685947				10.0	10.0			
M2-8:2 FTS	PFDA	Ave	104344	100492	90744	95649	87766	9.58	9.58	9.58	9.58	9.58
			++++	+++++				++++	+++++			
13C8 FOSA	PFDA	Ave	4551444	5044057	4462324	4570243	4596471	10.0	10.0	10.0	10.0	10.0
10		_	4198117	3861481	510000	004544	0.10.11.0	10.0	10.0	10.0	10.0	
d3-NMeFOSAA	PFDA	Ave	827913	884283	749292	821744	849412	10.0	10.0	10.0	10.0	10.0
13C7 PFUnA	PFDA	Ave	+++++ 1421375	+++++ 1622173	1296002	1614490	1550520	10.0	10.0	10.0	10.0	10.0
ISC/ PFONA	PFDA	Ave	1299846	1283252	1296002	1014490	1330320	10.0	10.0	10.0	10.0	10.0
d5-NEtFOSAA	PFDA	Ave	709292	746250	689535	684976	673842	10.0	10.0	10.0	10.0	10.0
do Meciobili	11211	1110	+++++	+++++	003000	001370	073012	+++++	+++++	10.0	10.0	10.0
13C2-2H-Perfluoro-2-dodecenoic	PFDA	Ave	2017342	2222674	1766292	1922713	1866174	10.0	10.0	10.0	10.0	10.0
acid			+++++	+++++				+++++	+++++			
13C2-2-Perfluorodecylethanoic	PFDA	Ave	174850	179126	159778	164434	165653	10.0	10.0	10.0	10.0	10.0
acid												
13C2-PFDoDA	DED	7	+++++ 936126	+++++ 1066312	913295	915440	900815	10.0	+++++	10.0	10.0	10.0
13CZ-ŁŁ DODA	PFDA	Ave	936126 859568	884040	913295	915440	900812	10.0	10.0	10.0	10.0	10.0
d7-N-MeFOSE-M	PFDA	Ave	517969	593474	494978	518891	510647	10.0	10.0	10.0	10.0	10.0
W MELOSE-M	FFDA	Ave	481834	466172	4343/0	210031	31004/	10.0	10.0	10.0	10.0	10.0
d3-NMePFOSA	PFDA	Ave	603668	659916	593079	608129	639633		10.0	10.0	10.0	10.0

Lab Name: Eurofins Lancaster Laboratories En	Analy Batch No.: 271695	
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

ANALYTE	IS	CURVE							CONCENTRATION (NG/ML)						
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5			
			604982	+++++				10.0	+++++						
d9-N-EtFOSE-M	PFDA	Ave	596890	667408	528672	595057	584350	10.0	10.0	10.0	10.0	10.0			
			493944	505512				10.0	10.0						
d5-NEtPFOSA	PFDA	Ave	571745	598558	527717	581857	565802	10.0	10.0	10.0	10.0	10.0			
			516764	473931				10.0	10.0						
13C2 PFTeDA	PFDA	Ave	752100	810492	747180	748101	766562	10.0	10.0	10.0	10.0	10.0			
			710443	704340				10.0	10.0						

Curve Type Legend

Ave = Average ISTD

AveID = Average isotope dilution

FORM VI

PFAS BY ISOTOPIC DILUTION - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name: Eurofins Lancaster Laboratories En	<u>v</u> Job No.: <u>240-168405-1</u>	Analy Batch No.: 271695
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 410-271695/1	22JUL01XMCAL-01.d
Level 2	IC 410-271695/2	22JUL01XMCAL-02.d
Level 3	IC 410-271695/3	22JUL01XMCAL-03.d
Level 4	IC 410-271695/4	22JUL01XMCAL-04.d
Level 5	ICISAV 410-271695/5	22JUL01XMCAL-05.d
Level 6	IC 410-271695/6	22JUL01XMCAL-06.d
Level 7	IC 410-271695/7	22JUL01XMCAL-07.d

ANALYTE			PERCEN'	r error				PI	ERCENT EF	RROR LIMI	Т	
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
MTP	1.6 6.4	-2.5	-0.3	-8.6	3.9	-0.6	50 30	30	30	30	30	30
PPF Acid	8.1 -0.9	-3.2	2.2	-8.2	2.9	-0.8	50 30	30	30	30	30	30
PFMOAA	2.6 1.6	-1.7	0.1	-5.5	1.7	1.2	50 30	30	30	30	30	30
Perfluorobutanoic acid	6.9 -7.3	2.8	4.1	-4.3	1.7	-3.9	50 30	30	30	30	30	30
R-EVE	-1.6 3.6	2.7	-1.5	-4.7	-0.2	1.8	50 30	30	30	30	30	30
R-PSDA	-5.6 16.8	-0.1	-10.3	-4.3	-2.0	5.6	50 30	30	30	30	30	30
Hydrolyzed PSDA	5.1 2.4	-1.1	0.7	-2.3	-3.1	-1.6	50 30	30	30	30	30	30
PMPA	-5.7 -1.7	0.5	4.1	0.3	6.7	-4.3	50 30	30	30	30	30	30
Perfluoropropanesulfonic acid	-2.4 -3.3	-0.6	11.8	-0.9	-1.7	-2.8	50 30	30	30	30	30	30
NVHOS	0.3 -7.5	0.2	3.5	6.0	1.4	-3.9	50 30	30	30	30	30	30
PFECA F	4.2 -13.4	5.5	7.6	0.3	2.6	-6.8	50 30	30	30	30	30	30
PFO2HxA	5.2 -0.7	-1.9	-0.7	-5.8	1.7	2.3	50 30	30	30	30	30	30
3:3 FTCA	-2.0 -7.6	8.3	-2.5	4.5	-2.9	2.2	50 30	30	30	30	30	30
Perfluoropentanoic acid	0.6 -6.9	-2.3	4.1	2.6	-2.3	4.2	50 30	30	30	30	30	30

Lab Nam	ne: Euro	ofins Lancast	er Laboratories En	v Job No.:	240-168405-1			Analy Batch No.	: 271	L695	
SDG No.	.:										
Instrum	ment ID:	: 30733		GC Colum	n: Gemini C18	ID:	3 (mm)	Heated Purge: ((Y/N)	N	

ANALYTE			PERCENT ERROR LIMIT									
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
Perfluorobutanesulfonic acid	10.6 -8.4	0.6	6.5	-2.0	-2.0	-5.3	50 30	30	30	30	30	30
PEPA	-15.8 -4.8	7.8	7.8	5.0	0.7	-0.6	50 30	30	30	30	30	
PFECA A	3.2 -9.4	1.1	2.4	9.5	-2.6	-4.1	50 30	30	30	30	30	30
Perfluoro (2-ethoxyethane) sulfonic acid	15.1 -8.9	-0.9	0.3	1.6	-2.2	-5.0	50 30	30	30	30	30	30
PFECA B	1.4 -7.6	4.0	7.9	-3.1	-2.2	-0.4	50 30	30	30	30	30	30
4:2 Fluorotelomer sulfonic acid	7.1	-13.0	1.3	-0.2	4.9	++++	50	30	30	30	30	
Perfluorohexanoic acid	19.1 -5.0	-5.3	-2.2	-6.6	4.9	-4.9	50 30	30		30		
Perfluoropentanesulfonic acid	10.9 -12.2	-2.2	5.3	-0.8	1.4	-2.3	50 30	30	30	30		
PF030A	-8.8 -1.7	8.0	-3.0	-1.0	9.0	-2.6	50 30	30	30	30		
HFPODA	9.3 3.0	-6.3	7.9	-7.8	-2.3	-3.8	50 30	30	30	30	30	
R-PSDCA	5.6 -3.7	-1.8	5.4	4.1	-4.2	-5.3	50 30	30	30	30		
Hydro-EVE Acid	-2.9 -6.1	3.5	5.6	-2.4	3.6	-1.2	50 30	30	30	30	30	30
Perfluoroheptanoic acid	4.5 -2.3	-1.4	-2.3	-4.1	10.9	-5.2	50 30	30	30	30	30	
Hydro-PS Acid	-4.9 6.7	-1.1	-5.0	0.1	-1.0	5.1	50 30	30		30		
Perfluorohexanesulfonic acid	0.1 5.6	-3.5	1.2	-7.1	3.1	0.5	50 30	30		30		
DONA	-6.9 7.5	4.6	-8.3	-7.0	19.5	-9.4	50 30	30		30		
PFECA G	-11.4 -15.8	8.3	13.0	8.7	0.8	-3.5	50 30	30	30	30		
5:3 FTCA	1.9 3.4	-9.8	-1.6	-2.6	8.9	-0.2	50 30	30	30	30		
6:2 FTUCA	8.5 -5.7	4.3	-1.9	-0.4	3.2	-8.0	50 30	30	30	30	30	30

Eurofins	Lancaster	Laboratories E	nv Job No.:	240-168405-1			Analy Batch No.: $\frac{2}{2}$	2716	595	
: ID: <u>3073</u>	33		GC Column	n: Gemini C18	ID:	3 (mm)	Heated Purge: (Y/N	1) N	Ī	
_		Eurofins Lancaster ID: 30733			Eurofins Lancaster Laboratories Env Job No.: 240-168405-1 ID: 30733 GC Column: Gemini C18					

ANALYTE			PERCEN'	I ERROR			PERCENT ERROR LIMIT						
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	
6:2 FTCA	-11.2	3.2	-0.2	1.5	4.7	2.1	50	30	30	30	30	30	
PFO4DA	5.5 -6.9	-1.2	0.2	2.0	2.9	-2.4	50 30	30	30		30	30	
PS Acid	-0.9 -5.6	-4.4	11.3	1.6	-0.6	-1.4	50 30	30			30		
EVE Acid	6.4 -15.2	12.6	6.7	1.5	-0.9	-11.0	50 30	30	30	30	30	30	
Perfluoro-4-ethylcyclohexanesulfon ic acid	-5.2 14.3	-11.0	-5.0	-8.0	1.7	13.2	50 30	30	30	30	30	30	
6:2 Fluorotelomer sulfonic acid	-6.2 ++++	6.3	-8.0	2.1	5.7	++++	50	30	30	30	30		
Perfluoroheptanesulfonic acid	-0.9 -2.3	2.6	0.3	-4.0	3.6	0.6	50 30	30	30	30	30		
Perfluorooctanoic acid	18.0 -10.6	7.4	2.6	-10.0	-0.3	-7.1	50 30	30	30	30	30	30	
TAF	12.7 -4.3	4.5	-8.6	-6.1	5.3	-3.5	50 30	30	30	30	30	30	
Perfluorooctanesulfonic acid	5.0 -6.5	-7.5	6.0	-0.7	3.1	0.5	50 30	30	30	30	30	30	
Perfluorononanoic acid	19.8 -9.6	-0.8	0.4	-6.2	1.6	-5.2	50 30	30	30	30	30	30	
7:3 FTCA	-1.8 +++++	2.3	2.7	-3.2	2.7	-2.7	50	30	30		30	30	
8:2 FTUCA	1.8	-5.1	7.4	-8.2	4.0	+++++	50	30	30	30	30		
8:2 FTCA	9.2	-2.9	3.4	0.9	-10.5	+++++	50	30	30				
9C1-PF3ONS	2.7	-14.2	5.1	-5.4	4.1	4.5	50 30	30	30	30	30	30	
Perfluorononanesulfonic acid	-10.2 -5.7	-4.2	2.9	-0.3	9.8	7.7	50 30	30	30	30	30	30	
Perfluorodecanoic acid	-0.3 -11.9	-5.5	13.7	-1.3	7.3	-2.0	50 30	30	30			30	
8:2 Fluorotelomer sulfonic acid	15.2	4.6	-2.0	-19.0	1.2	+++++	50	30	30				
Perfluorooctanesulfonamide	1.0 -4.4	-3.4	6.6	2.7	2.5	-4.9	50 30	30	30	30	30	30	

Lab Name: Eurofins Lancaster Laboratories En	y Job No.: 240-168405-1	Analy Batch No.: 271695
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

ANALYTE			PERCEN'	r error			PERCENT ERROR LIMIT						
	LVL 1 # LVL 7 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	
NMeFOSAA	-12.5 ++++	-0.9	6.3	-3.0	10.1	+++++	50	30	30	30	30		
Perfluorodecanesulfonic acid	-2.8 -5.9	-7.9	9.0	-2.9	2.2	8.3	50 30	30	30	30	30	30	
Perfluoroundecanoic acid	5.4 -10.4	-11.3	23.6	-10.1	1.2	1.7	50 30	30	30	30	30	30	
NETFOSAA	-14.9 ++++	4.8	11.7	-6.9	5.4	+++++	50	30	30	30	30		
10:2 FTUCA	-9.7 ++++	-2.1	11.7	2.6	-2.5	+++++	50	30	30	30	30		
11Cl-PF3OUdS	2.5 -5.2	-4.9	6.9	-0.6	2.1	-0.9	50 30	30	30	30	30	30	
10:2 FTCA	13.5	-4.5	9.0	-4.0	-14.0	++++	50	30	30	30	30		
Perfluorododecanoic acid	-2.4 -9.2	-4.6	-1.4	-0.3	15.1	2.8	50 30	30	30	30	30	30	
10:2 FTS	-23.4 ++++	1.6	10.9	-2.0	13.0	++++	50	30	30	30	30		
NMeFOSE	-2.1 0.6	-3.4	-1.9	-2.7	9.0	0.6	50 30	30	30	30	30	30	
NMeFOSA	10.0	-0.9	-1.0	-3.5	-2.4	-2.2	50	30	30	30	30	30	
Perfluorododecanesulfonic acid	13.2 -7.8	-5.0	5.2	-3.1	-1.5	-1.1	50 30	30	30	30	30	30	
NETFOSE	5.2 -3.1	-4.9	-0.6	-1.9	1.9	3.5	50 30	30	30	30	30	30	
Perfluorotridecanoic acid	19.3 -15.9	1.6	4.5	-3.4	4.8	-10.9	50 30	30	30	30	30	30	
NETFOSA	12.9 0.5	-11.8	4.6	-3.1	-0.1	-2.9	50 30	30	30	30	30	30	
Perfluorotetradecanoic acid	19.4 -12.4	0.2	-0.3	1.3	0.5	-8.7	50 30	30	30	30	30	30	
Perfluorohexadecanoic acid	19.4 -10.1	3.8	-4.6	-1.0	2.2	-9.7	50 30	30	30	30	30	30	
Perfluorooctadecanoic acid	0.8	-3.9	-5.0	0.0	1.2	2.1	50 30	30	30	30	30	30	
13C4 PFBA	8.2 -1.0	-1.9	0.3	0.6	-3.0	-3.2	30 30	30	30	30	30	30	

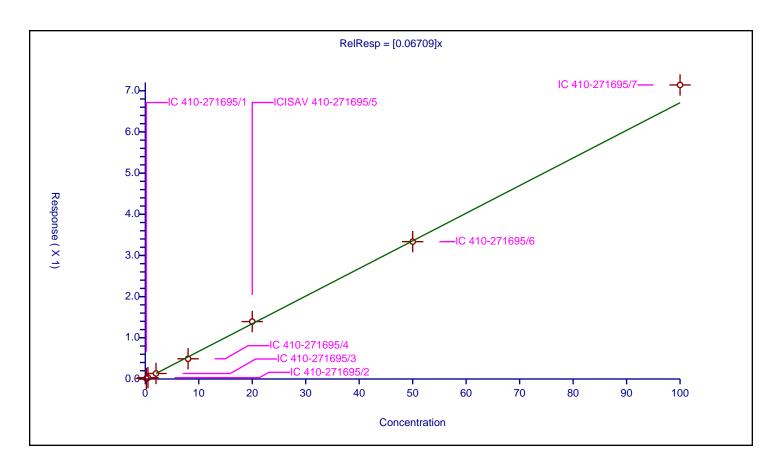
Lab Name: Eurofins Lancaster Laboratories En	<u>v</u> Job No.: <u>240-168405-1</u>	Analy Batch No.: 271695
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

ANALYTE			PERCEN'	r error			PERCENT ERROR LIMIT						
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	
13C5 PFPeA	12.8 -2.1	2.3	-1.0	-4.1	-1.4	-6.6	30 30	30	30	30	30	30	
13C3 PFBS	4.8 -0.5	-0.4	1.7	-3.3	1.1	-3.4	30 30	30	30	30	30	30	
M2-4:2 FTS	1.9	12.4	1.7	-7.7	-8.4	++++	30	30	30	30	30		
13C5 PFHxA	-2.3 14.6	-1.7	0.9	-5.1	-10.1	3.8	30 30	30	30	30	30	30	
13C3 HFPO-DA	-4.3 21.3	-1.0	-9.7	-6.5	-3.7	3.9	30 30	30	30	30	30	30	
13C3 PFHxS	9.2 4.1	-2.6	5.5	-3.6	-10.9	-1.7	30 30	30	30	30	30	30	
13C4 PFHpA	6.4 -2.5	8.8	8.7	-3.6	-16.0	-1.9	30 30	30	30	30	30	30	
13C2-2H-Perfluoro-2-octenoic acid	2.5 5.7	-4.1	7.2	-1.1	-10.7	0.5	30 30	30	30	30	30	30	
13C2-2-Perfluorohexylethanoic acid	9.3	3.3	0.1	-2.4	-12.8	2.4	30	30	30	30	30	30	
M2-6:2 FTS	9.4	8.9	6.9	-7.6	-17.5	++++	30	30	30	30	30		
13C8 PFOA	3.8 7.4	0.2	1.6	-0.5	-11.7	-0.9	30 30	30	30	30	30	30	
13C8 PFOS	7.8 5.3	3.7	-5.9	1.7	-5.4	-7.3	30 30	30	30	30	30	30	
13C9 PFNA	10.7 -7.4	8.0	2.4	1.3	-6.8	-8.3	30 30	30	30	30	30	30	
13C2-2H-Perfluoro-2-decenoic acid	5.8	8.3	-0.1	-2.5	-11.4	+++++	30	30	30	30	30		
13C2-2-Perfluorooctylethanoic acid	7.5	6.4	3.4	-11.5	-5.8	++++	30	30	30	30	30		
13C6 PFDA	15.8 -3.6	10.4	-4.6	-6.7	-5.6	-5.6	30 30	30	30	30	30	30	
M2-8:2 FTS	15.1	3.0	0.9	-5.0	-14.0	++++	30	30	30	30	30		
13C8 FOSA	5.0 -2.1	8.1	3.7	-5.1	-5.8	-3.8	30 30	30	30	30	30	30	
d3-NMeFOSAA	6.2	5.4	-3.2	-5.1	-3.3	+++++	30	30	30	30	30		

Lab Name: Eurofins Lancaster Laboratories Er	<u>v</u> Job No.: <u>240-168405-1</u>	Analy Batch No.: 271695
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/01/2022 13:08	Calibration End Date: 07/01/2022 14:15	Calibration ID: 40358

ANALYTE		PERCENT ERROR					PERCENT ERROR LIMIT					
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
13C7 PFUnA	1.9	8.0	-6.4	4.2	-1.3	-7.4	30 30	30	30	30	30	30
d5-NEtFOSAA	7.1	4.7	4.9	-6.9	-9.7	+++++	30	30	30	30	30	
13C2-2H-Perfluoro-2-dodecenoic acid	9.0	11.6	-3.8	-6.5	-10.4	+++++	30	30	30	30	30	
13C2-2-Perfluorodecylethanoic acid	9.6	4.4	1.0	-7.2	-7.8	+++++	30	30	30	30	30	
13C2-PFDoDA	4.1 8.0	10.2	2.3	-8.4	-11.1	-5.1	30 30	30	30	30	30	30
d7-N-MeFOSE-M	4.2 3.0	10.9	0.3	-6.0	-8.8	-3.7	30 30	30	30	30	30	30
d3-NMePFOSA	2.6	4.2	1.6	-7.0	-3.5	2.1	30	30	30	30	30	30
d9-N-EtFOSE-M	8.5 1.0	12.7	-3.1	-2.6	-5.7	-10.8	30 30	30	30	30	30	30
d5-NEtPFOSA	7.6 -2.0	4.7	0.1	-1.4	-5.5	-3.4	30 30	30	30	30	30	30
13C2 PFTeDA	3.4 6.4	3.5	3.5	-7.4	-6.4	-3.0	30 30	30	30	30	30	30

Calibration / MTP


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 0.06709

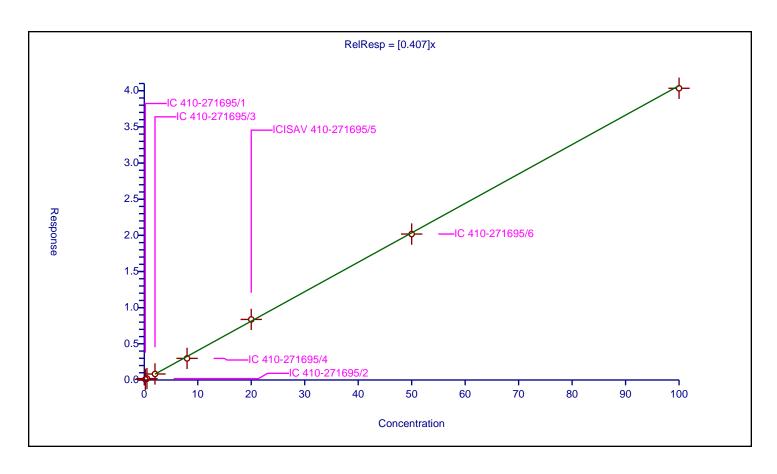
Error Coefficients

Standard Error:606000Relative Standard Error:4.8Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.013636	10.0	2114930.0	0.068182	Υ
2	IC 410-271695/2	0.5	0.032698	10.0	2279972.0	0.065396	Υ
3	IC 410-271695/3	2.0	0.133779	10.0	2031933.0	0.06689	Υ
4	IC 410-271695/4	8.0	0.490793	10.0	2198116.0	0.061349	Υ
5	ICISAV 410-271695/5	20.0	1.394111	10.0	2100536.0	0.069706	Υ
6	IC 410-271695/6	50.0	3.334859	10.0	1951189.0	0.066697	Υ
7	IC 410-271695/7	100.0	7.140567	10.0	1817766.0	0.071406	Υ

Calibration / PPF Acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.407

Curve Coefficients

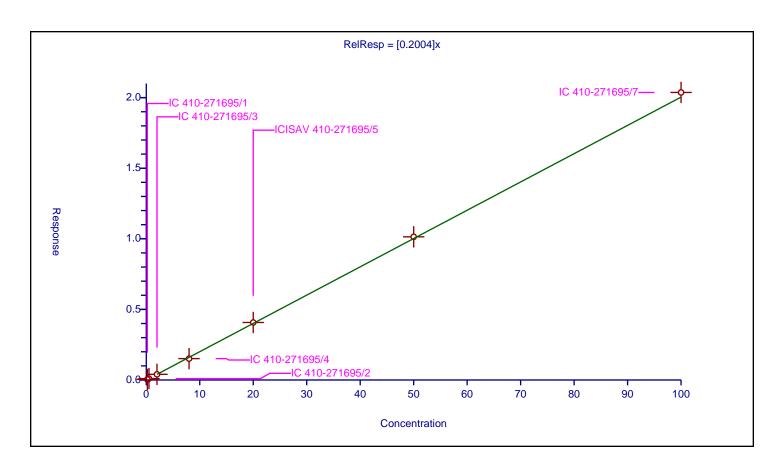
Error Coefficients

Standard Error:3480000Relative Standard Error:5.1Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.08796	10.0	2114930.0	0.439802	Υ
2	IC 410-271695/2	0.5	0.196884	10.0	2279972.0	0.393768	Υ
3	IC 410-271695/3	2.0	0.83203	10.0	2031933.0	0.416015	Υ
4	IC 410-271695/4	8.0	2.987513	10.0	2198116.0	0.373439	Υ
5	ICISAV 410-271695/5	20.0	8.374791	10.0	2100536.0	0.41874	Υ
6	IC 410-271695/6	50.0	20.183032	10.0	1951189.0	0.403661	Υ
7	IC 410-271695/7	100.0	40.340126	10.0	1817766.0	0.403401	Υ

Calibration / PFMOAA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2004

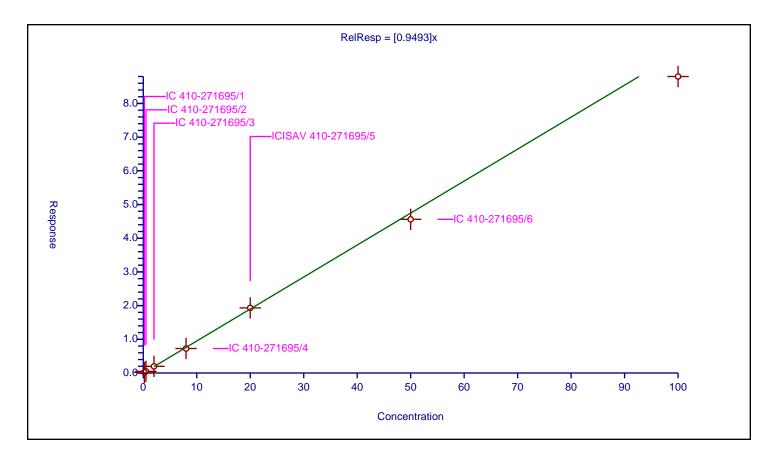
Curve Coefficients

Error Coefficients

Standard Error:1750000Relative Standard Error:2.8Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.041131	10.0	2114930.0	0.205657	Υ
2	IC 410-271695/2	0.5	0.098444	10.0	2279972.0	0.196888	Υ
3	IC 410-271695/3	2.0	0.401125	10.0	2031933.0	0.200563	Υ
4	IC 410-271695/4	8.0	1.514588	10.0	2198116.0	0.189323	Υ
5	ICISAV 410-271695/5	20.0	4.073884	10.0	2100536.0	0.203694	Υ
6	IC 410-271695/6	50.0	10.140509	10.0	1951189.0	0.20281	Υ
7	IC 410-271695/7	100.0	20.366323	10.0	1817766.0	0.203663	Υ

Calibration / Perfluorobutanoic acid


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coeffic	cients
Intercept:	0
Slope:	0.9493

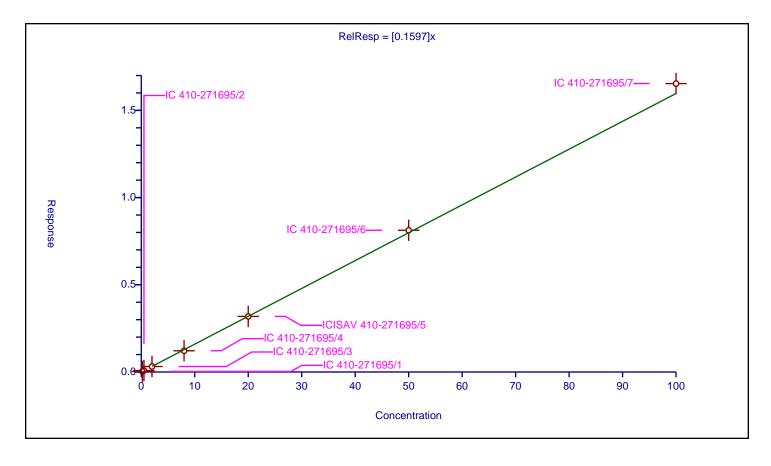
Error Coefficients

Standard Error:7680000Relative Standard Error:5.2Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.203028	10.0	2114930.0	1.01514	Υ
2	IC 410-271695/2	0.5	0.48787	10.0	2279972.0	0.97574	Υ
3	IC 410-271695/3	2.0	1.976099	10.0	2031933.0	0.988049	Υ
4	IC 410-271695/4	8.0	7.266555	10.0	2198116.0	0.908319	Υ
5	ICISAV 410-271695/5	20.0	19.316908	10.0	2100536.0	0.965845	Υ
6	IC 410-271695/6	50.0	45.611148	10.0	1951189.0	0.912223	Υ
7	IC 410-271695/7	100.0	87.994808	10.0	1817766.0	0.879948	Υ

Calibration / R-EVE

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1597
Slope:	0.1597

Curve Coefficients

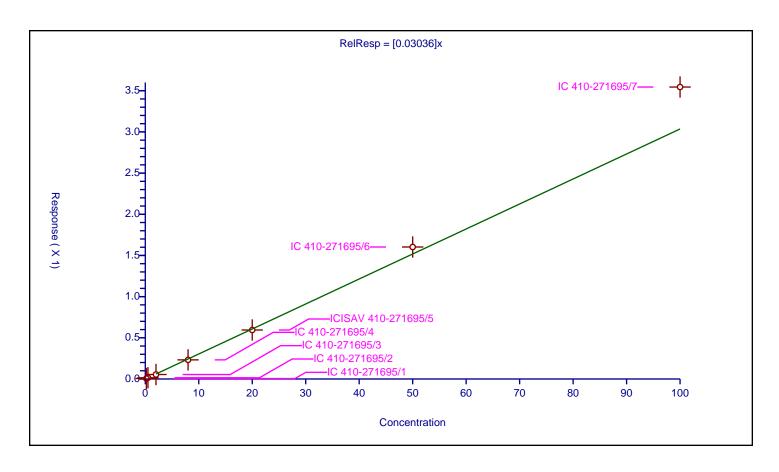
Error Coefficients

Standard Error:1420000Relative Standard Error:2.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.031415	10.0	2114930.0	0.157074	Υ
2	IC 410-271695/2	0.5	0.082014	10.0	2279972.0	0.164028	Υ
3	IC 410-271695/3	2.0	0.31471	10.0	2031933.0	0.157355	Υ
4	IC 410-271695/4	8.0	1.216856	10.0	2198116.0	0.152107	Υ
5	ICISAV 410-271695/5	20.0	3.18682	10.0	2100536.0	0.159341	Υ
6	IC 410-271695/6	50.0	8.125589	10.0	1951189.0	0.162512	Υ
7	IC 410-271695/7	100.0	16.536969	10.0	1817766.0	0.16537	Υ

Calibration / R-PSDA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.03036

Curve Coefficients

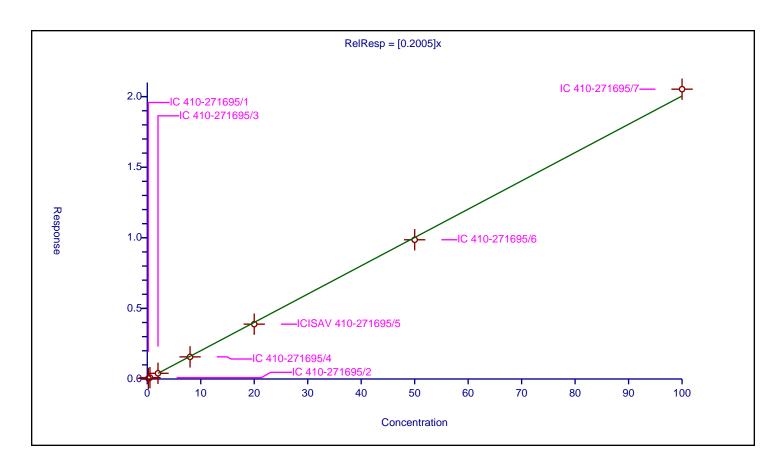
Error Coefficients

Standard Error:482000Relative Standard Error:8.9Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.005732	9.3	3071277.0	0.028661	Υ
2	IC 410-271695/2	0.5	0.015157	9.3	3472908.0	0.030314	Υ
3	IC 410-271695/3	2.0	0.054478	9.3	3088859.0	0.027239	Υ
4	IC 410-271695/4	8.0	0.232309	9.3	3169886.0	0.029039	Υ
5	ICISAV 410-271695/5	20.0	0.594826	9.3	3281341.0	0.029741	Υ
6	IC 410-271695/6	50.0	1.602732	9.3	2918931.0	0.032055	Υ
7	IC 410-271695/7	100.0	3.54488	9.3	2740387.0	0.035449	Υ

Calibration / Hydrolyzed PSDA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2005

Curve Coefficients

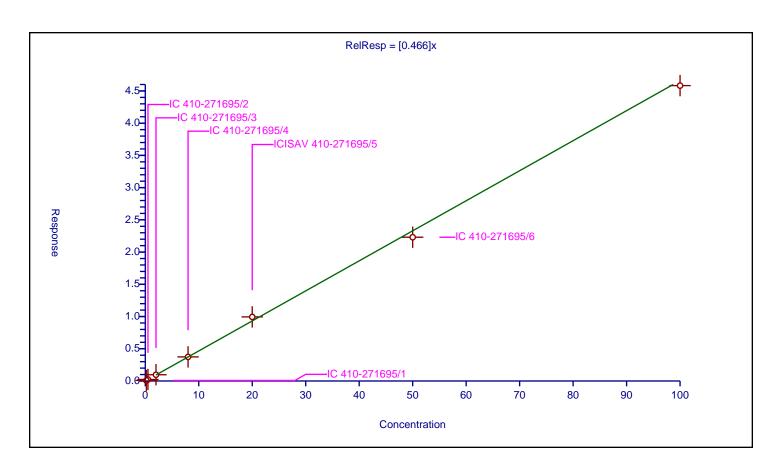
Error Coefficients

Standard Error:2840000Relative Standard Error:2.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.999

Y
Υ
Υ
Υ
Υ
Υ
Υ

Calibration / PMPA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.466

Curve Coefficients

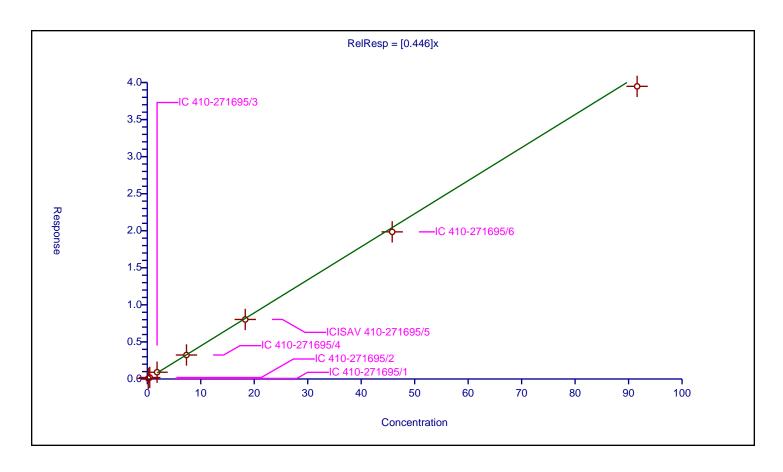
Error Coefficients

Standard Error:3950000Relative Standard Error:4.4Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.087908	10.0	2114930.0	0.439542	Υ
2	IC 410-271695/2	0.5	0.234183	10.0	2279972.0	0.468365	Υ
3	IC 410-271695/3	2.0	0.970244	10.0	2031933.0	0.485122	Υ
4	IC 410-271695/4	8.0	3.739107	10.0	2198116.0	0.467388	Υ
5	ICISAV 410-271695/5	20.0	9.945347	10.0	2100536.0	0.497267	Υ
6	IC 410-271695/6	50.0	22.30522	10.0	1951189.0	0.446104	Υ
7	IC 410-271695/7	100.0	45.827598	10.0	1817766.0	0.458276	Υ

Calibration / PFPrS

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.446

Curve Coefficients

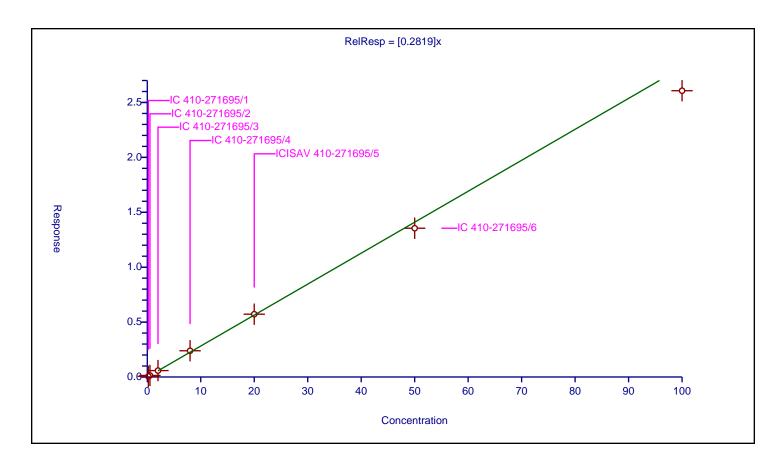
Error Coefficients

Standard Error:3410000Relative Standard Error:5.3Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.1832	0.0797	10.0	2114930.0	0.435044	Υ
2	IC 410-271695/2	0.458	0.20306	10.0	2279972.0	0.443361	Υ
3	IC 410-271695/3	1.832	0.913362	10.0	2031933.0	0.49856	Υ
4	IC 410-271695/4	7.328	3.237832	10.0	2198116.0	0.441844	Υ
5	ICISAV 410-271695/5	18.32	8.032745	10.0	2100536.0	0.438469	Υ
6	IC 410-271695/6	45.8	19.850225	10.0	1951189.0	0.433411	Υ
7	IC 410-271695/7	91.6	39.481875	10.0	1817766.0	0.431025	Υ

Calibration / NVHOS

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2819
Slope:	0.2819

Curve Coefficients

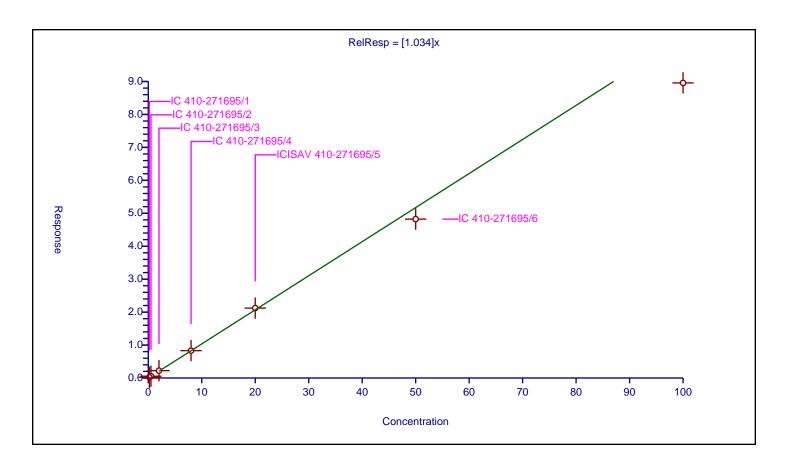
Error Coefficients

Standard Error:3690000Relative Standard Error:4.5Correlation Coefficient:0.995Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.056537	9.3	3071277.0	0.282684	Υ
2	IC 410-271695/2	0.5	0.14126	9.3	3472908.0	0.282521	Υ
3	IC 410-271695/3	2.0	0.583714	9.3	3088859.0	0.291857	Υ
4	IC 410-271695/4	8.0	2.389491	9.3	3169886.0	0.298686	Υ
5	ICISAV 410-271695/5	20.0	5.717888	9.3	3281341.0	0.285894	Υ
6	IC 410-271695/6	50.0	13.547419	9.3	2918931.0	0.270948	Υ
7	IC 410-271695/7	100.0	26.070945	9.3	2740387.0	0.260709	Υ

Calibration / PFECA F

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
-	1.024
Slope:	1.034

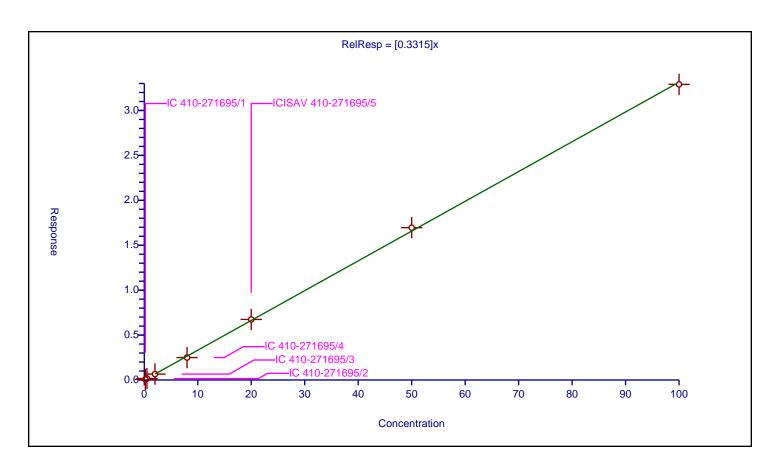
Curve Coefficients

Error Coefficients

Standard Error:7930000Relative Standard Error:7.5Correlation Coefficient:0.992Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.215511	10.0	2114930.0	1.077553	Υ
2	IC 410-271695/2	0.5	0.54577	10.0	2279972.0	1.09154	Υ
3	IC 410-271695/3	2.0	2.22589	10.0	2031933.0	1.112945	Υ
4	IC 410-271695/4	8.0	8.300822	10.0	2198116.0	1.037603	Υ
5	ICISAV 410-271695/5	20.0	21.222826	10.0	2100536.0	1.061141	Υ
6	IC 410-271695/6	50.0	48.226235	10.0	1951189.0	0.964525	Υ
7	IC 410-271695/7	100.0	89.570181	10.0	1817766.0	0.895702	Υ

Calibration / PFO2HxA


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

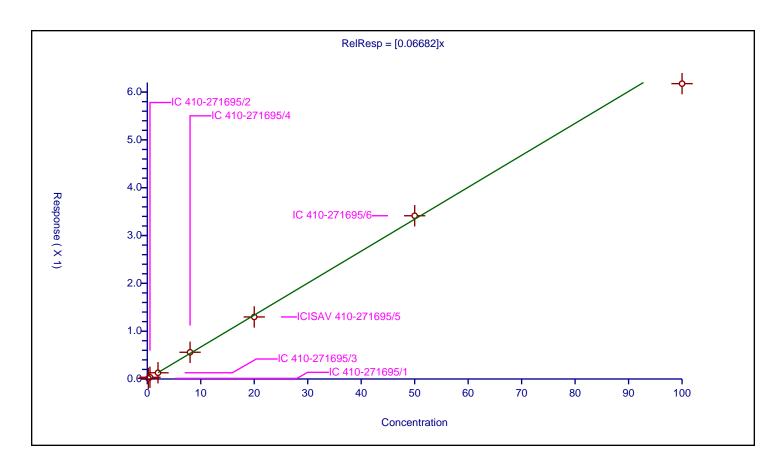
Curve Coeffic	eients
Intercept:	0
Slope:	0.3315

Error Coefficients

Standard Error:2860000Relative Standard Error:3.5Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.069728	10.0	2114930.0	0.34864	Υ
2	IC 410-271695/2	0.5	0.162541	10.0	2279972.0	0.325083	Υ
3	IC 410-271695/3	2.0	0.658472	10.0	2031933.0	0.329236	Υ
4	IC 410-271695/4	8.0	2.496929	10.0	2198116.0	0.312116	Υ
5	ICISAV 410-271695/5	20.0	6.739199	10.0	2100536.0	0.33696	Υ
6	IC 410-271695/6	50.0	16.956169	10.0	1951189.0	0.339123	Υ
7	IC 410-271695/7	100.0	32.905049	10.0	1817766.0	0.32905	Υ

Calibration /3:3 FTCA


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

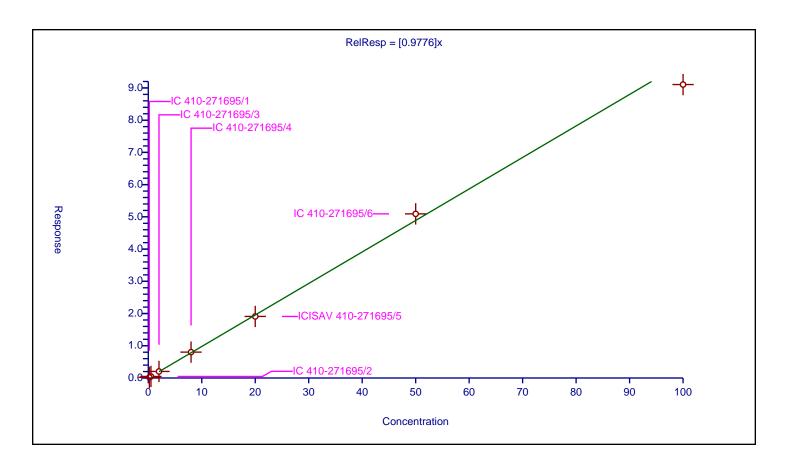
Curve Coefficients	
Intercept:	0
Slope:	0.06682

Standard Error:480000Relative Standard Error:5.3Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.997

Error Coefficients

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 410-271695/1	0.2	0.013101	10.0	1964754.0	0.065504	Υ
IC 410-271695/2	0.5	0.036182	10.0	2119591.0	0.072363	Υ
IC 410-271695/3	2.0	0.130251	10.0	1788004.0	0.065126	Υ
IC 410-271695/4	8.0	0.558775	10.0	1867710.0	0.069847	Υ
ICISAV 410-271695/5	20.0	1.297126	10.0	1902907.0	0.064856	Υ
IC 410-271695/6	50.0	3.413674	10.0	1677990.0	0.068273	Υ
IC 410-271695/7	100.0	6.176161	10.0	1602175.0	0.061762	Υ
	IC 410-271695/1 IC 410-271695/2 IC 410-271695/3 IC 410-271695/4 ICISAV 410-271695/5 IC 410-271695/6	IC 410-271695/1 0.2 IC 410-271695/2 0.5 IC 410-271695/3 2.0 IC 410-271695/4 8.0 ICISAV 410-271695/5 20.0 IC 410-271695/6 50.0	IC 410-271695/1 0.2 0.013101 IC 410-271695/2 0.5 0.036182 IC 410-271695/3 2.0 0.130251 IC 410-271695/4 8.0 0.558775 ICISAV 410-271695/5 20.0 1.297126 IC 410-271695/6 50.0 3.413674	IC 410-271695/1 0.2 0.013101 10.0 IC 410-271695/2 0.5 0.036182 10.0 IC 410-271695/3 2.0 0.130251 10.0 IC 410-271695/4 8.0 0.558775 10.0 ICISAV 410-271695/5 20.0 1.297126 10.0 IC 410-271695/6 50.0 3.413674 10.0	IC 410-271695/1 0.2 0.013101 10.0 1964754.0 IC 410-271695/2 0.5 0.036182 10.0 2119591.0 IC 410-271695/3 2.0 0.130251 10.0 1788004.0 IC 410-271695/4 8.0 0.558775 10.0 1867710.0 ICISAV 410-271695/5 20.0 1.297126 10.0 1902907.0 IC 410-271695/6 50.0 3.413674 10.0 1677990.0	IC 410-271695/1 0.2 0.013101 10.0 1964754.0 0.065504 IC 410-271695/2 0.5 0.036182 10.0 2119591.0 0.072363 IC 410-271695/3 2.0 0.130251 10.0 1788004.0 0.065126 IC 410-271695/4 8.0 0.558775 10.0 1867710.0 0.069847 ICISAV 410-271695/5 20.0 1.297126 10.0 1902907.0 0.064856 IC 410-271695/6 50.0 3.413674 10.0 1677990.0 0.068273

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Coefficients

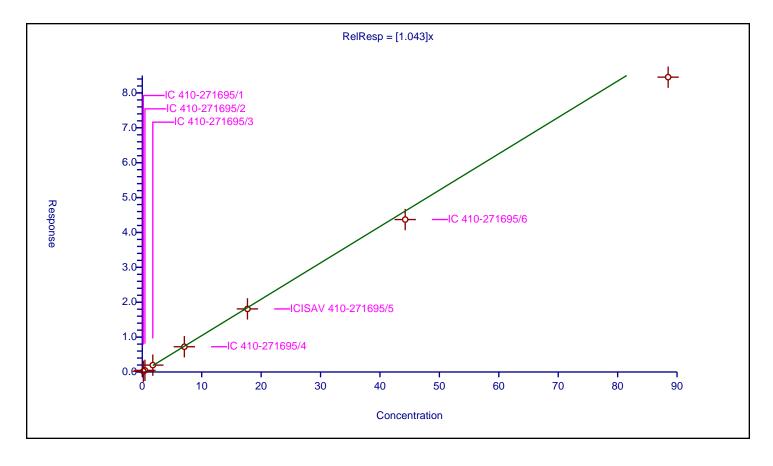
Intercept:	0
Slope:	0.9776

Error Coefficients

Standard Error:7090000Relative Standard Error:4.1Correlation Coefficient:0.993Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.196615	10.0	1964754.0	0.983075	Υ
2	IC 410-271695/2	0.5	0.477734	10.0	2119591.0	0.955467	Υ
3	IC 410-271695/3	2.0	2.034615	10.0	1788004.0	1.017308	Υ
4	IC 410-271695/4	8.0	8.027146	10.0	1867710.0	1.003393	Υ
5	ICISAV 410-271695/5	20.0	19.099173	10.0	1902907.0	0.954959	Υ
6	IC 410-271695/6	50.0	50.928182	10.0	1677990.0	1.018564	Υ
7	IC 410-271695/7	100.0	91.056464	10.0	1602175.0	0.910565	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Coefficients

Intercept:	0
Slope:	1.043

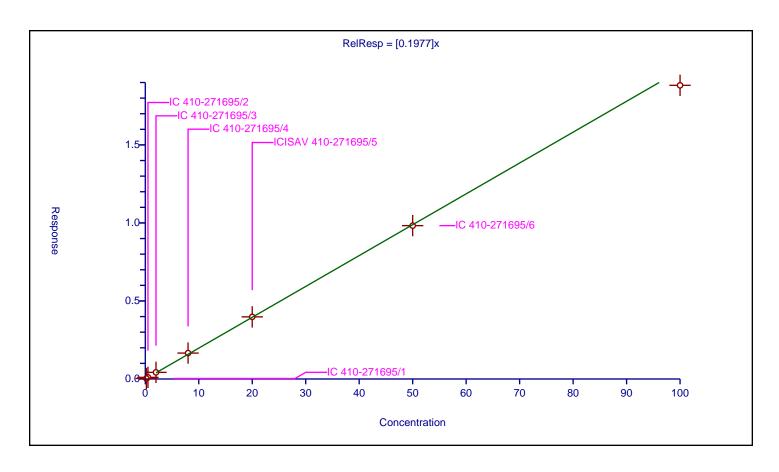
Error Coefficients

Standard Error:11900000Relative Standard Error:6.6Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.177	0.204121	9.3	3071277.0	1.153228	Υ
2	IC 410-271695/2	0.4425	0.463971	9.3	3472908.0	1.048521	Υ
3	IC 410-271695/3	1.77	1.965069	9.3	3088859.0	1.110209	Υ
4	IC 410-271695/4	7.08	7.23649	9.3	3169886.0	1.022103	Υ
5	ICISAV 410-271695/5	17.7	18.081383	9.3	3281341.0	1.021547	Υ
6	IC 410-271695/6	44.25	43.705072	9.3	2918931.0	0.987685	Υ
7	IC 410-271695/7	88.5	84.531523	9.3	2740387.0	0.955158	Υ

Calibration / PEPA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1977

Curve Coefficients

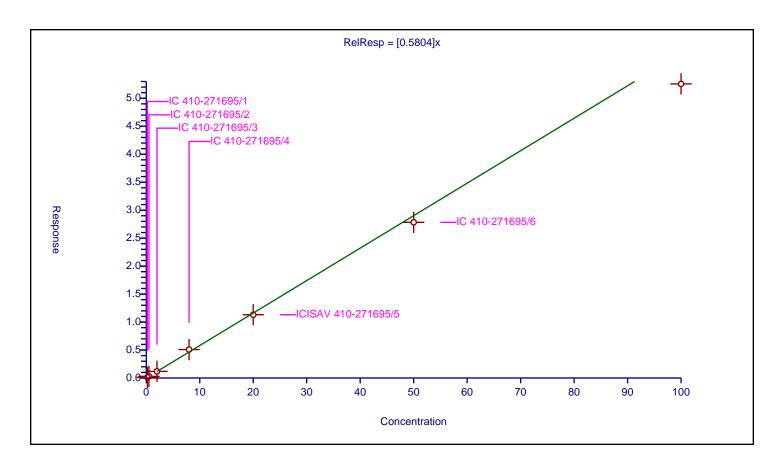
Error Coefficients

Standard Error:1640000Relative Standard Error:8.4Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.033282	10.0	2114930.0	0.166412	Υ
2	IC 410-271695/2	0.5	0.106576	10.0	2279972.0	0.213152	Υ
3	IC 410-271695/3	2.0	0.426175	10.0	2031933.0	0.213088	Υ
4	IC 410-271695/4	8.0	1.660822	10.0	2198116.0	0.207603	Υ
5	ICISAV 410-271695/5	20.0	3.981684	10.0	2100536.0	0.199084	Υ
6	IC 410-271695/6	50.0	9.827136	10.0	1951189.0	0.196543	Υ
7	IC 410-271695/7	100.0	18.818588	10.0	1817766.0	0.188186	Υ

Calibration / PFECA A

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.5804

Curve Coefficients

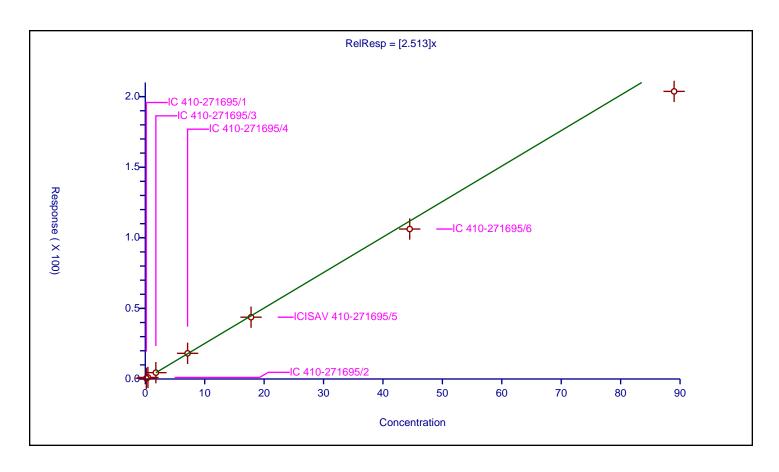
Error Coefficients

Standard Error:7480000Relative Standard Error:6.0Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.119754	9.3	3071277.0	0.598768	Υ
2	IC 410-271695/2	0.5	0.293412	9.3	3472908.0	0.586823	Υ
3	IC 410-271695/3	2.0	1.188398	9.3	3088859.0	0.594199	Υ
4	IC 410-271695/4	8.0	5.082372	9.3	3169886.0	0.635296	Υ
5	ICISAV 410-271695/5	20.0	11.30701	9.3	3281341.0	0.56535	Υ
6	IC 410-271695/6	50.0	27.830097	9.3	2918931.0	0.556602	Υ
7	IC 410-271695/7	100.0	52.574038	9.3	2740387.0	0.52574	Υ

Calibration / PES

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.513

Curve Coefficients

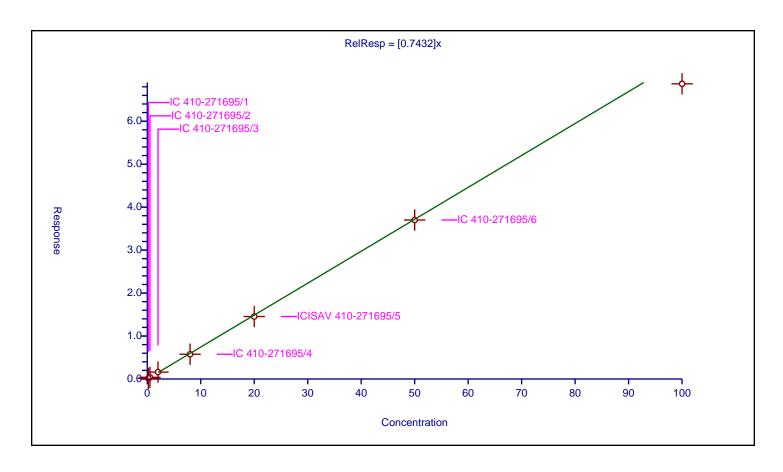
Error Coefficients

Standard Error:28800000Relative Standard Error:7.5Correlation Coefficient:0.995Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.178	0.514757	9.3	3071277.0	2.891896	Υ
2	IC 410-271695/2	0.445	1.108523	9.3	3472908.0	2.491064	Υ
3	IC 410-271695/3	1.78	4.489133	9.3	3088859.0	2.521985	Υ
4	IC 410-271695/4	7.12	18.182981	9.3	3169886.0	2.553789	Υ
5	ICISAV 410-271695/5	17.8	43.766835	9.3	3281341.0	2.458811	Υ
6	IC 410-271695/6	44.5	106.216049	9.3	2918931.0	2.386878	Υ
7	IC 410-271695/7	89.0	203.706138	9.3	2740387.0	2.288833	Υ

Calibration / PFECA B

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7432

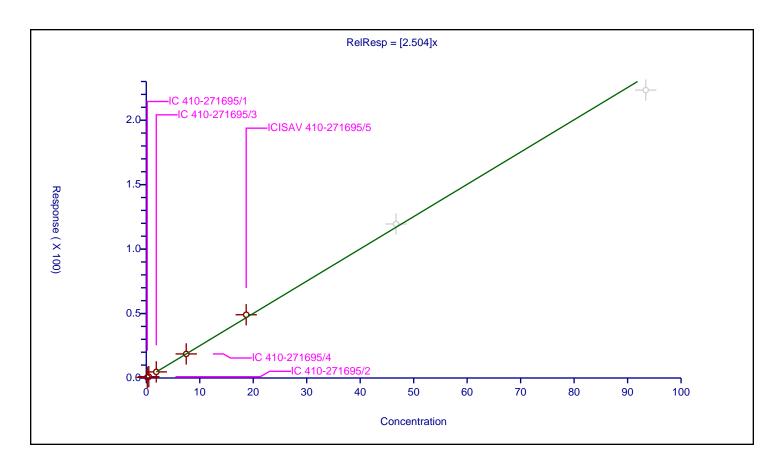
Curve Coefficients

Error Coefficients

Standard Error:9790000Relative Standard Error:5.0Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.15077	9.3	3071277.0	0.75385	Υ
2	IC 410-271695/2	0.5	0.386288	9.3	3472908.0	0.772577	Υ
3	IC 410-271695/3	2.0	1.603864	9.3	3088859.0	0.801932	Υ
4	IC 410-271695/4	8.0	5.759031	9.3	3169886.0	0.719879	Υ
5	ICISAV 410-271695/5	20.0	14.539647	9.3	3281341.0	0.726982	Υ
6	IC 410-271695/6	50.0	37.00488	9.3	2918931.0	0.740098	Υ
7	IC 410-271695/7	100.0	68.696393	9.3	2740387.0	0.686964	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve	Coefficients	

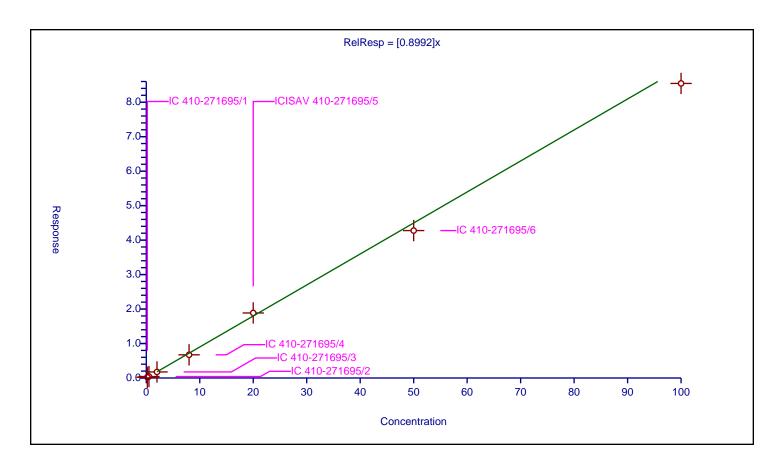
Intercept:	0
Slope:	2.504

Error Coefficients

9
2

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.1868	0.50067	9.34	182054.0	2.680249	Υ
2	IC 410-271695/2	0.467	1.016868	9.34	221158.0	2.177448	Υ
3	IC 410-271695/3	1.868	4.736247	9.34	178912.0	2.535464	Υ
4	IC 410-271695/4	7.472	18.665875	9.34	171924.0	2.49811	Υ
5	ICISAV 410-271695/5	18.68	49.073195	9.34	175757.0	2.627045	Υ
6	IC 410-271695/6	46.7	119.470311	9.34	146168.0	2.558251	N
7	IC 410-271695/7	93.4	223.337784	9.34	146311.0	2.391197	N

Calibration / Perfluorohexanoic acid


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 0.8992

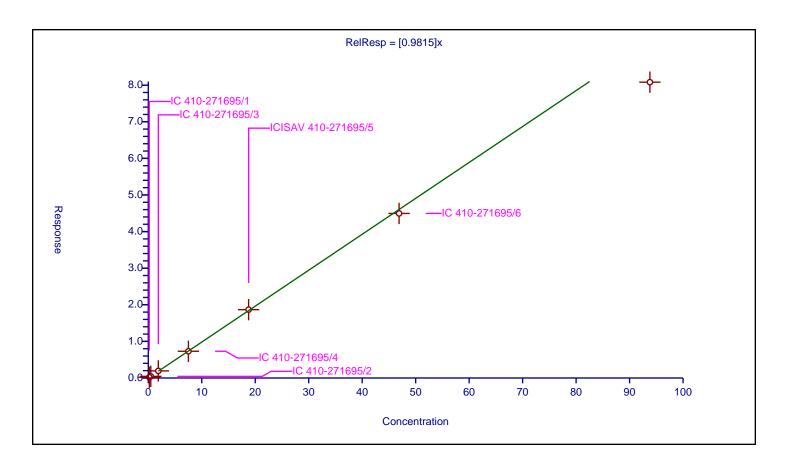
Error Coefficients

Standard Error:8520000Relative Standard Error:9.3Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.214246	10.0	2591464.0	1.071228	Υ
2	IC 410-271695/2	0.5	0.425729	10.0	2871946.0	0.851458	Υ
3	IC 410-271695/3	2.0	1.758399	10.0	2637263.0	0.879199	Υ
4	IC 410-271695/4	8.0	6.720932	10.0	2624615.0	0.840117	Υ
5	ICISAV 410-271695/5	20.0	18.860179	10.0	2562446.0	0.943009	Υ
6	IC 410-271695/6	50.0	42.760517	10.0	2294034.0	0.85521	Υ
7	IC 410-271695/7	100.0	85.43785	10.0	2068722.0	0.854379	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients


 Intercept:
 0

 Slope:
 0.9815

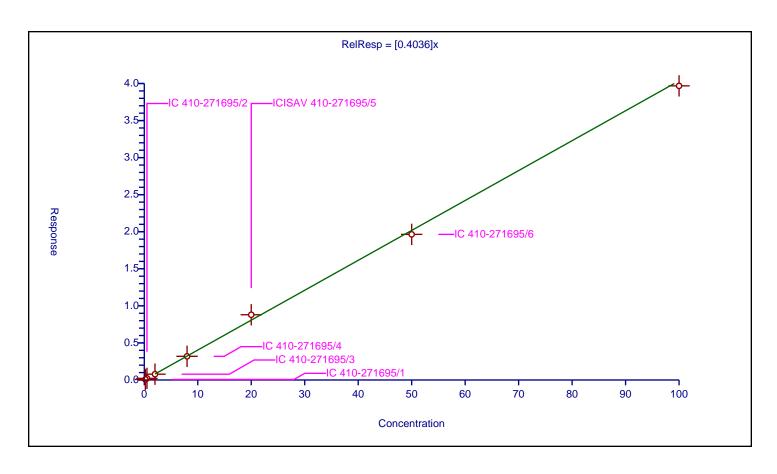
Error Coefficients

Standard Error:11700000Relative Standard Error:7.2Correlation Coefficient:0.990Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.1876	0.204203	9.3	3071277.0	1.088502	Υ
2	IC 410-271695/2	0.469	0.450064	9.3	3472908.0	0.959626	Υ
3	IC 410-271695/3	1.876	1.939468	9.3	3088859.0	1.033832	Υ
4	IC 410-271695/4	7.504	7.303365	9.3	3169886.0	0.973263	Υ
5	ICISAV 410-271695/5	18.76	18.670535	9.3	3281341.0	0.995231	Υ
6	IC 410-271695/6	46.9	44.954191	9.3	2918931.0	0.958512	Υ
7	IC 410-271695/7	93.8	80.816196	9.3	2740387.0	0.86158	Υ

Calibration / PFO3OA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4036

Curve Coefficients

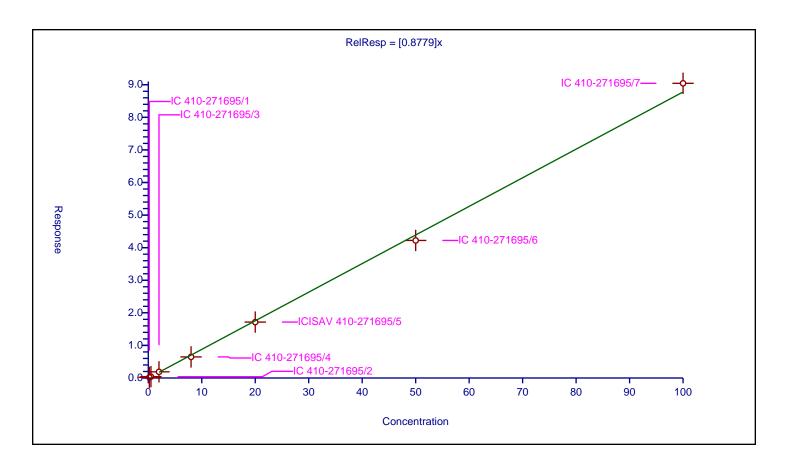
Error Coefficients

Standard Error:3430000Relative Standard Error:6.4Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.073605	10.0	2114930.0	0.368026	Υ
2	IC 410-271695/2	0.5	0.218007	10.0	2279972.0	0.436014	Υ
3	IC 410-271695/3	2.0	0.783239	10.0	2031933.0	0.39162	Υ
4	IC 410-271695/4	8.0	3.196369	10.0	2198116.0	0.399546	Υ
5	ICISAV 410-271695/5	20.0	8.80143	10.0	2100536.0	0.440071	Υ
6	IC 410-271695/6	50.0	19.648722	10.0	1951189.0	0.392974	Υ
7	IC 410-271695/7	100.0	39.682165	10.0	1817766.0	0.396822	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients


 Intercept:
 0

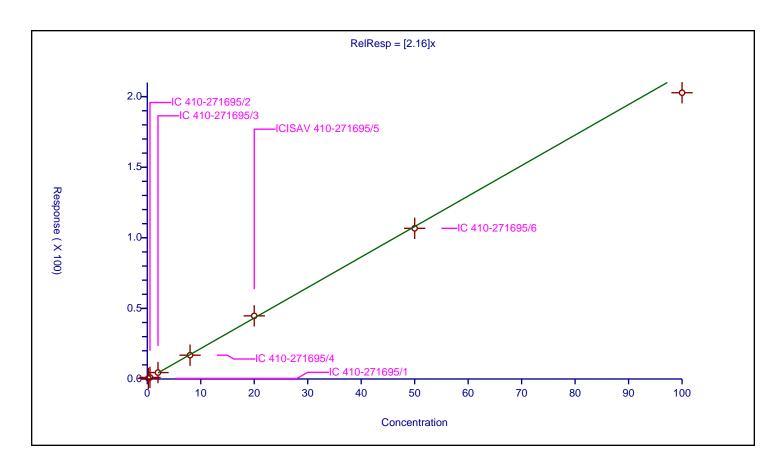
 Slope:
 0.8779

Error Coefficients

Standard Error:2820000Relative Standard Error:6.8Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.191851	10.0	776434.0	0.959257	Υ
2	IC 410-271695/2	0.5	0.411338	10.0	883968.0	0.822677	Υ
3	IC 410-271695/3	2.0	1.894241	10.0	721719.0	0.947121	Υ
4	IC 410-271695/4	8.0	6.474005	10.0	790608.0	0.809251	Υ
5	ICISAV 410-271695/5	20.0	17.159578	10.0	838974.0	0.857979	Υ
6	IC 410-271695/6	50.0	42.219255	10.0	702006.0	0.844385	Υ
7	IC 410-271695/7	100.0	90.441516	10.0	668922.0	0.904415	Υ

Calibration / Hydro-EVE Acid


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients	s
Intercept:	0 2.16
Slope:	2.10

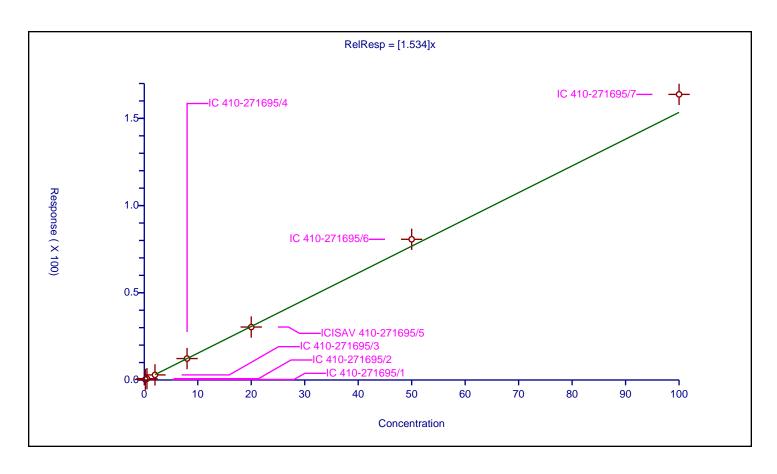
Error Coefficients

Standard Error:17800000Relative Standard Error:4.3Correlation Coefficient:0.995Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.419489	10.0	2114930.0	2.097445	Υ
2	IC 410-271695/2	0.5	1.117404	10.0	2279972.0	2.234808	Υ
3	IC 410-271695/3	2.0	4.559092	10.0	2031933.0	2.279546	Υ
4	IC 410-271695/4	8.0	16.858614	10.0	2198116.0	2.107327	Υ
5	ICISAV 410-271695/5	20.0	44.734425	10.0	2100536.0	2.236721	Υ
6	IC 410-271695/6	50.0	106.71589	10.0	1951189.0	2.134318	Υ
7	IC 410-271695/7	100.0	202.7558	10.0	1817766.0	2.027558	Υ

Calibration / Hydro-PS Acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.534

Curve Coefficients

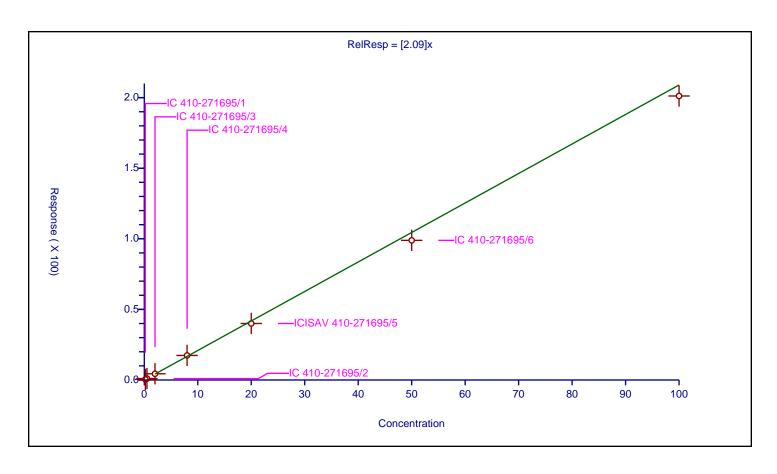
Error Coefficients

Standard Error:22700000Relative Standard Error:4.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.291953	9.3	3071277.0	1.459765	Υ
2	IC 410-271695/2	0.5	0.75896	9.3	3472908.0	1.517919	Υ
3	IC 410-271695/3	2.0	2.91579	9.3	3088859.0	1.457895	Υ
4	IC 410-271695/4	8.0	12.289119	9.3	3169886.0	1.53614	Υ
5	ICISAV 410-271695/5	20.0	30.370128	9.3	3281341.0	1.518506	Υ
6	IC 410-271695/6	50.0	80.667392	9.3	2918931.0	1.613348	Υ
7	IC 410-271695/7	100.0	163.751606	9.3	2740387.0	1.637516	Υ

Calibration / R-PSDCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.09

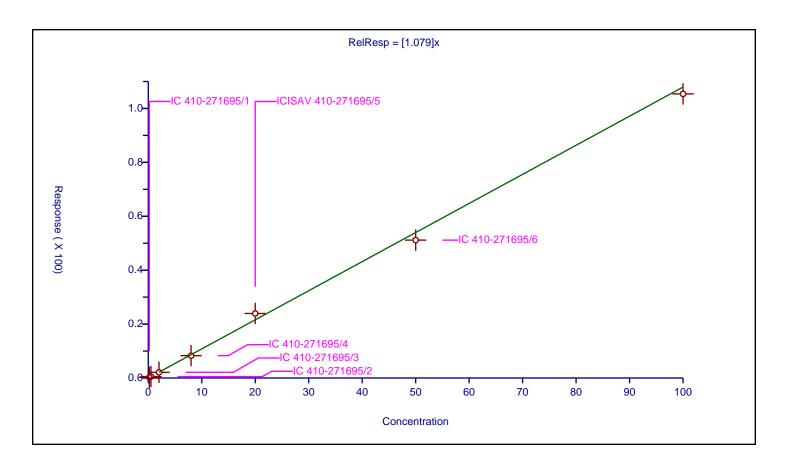
Curve Coefficients

Error Coefficients

Standard Error:28000000Relative Standard Error:4.8Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.997

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 410-271695/1	0.2	0.441315	9.3	3071277.0	2.206575	Υ
IC 410-271695/2	0.5	1.026428	9.3	3472908.0	2.052856	Υ
IC 410-271695/3	2.0	4.403719	9.3	3088859.0	2.20186	Υ
IC 410-271695/4	8.0	17.397784	9.3	3169886.0	2.174723	Υ
ICISAV 410-271695/5	20.0	40.016935	9.3	3281341.0	2.000847	Υ
IC 410-271695/6	50.0	98.912725	9.3	2918931.0	1.978255	Υ
IC 410-271695/7	100.0	201.161363	9.3	2740387.0	2.011614	Υ
	IC 410-271695/1 IC 410-271695/2 IC 410-271695/3 IC 410-271695/4 ICISAV 410-271695/5 IC 410-271695/6	IC 410-271695/1 0.2 IC 410-271695/2 0.5 IC 410-271695/3 2.0 IC 410-271695/4 8.0 ICISAV 410-271695/5 20.0 IC 410-271695/6 50.0	IC 410-271695/1 0.2 0.441315 IC 410-271695/2 0.5 1.026428 IC 410-271695/3 2.0 4.403719 IC 410-271695/4 8.0 17.397784 ICISAV 410-271695/5 20.0 40.016935 IC 410-271695/6 50.0 98.912725	IC 410-271695/1 0.2 0.441315 9.3 IC 410-271695/2 0.5 1.026428 9.3 IC 410-271695/3 2.0 4.403719 9.3 IC 410-271695/4 8.0 17.397784 9.3 ICISAV 410-271695/5 20.0 40.016935 9.3 IC 410-271695/6 50.0 98.912725 9.3	IC 410-271695/1 0.2 0.441315 9.3 3071277.0 IC 410-271695/2 0.5 1.026428 9.3 3472908.0 IC 410-271695/3 2.0 4.403719 9.3 3088859.0 IC 410-271695/4 8.0 17.397784 9.3 3169886.0 ICISAV 410-271695/5 20.0 40.016935 9.3 3281341.0 IC 410-271695/6 50.0 98.912725 9.3 2918931.0	IC 410-271695/1 0.2 0.441315 9.3 3071277.0 2.206575 IC 410-271695/2 0.5 1.026428 9.3 3472908.0 2.052856 IC 410-271695/3 2.0 4.403719 9.3 3088859.0 2.20186 IC 410-271695/4 8.0 17.397784 9.3 3169886.0 2.174723 ICISAV 410-271695/5 20.0 40.016935 9.3 3281341.0 2.000847 IC 410-271695/6 50.0 98.912725 9.3 2918931.0 1.978255

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


	Curve	Coefficients
--	-------	--------------

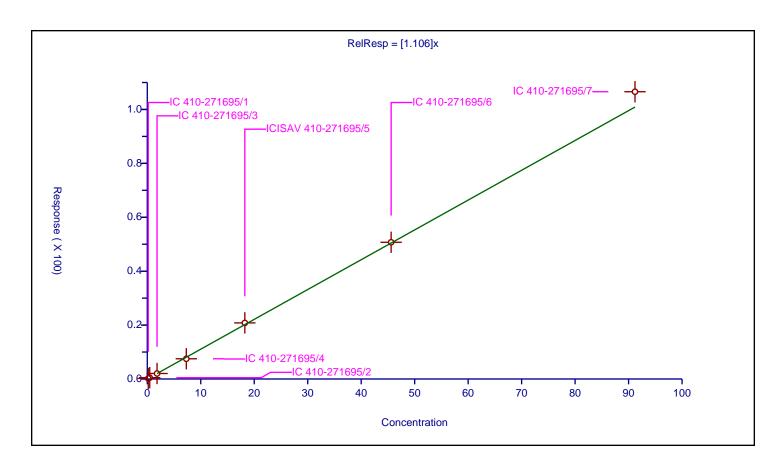
Intercept:	0
Slope:	1.079

Error Coefficients

Standard Error:8880000Relative Standard Error:5.7Correlation Coefficient:0.985Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.225685	10.0	2733501.0	1.128425	Υ
2	IC 410-271695/2	0.5	0.532019	10.0	3075756.0	1.064038	Υ
3	IC 410-271695/3	2.0	2.108647	10.0	2751338.0	1.054323	Υ
4	IC 410-271695/4	8.0	8.276955	10.0	2582213.0	1.034619	Υ
5	ICISAV 410-271695/5	20.0	23.935305	10.0	2317104.0	1.196765	Υ
6	IC 410-271695/6	50.0	51.151966	10.0	2100062.0	1.023039	Υ
7	IC 410-271695/7	100.0	105.407093	10.0	1703764.0	1.054071	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve	Coefficients
-------	--------------

Intercept:	0
Slope:	1.106

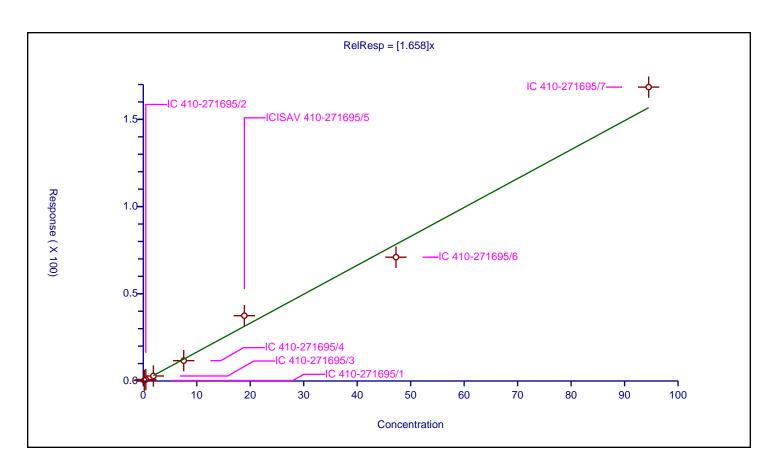
Error Coefficients

Standard Error:12700000Relative Standard Error:4.2Correlation Coefficient:0.995Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.1824	0.202007	9.46	3608674.0	1.107496	Υ
2	IC 410-271695/2	0.456	0.486856	9.46	3543460.0	1.067666	Υ
3	IC 410-271695/3	1.824	2.041787	9.46	3435839.0	1.119401	Υ
4	IC 410-271695/4	7.296	7.494824	9.46	3321886.0	1.027251	Υ
5	ICISAV 410-271695/5	18.24	20.813166	9.46	3164775.0	1.141073	Υ
6	IC 410-271695/6	45.6	50.723162	9.46	2707068.0	1.11235	Υ
7	IC 410-271695/7	91.2	106.582727	9.46	2339262.0	1.16867	Υ

Calibration / DONA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.658

Curve Coefficients

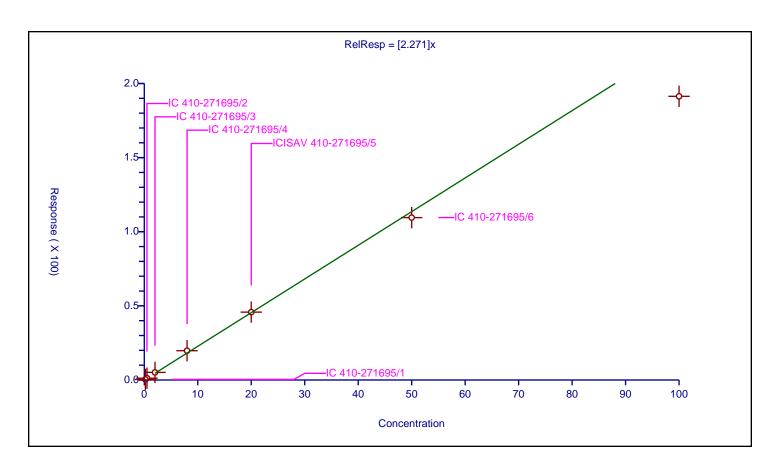
Error Coefficients

Standard Error:13700000Relative Standard Error:10.9Correlation Coefficient:0.990Coefficient of Determination (Adjusted):0.986

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.189	0.291813	10.0	2733501.0	1.543982	Υ
2	IC 410-271695/2	0.4725	0.819454	10.0	3075756.0	1.734294	Υ
3	IC 410-271695/3	1.89	2.874361	10.0	2751338.0	1.520826	Υ
4	IC 410-271695/4	7.56	11.661559	10.0	2582213.0	1.542534	Υ
5	ICISAV 410-271695/5	18.9	37.44286	10.0	2317104.0	1.981104	Υ
6	IC 410-271695/6	47.25	70.986685	10.0	2100062.0	1.502364	Υ
7	IC 410-271695/7	94.5	168.501007	10.0	1703764.0	1.783079	Υ

Calibration / PFECA G

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


0	
2.271	
0 2.271	

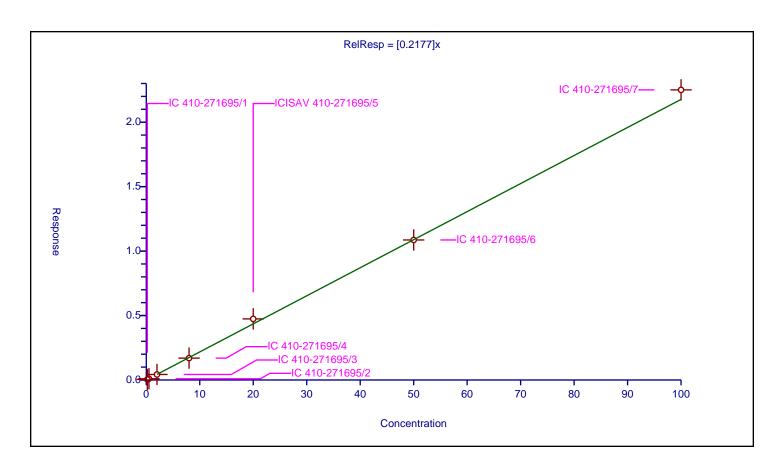
Curve Coefficients

Error Coefficients

Standard Error:17200000Relative Standard Error:10.8Correlation Coefficient:0.986Coefficient of Determination (Adjusted):0.986

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.402358	10.0	2114930.0	2.011792	Υ
2	IC 410-271695/2	0.5	1.229467	10.0	2279972.0	2.458934	Υ
3	IC 410-271695/3	2.0	5.132	10.0	2031933.0	2.566	Υ
4	IC 410-271695/4	8.0	19.753075	10.0	2198116.0	2.469134	Υ
5	ICISAV 410-271695/5	20.0	45.782077	10.0	2100536.0	2.289104	Υ
6	IC 410-271695/6	50.0	109.549039	10.0	1951189.0	2.190981	Υ
7	IC 410-271695/7	100.0	191.354327	10.0	1817766.0	1.913543	Υ

Calibration /5:3 FTCA


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Cur	ve Coefficients
Intercept:	0
Slope:	0.2177

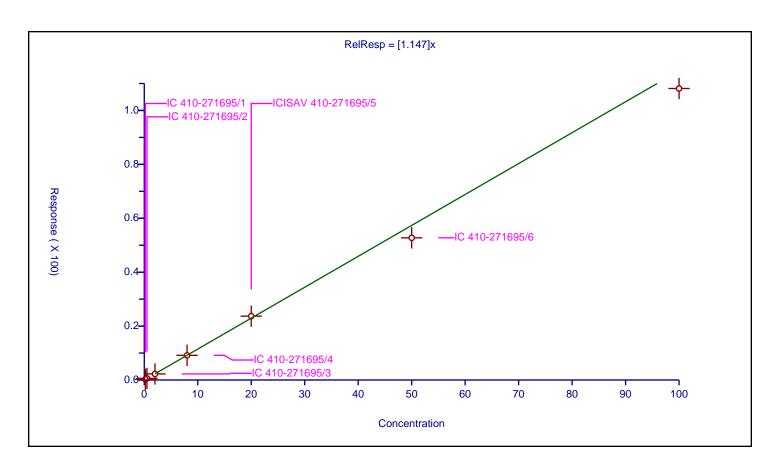
Error Coefficients

Standard Error:1890000Relative Standard Error:5.7Correlation Coefficient:0.988Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.044357	10.0	2733501.0	0.221785	Υ
2	IC 410-271695/2	0.5	0.098207	10.0	3075756.0	0.196413	Υ
3	IC 410-271695/3	2.0	0.428497	10.0	2751338.0	0.214248	Υ
4	IC 410-271695/4	8.0	1.696494	10.0	2582213.0	0.212062	Υ
5	ICISAV 410-271695/5	20.0	4.739153	10.0	2317104.0	0.236958	Υ
6	IC 410-271695/6	50.0	10.862317	10.0	2100062.0	0.217246	Υ
7	IC 410-271695/7	100.0	22.506063	10.0	1703764.0	0.225061	Υ

Calibration / 6:2 FTUCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.147

Curve Coefficients

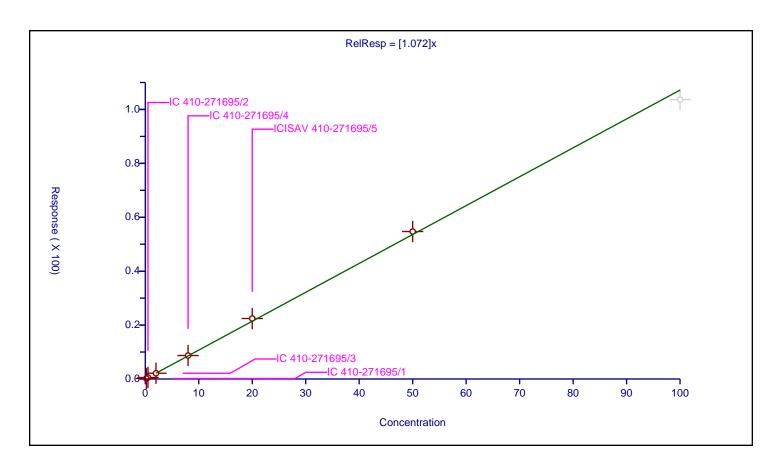
Error Coefficients

Standard Error:10100000Relative Standard Error:5.8Correlation Coefficient:0.990Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.248965	10.0	2743918.0	1.244826	Υ
2	IC 410-271695/2	0.5	0.59794	10.0	2828244.0	1.19588	Υ
3	IC 410-271695/3	2.0	2.249574	10.0	2827282.0	1.124787	Υ
4	IC 410-271695/4	8.0	9.142121	10.0	2760482.0	1.142765	Υ
5	ICISAV 410-271695/5	20.0	23.684197	10.0	2569257.0	1.18421	Υ
6	IC 410-271695/6	50.0	52.749847	10.0	2241394.0	1.054997	Υ
7	IC 410-271695/7	100.0	108.148267	10.0	1925634.0	1.081483	Υ

Calibration / 6:2 FTCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept.	0
Intercept:	Ü
Slope:	1.072

Curve Coefficients

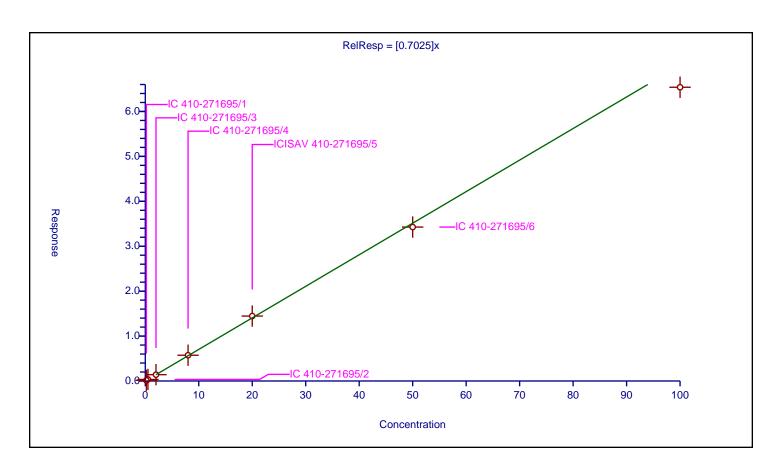
Error Coefficients

Standard Error:653000Relative Standard Error:5.7Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.190335	10.0	307143.0	0.951674	Υ
2	IC 410-271695/2	0.5	0.552891	10.0	319593.0	1.105781	Υ
3	IC 410-271695/3	2.0	2.139547	10.0	277068.0	1.069773	Υ
4	IC 410-271695/4	8.0	8.707526	10.0	285909.0	1.088441	Υ
5	ICISAV 410-271695/5	20.0	22.440771	10.0	263175.0	1.122039	Υ
6	IC 410-271695/6	50.0	54.710701	10.0	239752.0	1.094214	Υ
7	IC 410-271695/7	100.0	103.660398	10.0	226112.0	1.036604	N

Calibration / PFO4DA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7025

Curve Coefficients

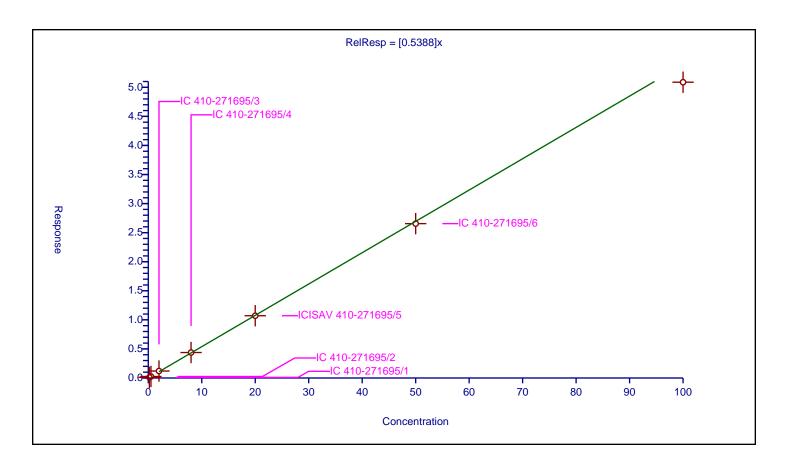
Error Coefficients

Standard Error:5730000Relative Standard Error:4.0Correlation Coefficient:0.995Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.14818	10.0	2114930.0	0.740899	Υ
2	IC 410-271695/2	0.5	0.347131	10.0	2279972.0	0.694263	Υ
3	IC 410-271695/3	2.0	1.407832	10.0	2031933.0	0.703916	Υ
4	IC 410-271695/4	8.0	5.732204	10.0	2198116.0	0.716526	Υ
5	ICISAV 410-271695/5	20.0	14.453982	10.0	2100536.0	0.722699	Υ
6	IC 410-271695/6	50.0	34.26604	10.0	1951189.0	0.685321	Υ
7	IC 410-271695/7	100.0	65.388845	10.0	1817766.0	0.653888	Υ

Calibration / PS Acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.5388

Curve Coefficients

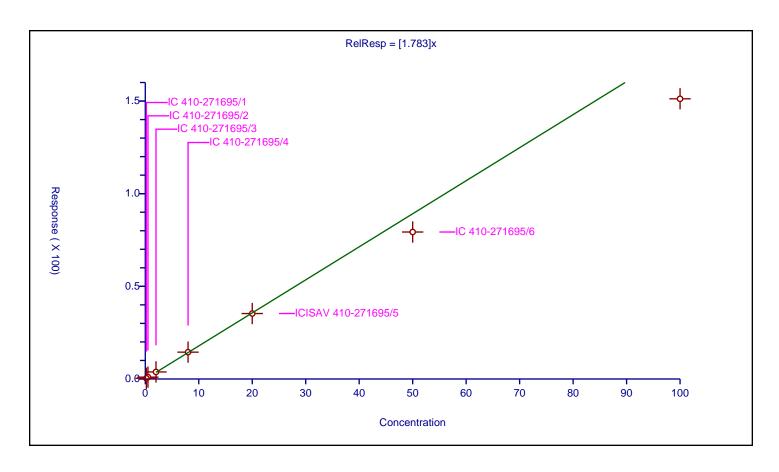
Error Coefficients

Standard Error:7200000Relative Standard Error:5.5Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.1068	9.3	3071277.0	0.533998	Υ
2	IC 410-271695/2	0.5	0.257625	9.3	3472908.0	0.515249	Υ
3	IC 410-271695/3	2.0	1.199116	9.3	3088859.0	0.599558	Υ
4	IC 410-271695/4	8.0	4.380375	9.3	3169886.0	0.547547	Υ
5	ICISAV 410-271695/5	20.0	10.709786	9.3	3281341.0	0.535489	Υ
6	IC 410-271695/6	50.0	26.549923	9.3	2918931.0	0.530998	Υ
7	IC 410-271695/7	100.0	50.878192	9.3	2740387.0	0.508782	Υ

Calibration / EVE Acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.783
Slope.	1.703

Curve Coefficients

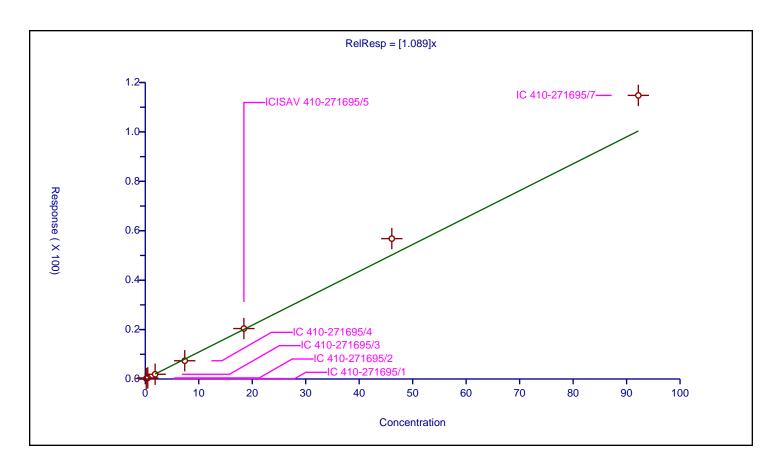
Error Coefficients

Standard Error:13300000Relative Standard Error:10.0Correlation Coefficient:0.993Coefficient of Determination (Adjusted):0.987

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.379601	10.0	2114930.0	1.898006	Υ
2	IC 410-271695/2	0.5	1.004025	10.0	2279972.0	2.008051	Υ
3	IC 410-271695/3	2.0	3.803747	10.0	2031933.0	1.901874	Υ
4	IC 410-271695/4	8.0	14.478813	10.0	2198116.0	1.809852	Υ
5	ICISAV 410-271695/5	20.0	35.325512	10.0	2100536.0	1.766276	Υ
6	IC 410-271695/6	50.0	79.316996	10.0	1951189.0	1.58634	Υ
7	IC 410-271695/7	100.0	151.207713	10.0	1817766.0	1.512077	Υ

Calibration / PFECHS

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.089

Curve Coefficients

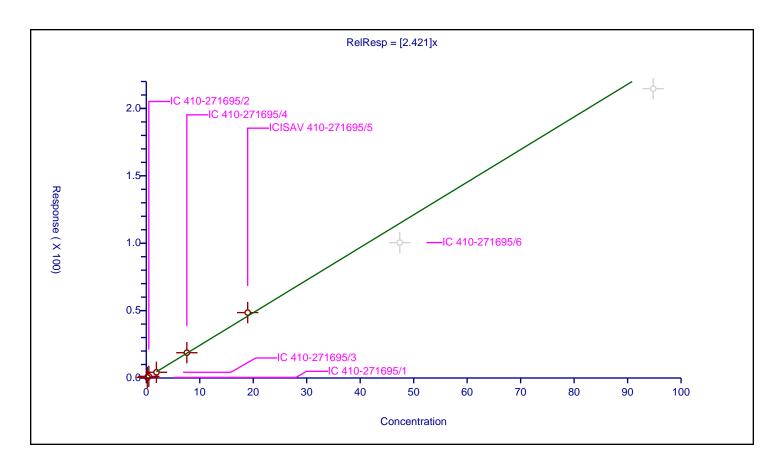
Error Coefficients

Standard Error:13700000Relative Standard Error:10.2Correlation Coefficient:0.995Coefficient of Determination (Adjusted):0.988

Concent	ration Rel. Resp.	IS Amount	IS Response	RRF	Used
1695/1 0.1844	0.190226	9.46	3608674.0	1.031596	Υ
1695/2 0.461	0.446781	9.46	3543460.0	0.969156	Υ
1695/3 1.844	1.907628	9.46	3435839.0	1.034506	Υ
1695/4 7.376	7.387121	9.46	3321886.0	1.001508	Υ
0-271695/5 18.44	20.415489	9.46	3164775.0	1.107131	Υ
1695/6 46.1	56.814057	9.46	2707068.0	1.232409	Υ
1695/7 92.2	114.782188	9.46	2339262.0	1.244926	Υ
1	1695/1 0.1844 1695/2 0.461 1695/3 1.844 1695/4 7.376 10-271695/5 18.44 1695/6 46.1	1695/2 0.461 0.446781 1695/3 1.844 1.907628 1695/4 7.376 7.387121 10-271695/5 18.44 20.415489 1695/6 46.1 56.814057	1695/1 0.1844 0.190226 9.46 1695/2 0.461 0.446781 9.46 1695/3 1.844 1.907628 9.46 1695/4 7.376 7.387121 9.46 10-271695/5 18.44 20.415489 9.46 1695/6 46.1 56.814057 9.46	1695/1 0.1844 0.190226 9.46 3608674.0 1695/2 0.461 0.446781 9.46 3543460.0 1695/3 1.844 1.907628 9.46 3435839.0 1695/4 7.376 7.387121 9.46 3321886.0 10-271695/5 18.44 20.415489 9.46 3164775.0 1695/6 46.1 56.814057 9.46 2707068.0	1695/1 0.1844 0.190226 9.46 3608674.0 1.031596 1695/2 0.461 0.446781 9.46 3543460.0 0.969156 1695/3 1.844 1.907628 9.46 3435839.0 1.034506 1695/4 7.376 7.387121 9.46 3321886.0 1.001508 10-271695/5 18.44 20.415489 9.46 3164775.0 1.107131 1695/6 46.1 56.814057 9.46 2707068.0 1.232409

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients


 Intercept:
 0

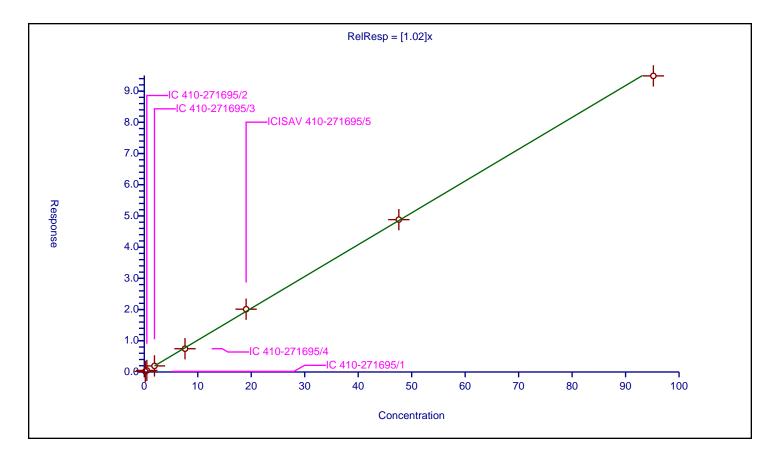
 Slope:
 2.421

Error Coefficients

Standard Error:305000Relative Standard Error:6.7Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.1896	0.430543	9.5	135458.0	2.270797	Υ
2	IC 410-271695/2	0.474	1.220306	9.5	148482.0	2.574486	Υ
3	IC 410-271695/3	1.896	4.225897	9.5	130391.0	2.228849	Υ
4	IC 410-271695/4	7.584	18.753617	9.5	119221.0	2.472787	Υ
5	ICISAV 410-271695/5	18.96	48.541219	9.5	109706.0	2.560191	Υ
6	IC 410-271695/6	47.4	100.454352	9.5	111603.0	2.11929	N
7	IC 410-271695/7	94.8	214.685001	9.5	90575.0	2.26461	N

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Coefficients

Intercept:	0
Slope:	1.02

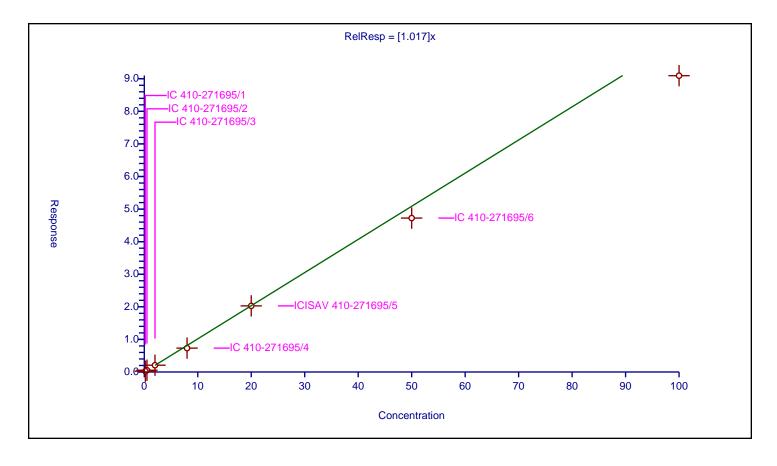
Error Coefficients

Standard Error:11500000Relative Standard Error:2.6Correlation Coefficient:0.988Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.1904	0.192365	9.46	3608674.0	1.010323	Υ
2	IC 410-271695/2	0.476	0.498119	9.46	3543460.0	1.046469	Υ
3	IC 410-271695/3	1.904	1.948284	9.46	3435839.0	1.023258	Υ
4	IC 410-271695/4	7.616	7.458745	9.46	3321886.0	0.979352	Υ
5	ICISAV 410-271695/5	19.04	20.119278	9.46	3164775.0	1.056685	Υ
6	IC 410-271695/6	47.6	48.819038	9.46	2707068.0	1.02561	Υ
7	IC 410-271695/7	95.2	94.876663	9.46	2339262.0	0.996604	Υ

Calibration / Perfluorooctanoic acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.017

Curve Coefficients

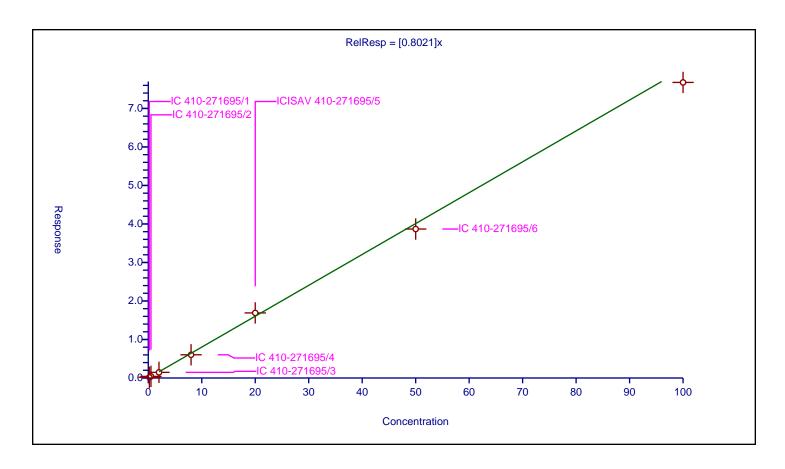
Error Coefficients

Standard Error:7460000Relative Standard Error:10.4Correlation Coefficient:0.989Coefficient of Determination (Adjusted):0.985

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.24012	10.0	2379189.0	1.200598	Υ
2	IC 410-271695/2	0.5	0.546219	10.0	2529115.0	1.092437	Υ
3	IC 410-271695/3	2.0	2.086839	10.0	2294418.0	1.043419	Υ
4	IC 410-271695/4	8.0	7.326799	10.0	2376215.0	0.91585	Υ
5	ICISAV 410-271695/5	20.0	20.287474	10.0	2174322.0	1.014374	Υ
6	IC 410-271695/6	50.0	47.239075	10.0	1891533.0	0.944782	Υ
7	IC 410-271695/7	100.0	90.947997	10.0	1673328.0	0.90948	Υ

Calibration / TAF

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

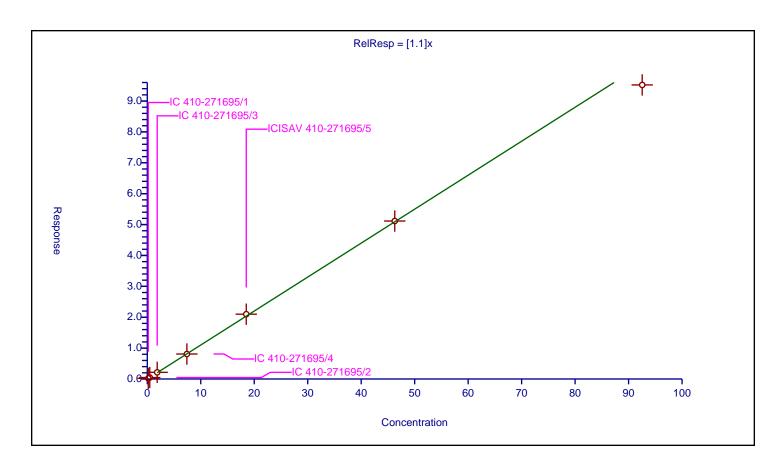

Intercept:	0
Slope:	0.8021

Curve Coefficients

Error Coefficients

Standard Error:6660000Relative Standard Error:7.7Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.180824	10.0	2114930.0	0.90412	Υ
2	IC 410-271695/2	0.5	0.418895	10.0	2279972.0	0.837791	Υ
3	IC 410-271695/3	2.0	1.466205	10.0	2031933.0	0.733102	Υ
4	IC 410-271695/4	8.0	6.027475	10.0	2198116.0	0.753434	Υ
5	ICISAV 410-271695/5	20.0	16.896916	10.0	2100536.0	0.844846	Υ
6	IC 410-271695/6	50.0	38.684382	10.0	1951189.0	0.773688	Υ
7	IC 410-271695/7	100.0	76.760568	10.0	1817766.0	0.767606	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	1.1

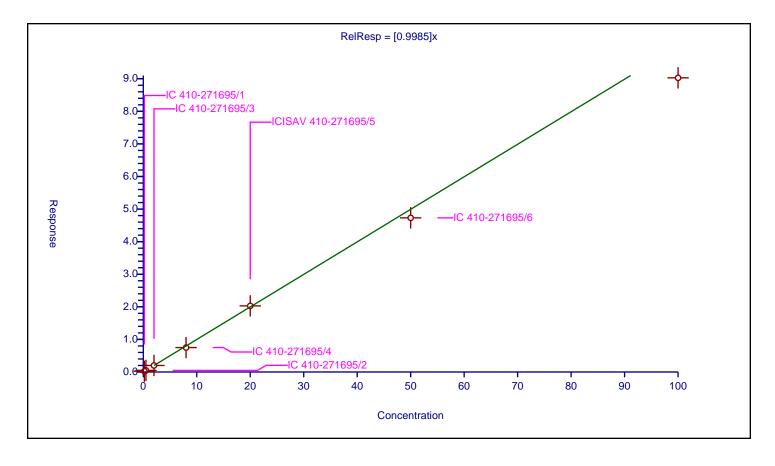
Error Coefficients

Standard Error:12300000Relative Standard Error:5.3Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.1851	0.21377	9.56	2912403.0	1.154891	Υ
2	IC 410-271695/2	0.46275	0.471001	9.56	3287169.0	1.017831	Υ
3	IC 410-271695/3	1.851	2.15808	9.56	2745820.0	1.165899	Υ
4	IC 410-271695/4	7.404	8.086935	9.56	2982829.0	1.092239	Υ
5	ICISAV 410-271695/5	18.51	20.983128	9.56	2958126.0	1.13361	Υ
6	IC 410-271695/6	46.275	51.151048	9.56	2630072.0	1.105371	Υ
7	IC 410-271695/7	92.55	95.215077	9.56	2590161.0	1.028796	Υ

Calibration / Perfluorononanoic acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.9985

Curve Coefficients

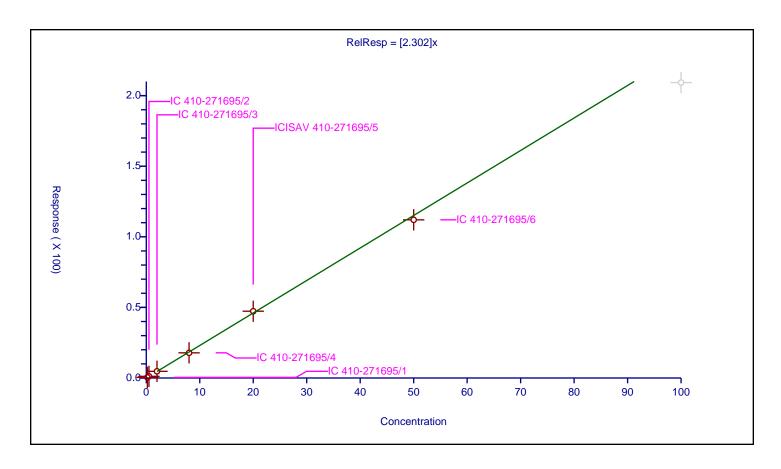
Error Coefficients

Standard Error:7290000Relative Standard Error:9.6Correlation Coefficient:0.988Coefficient of Determination (Adjusted):0.988

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.23928	10.0	2156131.0	1.196402	Υ
2	IC 410-271695/2	0.5	0.495094	10.0	2466602.0	0.990188	Υ
3	IC 410-271695/3	2.0	2.00501	10.0	2155037.0	1.002505	Υ
4	IC 410-271695/4	8.0	7.493757	10.0	2140455.0	0.93672	Υ
5	ICISAV 410-271695/5	20.0	20.289844	10.0	2100753.0	1.014492	Υ
6	IC 410-271695/6	50.0	47.309268	10.0	1875475.0	0.946185	Υ
7	IC 410-271695/7	100.0	90.28461	10.0	1641298.0	0.902846	Υ

Calibration /7:3 FTCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.302
Slope:	2.302

Curve Coefficients

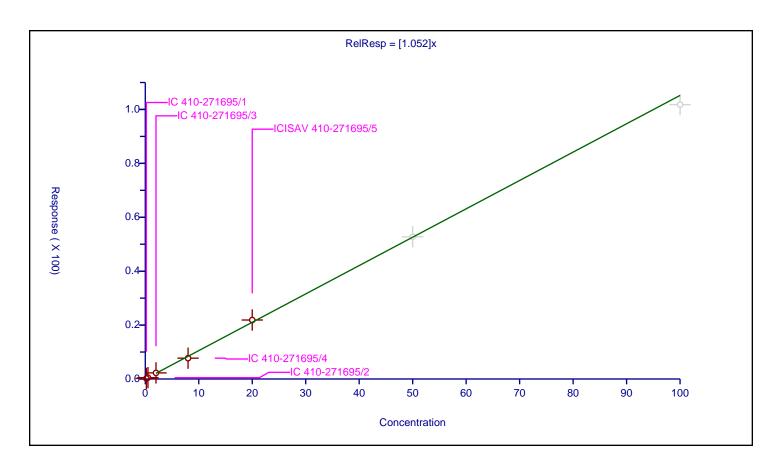
Error Coefficients

Standard Error:1340000Relative Standard Error:2.9Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.451907	10.0	307143.0	2.259534	Υ
2	IC 410-271695/2	0.5	1.177279	10.0	319593.0	2.354557	Υ
3	IC 410-271695/3	2.0	4.729092	10.0	277068.0	2.364546	Υ
4	IC 410-271695/4	8.0	17.826686	10.0	285909.0	2.228336	Υ
5	ICISAV 410-271695/5	20.0	47.295982	10.0	263175.0	2.364799	Υ
6	IC 410-271695/6	50.0	112.027762	10.0	239752.0	2.240555	Υ
7	IC 410-271695/7	100.0	209.242411	10.0	226112.0	2.092424	N

Calibration /8:2 FTUCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.052

Curve Coefficients

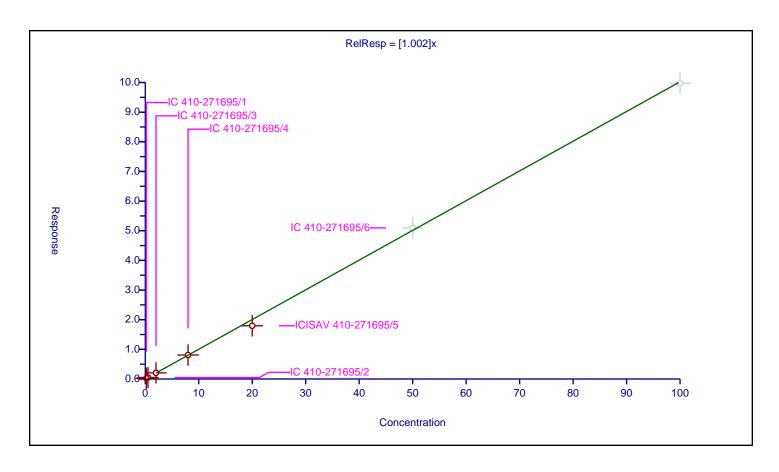
Error Coefficients

Standard Error:2400000Relative Standard Error:6.5Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.214321	10.0	2160919.0	1.071604	Υ
2	IC 410-271695/2	0.5	0.499361	10.0	2380961.0	0.998723	Υ
3	IC 410-271695/3	2.0	2.260943	10.0	2024735.0	1.130471	Υ
4	IC 410-271695/4	8.0	7.726324	10.0	2212562.0	0.96579	Υ
5	ICISAV 410-271695/5	20.0	21.882321	10.0	2038680.0	1.094116	Υ
6	IC 410-271695/6	50.0	52.741129	10.0	1665799.0	1.054823	N
7	IC 410-271695/7	100.0	101.796877	10.0	1437294.0	1.017969	N

Calibration /8:2 FTCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

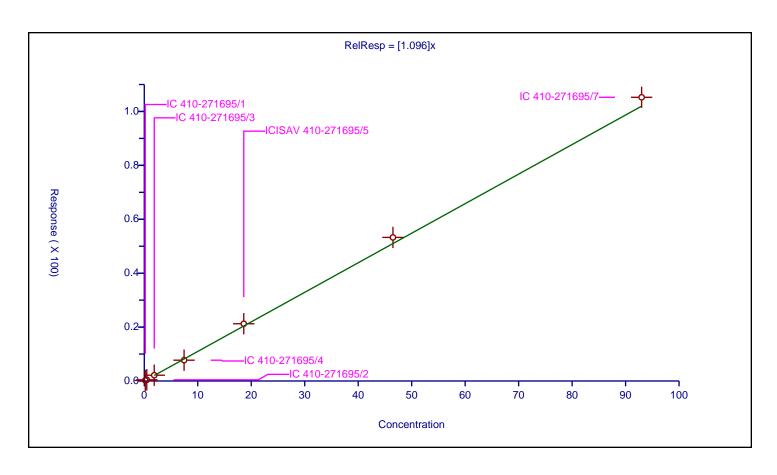

Intercept:	0
Slope:	1.002

Curve Coefficients

Error Coefficients

Standard Error:219000Relative Standard Error:7.3Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.218889	10.0	226919.0	1.094443	Υ
2	IC 410-271695/2	0.5	0.486542	10.0	241747.0	0.973083	Υ
3	IC 410-271695/3	2.0	2.072366	10.0	216704.0	1.036183	Υ
4	IC 410-271695/4	8.0	8.08806	10.0	207653.0	1.011008	Υ
5	ICISAV 410-271695/5	20.0	17.946543	10.0	224066.0	0.897327	Υ
6	IC 410-271695/6	50.0	50.960542	10.0	175984.0	1.019211	N
7	IC 410-271695/7	100.0	99.756281	10.0	150460.0	0.997563	N

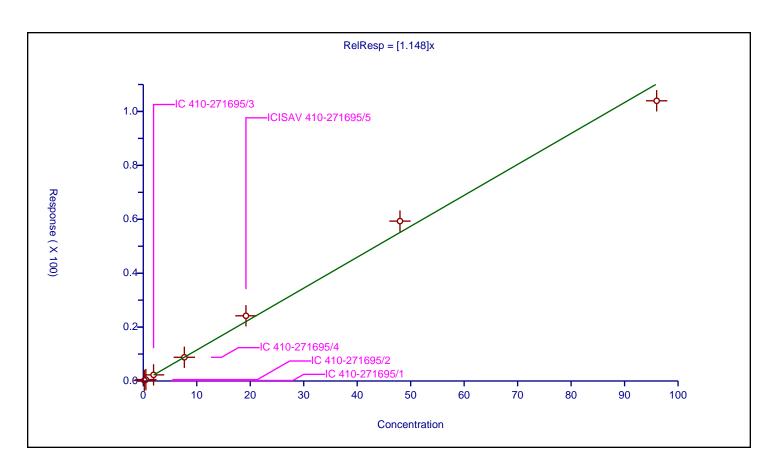


Curve Coefficients				
Intercept:	0			
Slope:	1.096			

Error Coefficients

Standard Error:13400000Relative Standard Error:7.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.186	0.209372	9.56	2912403.0	1.125655	Υ
2	IC 410-271695/2	0.465	0.437338	9.56	3287169.0	0.940512	Υ
3	IC 410-271695/3	1.86	2.143593	9.56	2745820.0	1.152469	Υ
4	IC 410-271695/4	7.44	7.72049	9.56	2982829.0	1.0377	Υ
5	ICISAV 410-271695/5	18.6	21.232424	9.56	2958126.0	1.141528	Υ
6	IC 410-271695/6	46.5	53.271311	9.56	2630072.0	1.14562	Υ
7	IC 410-271695/7	93.0	105.262784	9.56	2590161.0	1.131858	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	1.148			

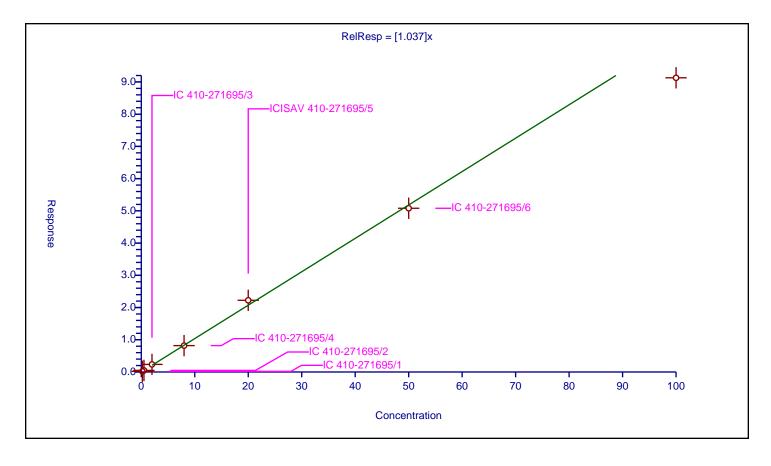
Error Coefficients

Standard Error:13700000Relative Standard Error:7.3Correlation Coefficient:0.992Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.192	0.197867	9.56	2912403.0	1.030555	Υ
2	IC 410-271695/2	0.48	0.528012	9.56	3287169.0	1.100026	Υ
3	IC 410-271695/3	1.92	2.268334	9.56	2745820.0	1.181424	Υ
4	IC 410-271695/4	7.68	8.791057	9.56	2982829.0	1.144669	Υ
5	ICISAV 410-271695/5	19.2	24.193135	9.56	2958126.0	1.260059	Υ
6	IC 410-271695/6	48.0	59.319343	9.56	2630072.0	1.23582	Υ
7	IC 410-271695/7	96.0	103.96028	9.56	2590161.0	1.08292	Υ

Calibration / Perfluorodecanoic acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.037

Curve Coefficients

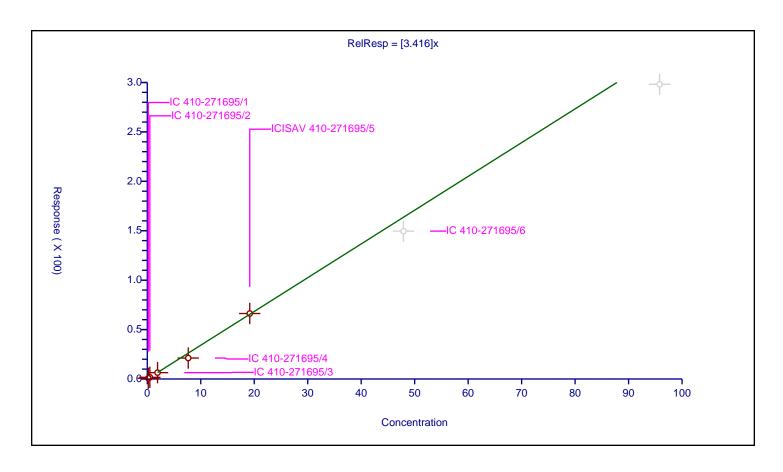
Error Coefficients

Standard Error:7600000Relative Standard Error:8.3Correlation Coefficient:0.986Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.20673	10.0	2226671.0	1.033651	Υ
2	IC 410-271695/2	0.5	0.489615	10.0	2283039.0	0.97923	Υ
3	IC 410-271695/3	2.0	2.356071	10.0	1819224.0	1.178035	Υ
4	IC 410-271695/4	8.0	8.187698	10.0	1992245.0	1.023462	Υ
5	ICISAV 410-271695/5	20.0	22.247607	10.0	2043155.0	1.11238	Υ
6	IC 410-271695/6	50.0	50.804424	10.0	1826848.0	1.016088	Υ
7	IC 410-271695/7	100.0	91.288534	10.0	1685947.0	0.912885	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
rcept:		0

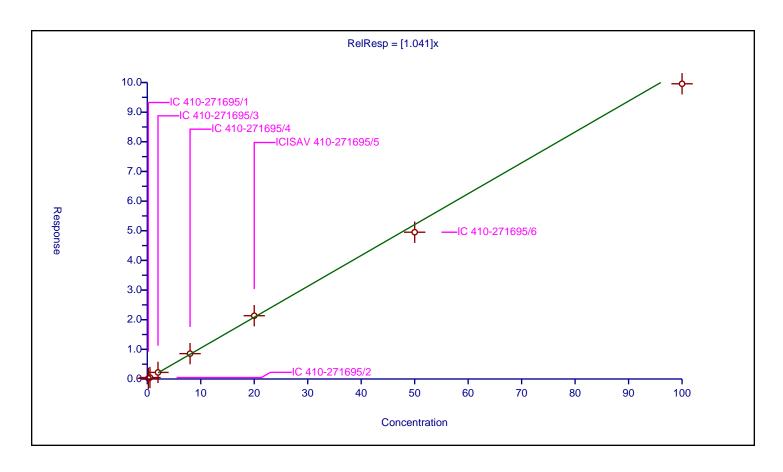

 Intercept:
 0

 Slope:
 3.416

Error Coefficients

Standard Error:323000Relative Standard Error:12.4Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.976

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.1916	0.753774	9.58	104344.0	3.934103	Υ
2	IC 410-271695/2	0.479	1.711954	9.58	100492.0	3.574016	Υ
3	IC 410-271695/3	1.916	6.415593	9.58	90744.0	3.348431	Υ
4	IC 410-271695/4	7.664	21.204022	9.58	95649.0	2.766704	Υ
5	ICISAV 410-271695/5	19.16	66.264268	9.58	87766.0	3.458469	Υ
6	IC 410-271695/6	47.9	149.625778	9.58	77490.0	3.123711	N
7	IC 410-271695/7	95.8	298.180972	9.58	65522.0	3.112536	N
5	ICISAV 410-271695/5 IC 410-271695/6	19.16 47.9	66.264268 149.625778	9.58 9.58	87766.0 77490.0	3.458469 3.123711	-



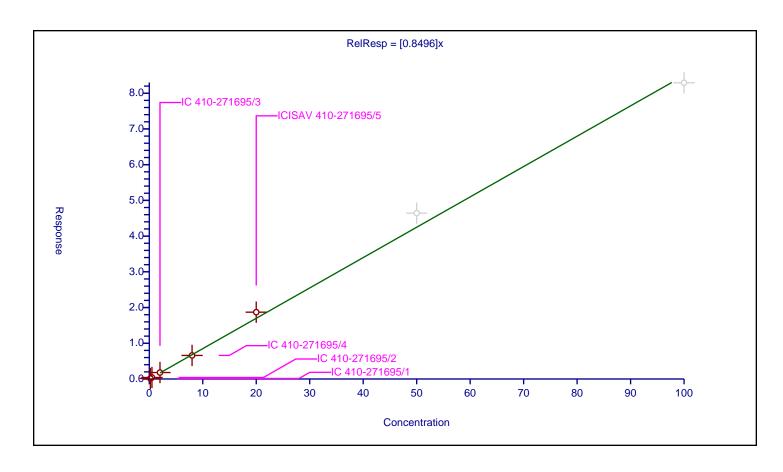
	Curve Coefficients	
Intercept: Slope:		0 1.041

Error Coefficients

Standard Error:18400000Relative Standard Error:4.3Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.210434	10.0	4551444.0	1.052172	Υ
2	IC 410-271695/2	0.5	0.502762	10.0	5044057.0	1.005524	Υ
3	IC 410-271695/3	2.0	2.220457	10.0	4462324.0	1.110229	Υ
4	IC 410-271695/4	8.0	8.552642	10.0	4570243.0	1.06908	Υ
5	ICISAV 410-271695/5	20.0	21.339502	10.0	4596471.0	1.066975	Υ
6	IC 410-271695/6	50.0	49.505007	10.0	4198117.0	0.9901	Υ
7	IC 410-271695/7	100.0	99.574293	10.0	3861481.0	0.995743	Υ

/ N-methylperfluorooctanesulfonamidoacetic acid


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.8496

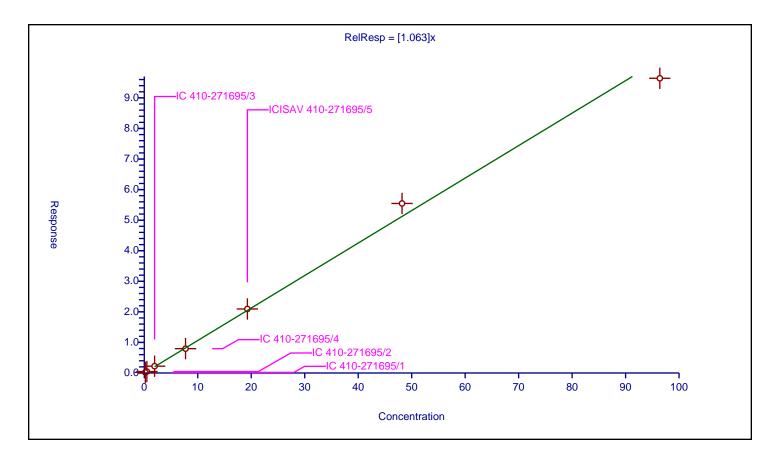
Error Coefficients

Standard Error:842000Relative Standard Error:8.8Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.148627	10.0	827913.0	0.743134	Υ
2	IC 410-271695/2	0.5	0.42103	10.0	884283.0	0.842061	Υ
3	IC 410-271695/3	2.0	1.806625	10.0	749292.0	0.903313	Υ
4	IC 410-271695/4	8.0	6.593319	10.0	821744.0	0.824165	Υ
5	ICISAV 410-271695/5	20.0	18.705505	10.0	849412.0	0.935275	Υ
6	IC 410-271695/6	50.0	46.431494	10.0	705029.0	0.92863	N
7	IC 410-271695/7	100.0	82.92759	10.0	720374.0	0.829276	N

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients


 Intercept:
 0

 Slope:
 1.063

Error Coefficients

Standard Error:12700000Relative Standard Error:6.7Correlation Coefficient:0.993Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.1928	0.199235	9.56	2912403.0	1.033379	Υ
2	IC 410-271695/2	0.482	0.471577	9.56	3287169.0	0.978376	Υ
3	IC 410-271695/3	1.928	2.232765	9.56	2745820.0	1.158073	Υ
4	IC 410-271695/4	7.712	7.956837	9.56	2982829.0	1.031748	Υ
5	ICISAV 410-271695/5	19.28	20.944964	9.56	2958126.0	1.086357	Υ
6	IC 410-271695/6	48.2	55.46687	9.56	2630072.0	1.150765	Υ
7	IC 410-271695/7	96.4	96.419474	9.56	2590161.0	1.000202	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients

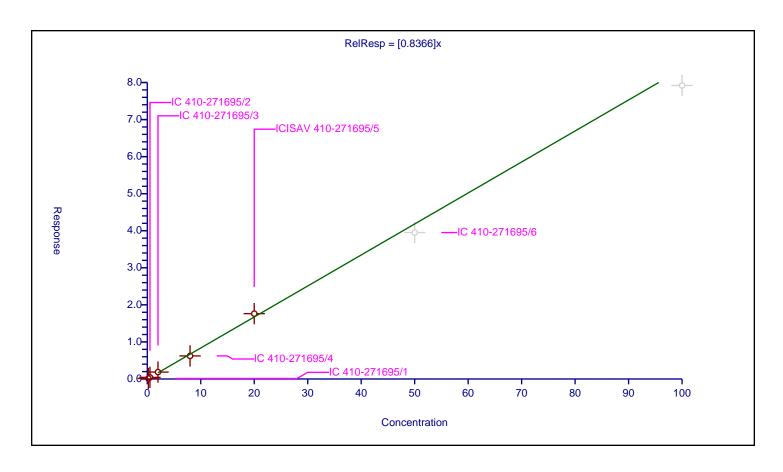
 Intercept:
 0

 Slope:
 0.9419

Error Coefficients

Standard Error:5260000Relative Standard Error:12.4Correlation Coefficient:0.992Coefficient of Determination (Adjusted):0.981

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.198498	10.0	1421375.0	0.99249	Υ
2	IC 410-271695/2	0.5	0.417822	10.0	1622173.0	0.835645	Υ
3	IC 410-271695/3	2.0	2.328121	10.0	1296002.0	1.164061	Υ
4	IC 410-271695/4	8.0	6.774845	10.0	1614490.0	0.846856	Υ
5	ICISAV 410-271695/5	20.0	19.063985	10.0	1550520.0	0.953199	Υ
6	IC 410-271695/6	50.0	47.884819	10.0	1299846.0	0.957696	Υ
7	IC 410-271695/7	100.0	84.363126	10.0	1283252.0	0.843631	Υ



Cur	ve Coefficients
Intercept:	0
Slope:	0.8366

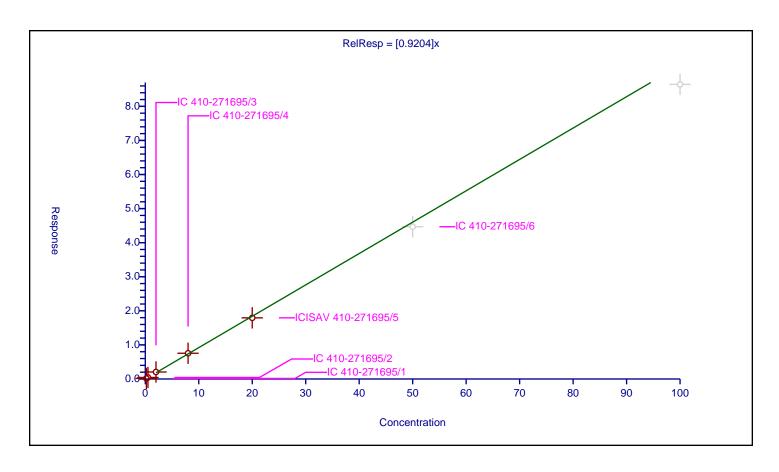
Error Coefficients

Standard Error:635000Relative Standard Error:10.7Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.986

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.142311	10.0	709292.0	0.711555	Υ
2	IC 410-271695/2	0.5	0.438191	10.0	746250.0	0.876382	Υ
3	IC 410-271695/3	2.0	1.86939	10.0	689535.0	0.934695	Υ
4	IC 410-271695/4	8.0	6.228744	10.0	684976.0	0.778593	Υ
5	ICISAV 410-271695/5	20.0	17.631477	10.0	673842.0	0.881574	Υ
6	IC 410-271695/6	50.0	39.517693	10.0	582596.0	0.790354	N
7	IC 410-271695/7	100.0	79.199217	10.0	551098.0	0.791992	N

Calibration / 10:2 FTUCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

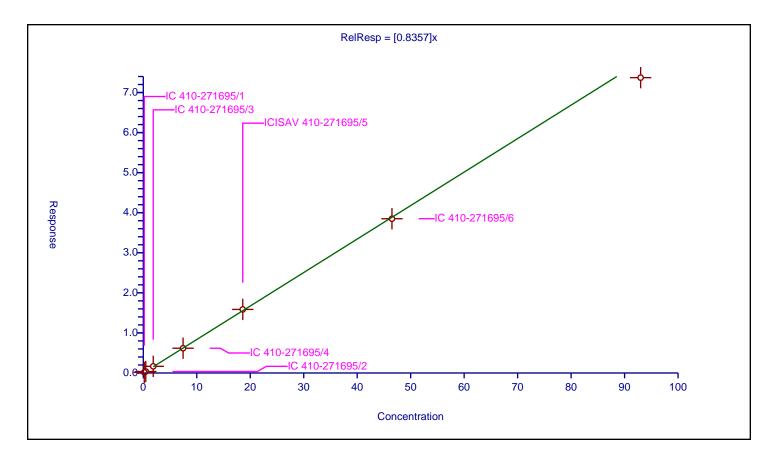

Intercept:	0
Slope:	0.9204

Curve Coefficients

Error Coefficients

Standard Error:1830000Relative Standard Error:7.9Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.166214	10.0	2017342.0	0.831069	Υ
2	IC 410-271695/2	0.5	0.450466	10.0	2222674.0	0.900933	Υ
3	IC 410-271695/3	2.0	2.056721	10.0	1766292.0	1.028361	Υ
4	IC 410-271695/4	8.0	7.554076	10.0	1922713.0	0.944259	Υ
5	ICISAV 410-271695/5	20.0	17.944779	10.0	1866174.0	0.897239	Υ
6	IC 410-271695/6	50.0	44.67298	10.0	1619838.0	0.89346	N
7	IC 410-271695/7	100.0	86.446256	10.0	1399811.0	0.864463	N


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

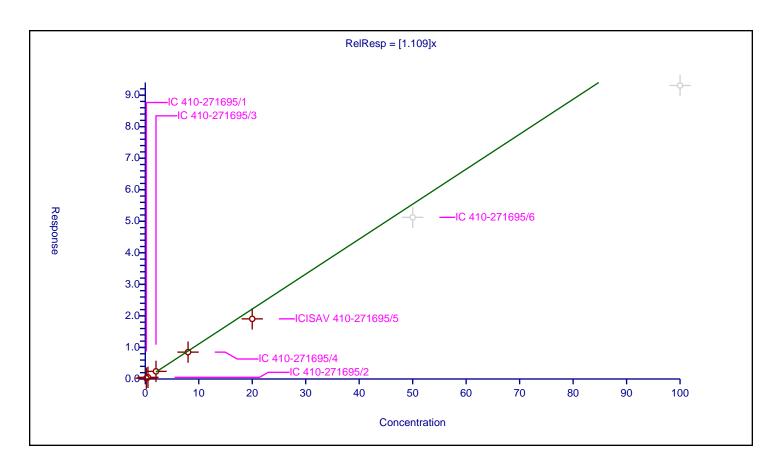
Curve Coefficients						
Intercept:	0					
Slope:	0.8357					

Error Coefficients

Standard Error:9480000Relative Standard Error:4.3Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.186	0.159376	9.56	2912403.0	0.856859	Υ
2	IC 410-271695/2	0.465	0.369622	9.56	3287169.0	0.794885	Υ
3	IC 410-271695/3	1.86	1.66233	9.56	2745820.0	0.893726	Υ
4	IC 410-271695/4	7.44	6.183018	9.56	2982829.0	0.831051	Υ
5	ICISAV 410-271695/5	18.6	15.86417	9.56	2958126.0	0.852912	Υ
6	IC 410-271695/6	46.5	38.503071	9.56	2630072.0	0.828023	Υ
7	IC 410-271695/7	93.0	73.713412	9.56	2590161.0	0.792617	Υ

Calibration / 10:2 FTCA

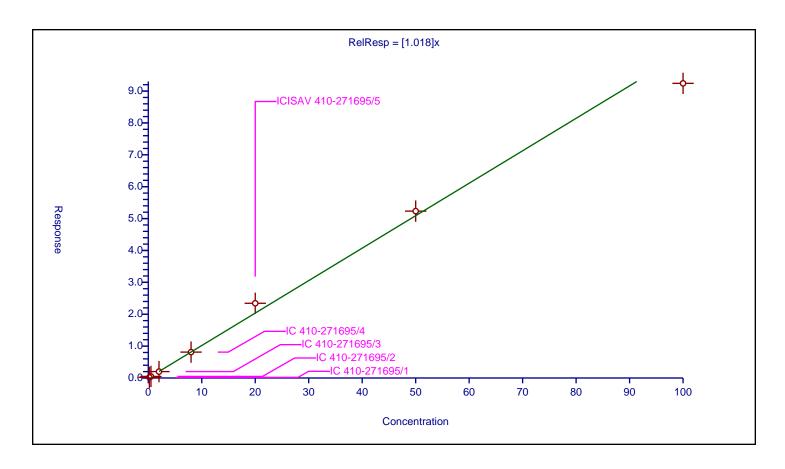

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficier	nts
Intercept:	0
Slope:	1.109

Error Coefficients

Standard Error:174000Relative Standard Error:11.1Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.982

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.251701	10.0	174850.0	1.258507	Υ
2	IC 410-271695/2	0.5	0.529404	10.0	179126.0	1.058808	Υ
3	IC 410-271695/3	2.0	2.416102	10.0	159778.0	1.208051	Υ
4	IC 410-271695/4	8.0	8.514906	10.0	164434.0	1.064363	Υ
5	ICISAV 410-271695/5	20.0	19.063826	10.0	165653.0	0.953191	Υ
6	IC 410-271695/6	50.0	51.250231	10.0	135255.0	1.025005	N
7	IC 410-271695/7	100.0	93.056339	10.0	121230.0	0.930563	N


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

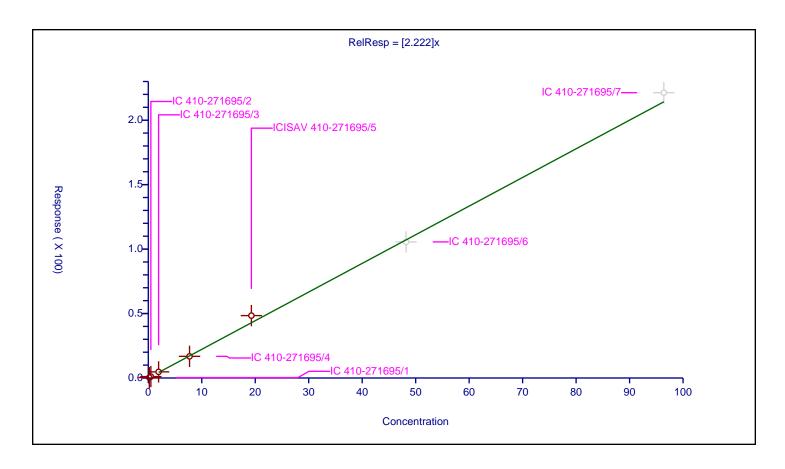
Intercept:	0
Slope:	1.018

Error Coefficients

Standard Error:	3920000
Relative Standard Error:	7.6
Correlation Coefficient:	0.995
Coefficient of Determination (Adjusted):	0.993

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 410-271695/1	0.2	0.198745	10.0	936126.0	0.993723	Υ
IC 410-271695/2	0.5	0.485871	10.0	1066312.0	0.971742	Υ
IC 410-271695/3	2.0	2.007555	10.0	913295.0	1.003778	Υ
IC 410-271695/4	8.0	8.118621	10.0	915440.0	1.014828	Υ
ICISAV 410-271695/5	20.0	23.437509	10.0	900815.0	1.171875	Υ
IC 410-271695/6	50.0	52.340897	10.0	859568.0	1.046818	Υ
IC 410-271695/7	100.0	92.424246	10.0	884040.0	0.924242	Υ
	IC 410-271695/1 IC 410-271695/2 IC 410-271695/3 IC 410-271695/4 ICISAV 410-271695/5 IC 410-271695/6	IC 410-271695/1 0.2 IC 410-271695/2 0.5 IC 410-271695/3 2.0 IC 410-271695/4 8.0 ICISAV 410-271695/5 20.0 IC 410-271695/6 50.0	IC 410-271695/1 0.2 0.198745 IC 410-271695/2 0.5 0.485871 IC 410-271695/3 2.0 2.007555 IC 410-271695/4 8.0 8.118621 ICISAV 410-271695/5 20.0 23.437509 IC 410-271695/6 50.0 52.340897	IC 410-271695/1 0.2 0.198745 10.0 IC 410-271695/2 0.5 0.485871 10.0 IC 410-271695/3 2.0 2.007555 10.0 IC 410-271695/4 8.0 8.118621 10.0 ICISAV 410-271695/5 20.0 23.437509 10.0 IC 410-271695/6 50.0 52.340897 10.0	IC 410-271695/1 0.2 0.198745 10.0 936126.0 IC 410-271695/2 0.5 0.485871 10.0 1066312.0 IC 410-271695/3 2.0 2.007555 10.0 913295.0 IC 410-271695/4 8.0 8.118621 10.0 915440.0 ICISAV 410-271695/5 20.0 23.437509 10.0 900815.0 IC 410-271695/6 50.0 52.340897 10.0 859568.0	IC 410-271695/1 0.2 0.198745 10.0 936126.0 0.993723 IC 410-271695/2 0.5 0.485871 10.0 1066312.0 0.971742 IC 410-271695/3 2.0 2.007555 10.0 913295.0 1.003778 IC 410-271695/4 8.0 8.118621 10.0 915440.0 1.014828 ICISAV 410-271695/5 20.0 23.437509 10.0 900815.0 1.171875 IC 410-271695/6 50.0 52.340897 10.0 859568.0 1.046818

/ 1H,1H,2H,2H-perfluorododecanesulfonic acid (10:2)

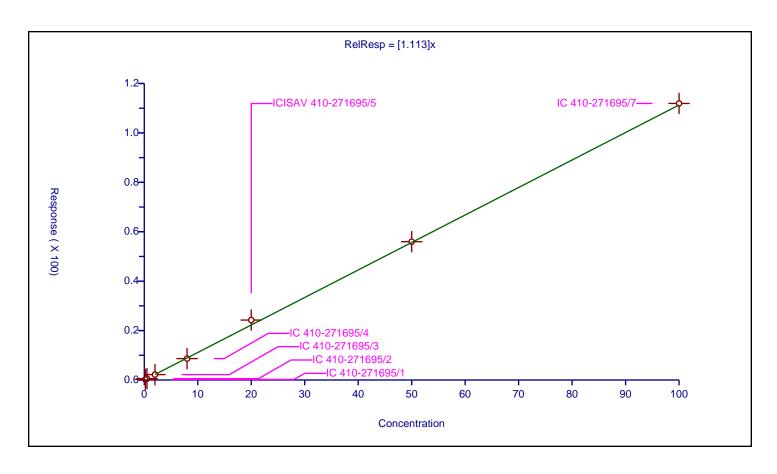

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coe	fficients
Intercept: Slope:	0 2.222
·	

Error Coefficients

Standard Error:238000Relative Standard Error:14.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.977

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.1928	0.328227	9.58	104344.0	1.702421	Υ
2	IC 410-271695/2	0.482	1.088394	9.58	100492.0	2.258078	Υ
3	IC 410-271695/3	1.928	4.750938	9.58	90744.0	2.46418	Υ
4	IC 410-271695/4	7.712	16.788963	9.58	95649.0	2.176992	Υ
5	ICISAV 410-271695/5	19.28	48.402763	9.58	87766.0	2.510517	Υ
6	IC 410-271695/6	48.2	105.556295	9.58	77490.0	2.189965	N
7	IC 410-271695/7	96.4	221.325605	9.58	65522.0	2.295909	N



Curve Coe	fficients
Intercept:	0
Slope:	1.113

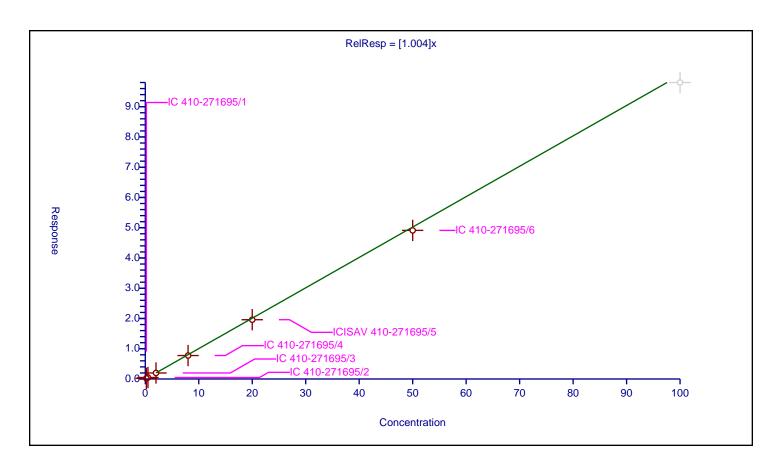
Error Coefficients

Standard Error:2460000Relative Standard Error:4.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.217947	10.0	517969.0	1.089737	Υ
2	IC 410-271695/2	0.5	0.537496	10.0	593474.0	1.074992	Υ
3	IC 410-271695/3	2.0	2.183754	10.0	494978.0	1.091877	Υ
4	IC 410-271695/4	8.0	8.665153	10.0	518891.0	1.083144	Υ
5	ICISAV 410-271695/5	20.0	24.253995	10.0	510647.0	1.2127	Υ
6	IC 410-271695/6	50.0	55.972472	10.0	481834.0	1.119449	Υ
7	IC 410-271695/7	100.0	111.933664	10.0	466172.0	1.119337	Υ

Calibration / NMeFOSA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.004

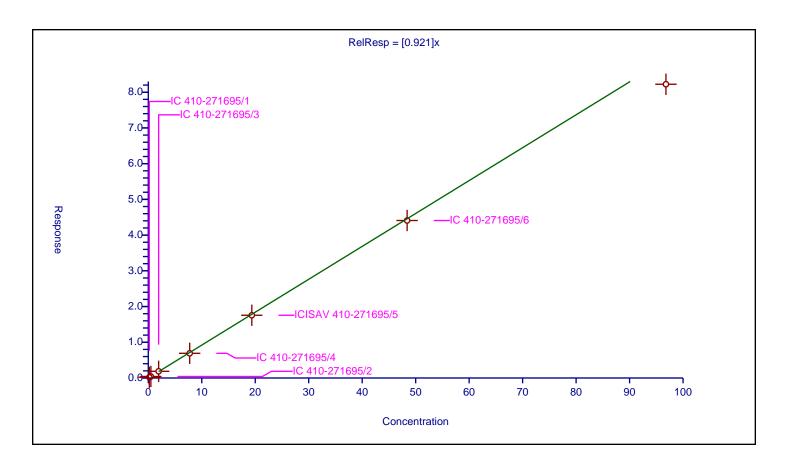
Curve Coefficients

Error Coefficients

Standard Error:1460000Relative Standard Error:5.0Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.221065	10.0	603668.0	1.105326	Υ
2	IC 410-271695/2	0.5	0.49776	10.0	659916.0	0.995521	Υ
3	IC 410-271695/3	2.0	1.989482	10.0	593079.0	0.994741	Υ
4	IC 410-271695/4	8.0	7.752319	10.0	608129.0	0.96904	Υ
5	ICISAV 410-271695/5	20.0	19.598457	10.0	639633.0	0.979923	Υ
6	IC 410-271695/6	50.0	49.119577	10.0	604982.0	0.982392	Υ
7	IC 410-271695/7	100.0	97.992248	10.0	567107.0	0.979922	N

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

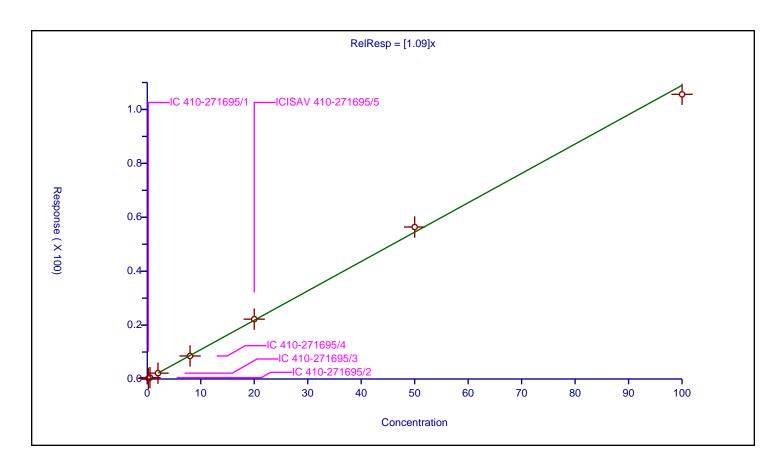

Curve Coefficients

Intercept:	0
Slope:	0.921

Error Coefficients

Standard Error:10600000Relative Standard Error:7.1Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.994

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 410-271695/1	0.1936	0.20193	9.56	2912403.0	1.043029	Υ
IC 410-271695/2	0.484	0.423503	9.56	3287169.0	0.875007	Υ
IC 410-271695/3	1.936	1.876076	9.56	2745820.0	0.969048	Υ
IC 410-271695/4	7.744	6.911449	9.56	2982829.0	0.892491	Υ
ICISAV 410-271695/5	19.36	17.564666	9.56	2958126.0	0.907266	Υ
IC 410-271695/6	48.4	44.088746	9.56	2630072.0	0.910925	Υ
IC 410-271695/7	96.8	82.23353	9.56	2590161.0	0.84952	Υ
10 10 10	C 410-271695/1 C 410-271695/2 C 410-271695/3 C 410-271695/4 CISAV 410-271695/5 C 410-271695/6	C 410-271695/1 0.1936 C 410-271695/2 0.484 C 410-271695/3 1.936 C 410-271695/4 7.744 CISAV 410-271695/5 19.36 C 410-271695/6 48.4	C 410-271695/1 0.1936 0.20193 C 410-271695/2 0.484 0.423503 C 410-271695/3 1.936 1.876076 C 410-271695/4 7.744 6.911449 CISAV 410-271695/5 19.36 17.564666 C 410-271695/6 48.4 44.088746	C 410-271695/1 0.1936 0.20193 9.56 C 410-271695/2 0.484 0.423503 9.56 C 410-271695/3 1.936 1.876076 9.56 C 410-271695/4 7.744 6.911449 9.56 CISAV 410-271695/5 19.36 17.564666 9.56 C 410-271695/6 48.4 44.088746 9.56	C 410-271695/1 0.1936 0.20193 9.56 2912403.0 C 410-271695/2 0.484 0.423503 9.56 3287169.0 C 410-271695/3 1.936 1.876076 9.56 2745820.0 C 410-271695/4 7.744 6.911449 9.56 2982829.0 C 1SAV 410-271695/5 19.36 17.564666 9.56 2958126.0 C 410-271695/6 48.4 44.088746 9.56 2630072.0	C 410-271695/1 0.1936 0.20193 9.56 2912403.0 1.043029 C 410-271695/2 0.484 0.423503 9.56 3287169.0 0.875007 C 410-271695/3 1.936 1.876076 9.56 2745820.0 0.969048 C 410-271695/4 7.744 6.911449 9.56 2982829.0 0.892491 CISAV 410-271695/5 19.36 17.564666 9.56 2958126.0 0.907266 C 410-271695/6 48.4 44.088746 9.56 2630072.0 0.910925

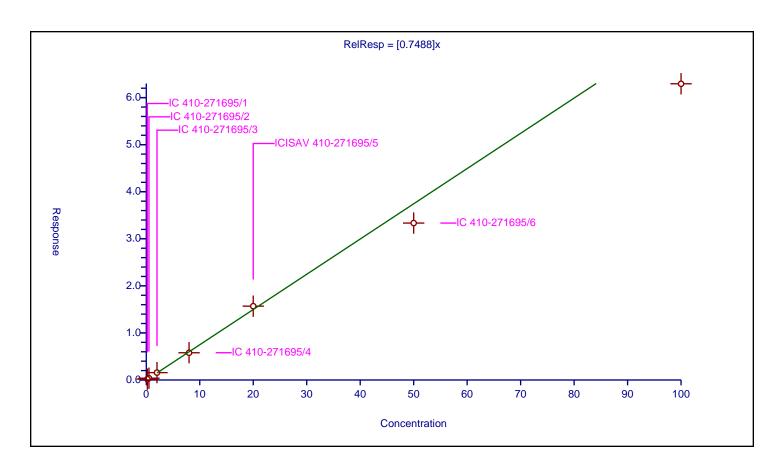


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Error Coefficients

Standard Error:2520000Relative Standard Error:3.7Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.229272	10.0	596890.0	1.146359	Υ
2	IC 410-271695/2	0.5	0.517929	10.0	667408.0	1.035858	Υ
3	IC 410-271695/3	2.0	2.165842	10.0	528672.0	1.082921	Υ
4	IC 410-271695/4	8.0	8.547837	10.0	595057.0	1.06848	Υ
5	ICISAV 410-271695/5	20.0	22.196937	10.0	584350.0	1.109847	Υ
6	IC 410-271695/6	50.0	56.388093	10.0	493944.0	1.127762	Υ
7	IC 410-271695/7	100.0	105.61407	10.0	505512.0	1.056141	Υ

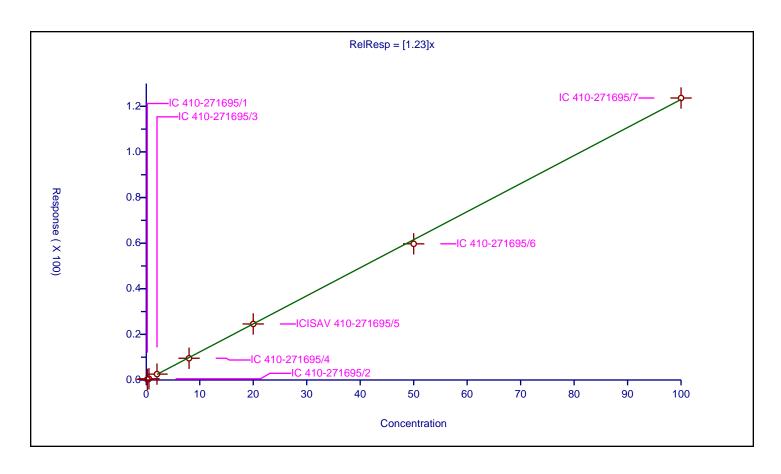


	Curve Coefficients	
Intercept: Slope:		0 0.7488

Error Coefficients

Standard Error:2630000Relative Standard Error:11.6Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.982

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.178705	10.0	936126.0	0.893523	Υ
2	IC 410-271695/2	0.5	0.380358	10.0	1066312.0	0.760715	Υ
3	IC 410-271695/3	2.0	1.565639	10.0	913295.0	0.782819	Υ
4	IC 410-271695/4	8.0	5.789118	10.0	915440.0	0.72364	Υ
5	ICISAV 410-271695/5	20.0	15.688737	10.0	900815.0	0.784437	Υ
6	IC 410-271695/6	50.0	33.346414	10.0	859568.0	0.666928	Υ
7	IC 410-271695/7	100.0	62.942095	10.0	884040.0	0.629421	Υ

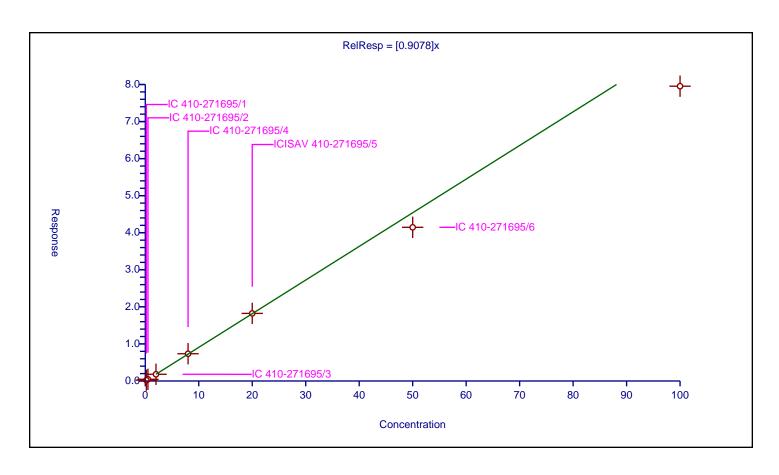


Curve Coe	fficients
Intercept: Slope:	0 1.23

Error Coefficients

Standard Error:2770000Relative Standard Error:7.6Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.993

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 410-271695/1	0.2	0.277676	10.0	571745.0	1.388381	Υ
IC 410-271695/2	0.5	0.542253	10.0	598558.0	1.084506	Υ
IC 410-271695/3	2.0	2.574145	10.0	527717.0	1.287072	Υ
IC 410-271695/4	8.0	9.53504	10.0	581857.0	1.19188	Υ
ICISAV 410-271695/5	20.0	24.571688	10.0	565802.0	1.228584	Υ
IC 410-271695/6	50.0	59.705765	10.0	516764.0	1.194115	Υ
IC 410-271695/7	100.0	123.6365	10.0	473931.0	1.236365	Υ
	C 410-271695/1 C 410-271695/2 C 410-271695/3 C 410-271695/4 CISAV 410-271695/5 C 410-271695/6	C 410-271695/1 0.2 C 410-271695/2 0.5 C 410-271695/3 2.0 C 410-271695/4 8.0 CISAV 410-271695/5 20.0 C 410-271695/6 50.0	C 410-271695/1 0.2 0.277676 C 410-271695/2 0.5 0.542253 C 410-271695/3 2.0 2.574145 C 410-271695/4 8.0 9.53504 CISAV 410-271695/5 20.0 24.571688 C 410-271695/6 50.0 59.705765	C 410-271695/1 0.2 0.277676 10.0 C 410-271695/2 0.5 0.542253 10.0 C 410-271695/3 2.0 2.574145 10.0 C 410-271695/4 8.0 9.53504 10.0 CISAV 410-271695/5 20.0 24.571688 10.0 C 410-271695/6 50.0 59.705765 10.0	C 410-271695/1 0.2 0.277676 10.0 571745.0 C 410-271695/2 0.5 0.542253 10.0 598558.0 C 410-271695/3 2.0 2.574145 10.0 527717.0 C 410-271695/4 8.0 9.53504 10.0 581857.0 CISAV 410-271695/5 20.0 24.571688 10.0 565802.0 C 410-271695/6 50.0 59.705765 10.0 516764.0	C 410-271695/1 0.2 0.277676 10.0 571745.0 1.388381 C 410-271695/2 0.5 0.542253 10.0 598558.0 1.084506 C 410-271695/3 2.0 2.574145 10.0 527717.0 1.287072 C 410-271695/4 8.0 9.53504 10.0 581857.0 1.19188 CISAV 410-271695/5 20.0 24.571688 10.0 565802.0 1.228584 C 410-271695/6 50.0 59.705765 10.0 516764.0 1.194115

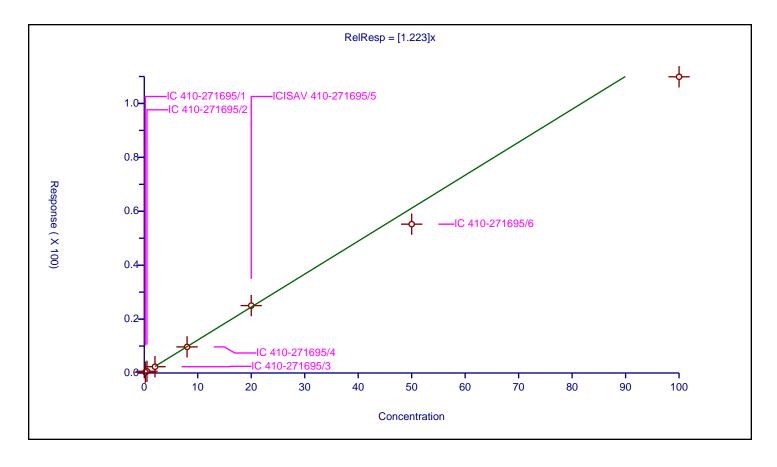


Curve Coefficients								
Intercept:	0							
Slope:	0.9078							

Error Coefficients

Standard Error:2660000Relative Standard Error:10.1Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.986

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.216873	10.0	752100.0	1.084364	Υ
2	IC 410-271695/2	0.5	0.454625	10.0	810492.0	0.90925	Υ
3	IC 410-271695/3	2.0	1.810554	10.0	747180.0	0.905277	Υ
4	IC 410-271695/4	8.0	7.354609	10.0	748101.0	0.919326	Υ
5	ICISAV 410-271695/5	20.0	18.240181	10.0	766562.0	0.912009	Υ
6	IC 410-271695/6	50.0	41.463918	10.0	710443.0	0.829278	Υ
7	IC 410-271695/7	100.0	79.5414	10.0	704340.0	0.795414	Υ

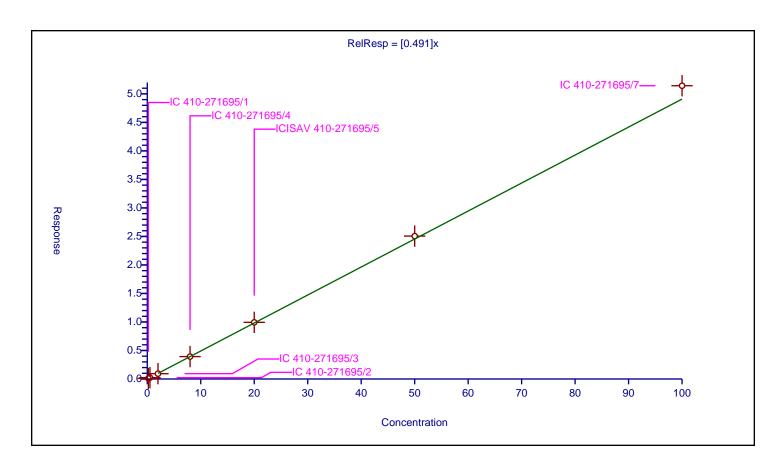


Curve Coefficients								
Intercept:	0							
Slope:	1.223							

Error Coefficients

Standard Error:3640000Relative Standard Error:10.1Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.986

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.292115	10.0	752100.0	1.460577	Υ
2	IC 410-271695/2	0.5	0.634948	10.0	810492.0	1.269895	Υ
3	IC 410-271695/3	2.0	2.333628	10.0	747180.0	1.166814	Υ
4	IC 410-271695/4	8.0	9.683906	10.0	748101.0	1.210488	Υ
5	ICISAV 410-271695/5	20.0	25.002244	10.0	766562.0	1.250112	Υ
6	IC 410-271695/6	50.0	55.220391	10.0	710443.0	1.104408	Υ
7	IC 410-271695/7	100.0	109.893815	10.0	704340.0	1.098938	Υ



	Curve Coefficients	
Intercept: Slope:		0 0.491

Error Coefficients

Standard Error:1680000Relative Standard Error:3.4Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-271695/1	0.2	0.098936	10.0	752100.0	0.494682	Υ
2	IC 410-271695/2	0.5	0.235955	10.0	810492.0	0.471911	Υ
3	IC 410-271695/3	2.0	0.932854	10.0	747180.0	0.466427	Υ
4	IC 410-271695/4	8.0	3.929229	10.0	748101.0	0.491154	Υ
5	ICISAV 410-271695/5	20.0	9.93643	10.0	766562.0	0.496822	Υ
6	IC 410-271695/6	50.0	25.065769	10.0	710443.0	0.501315	Υ
7	IC 410-271695/7	100.0	51.434478	10.0	704340.0	0.514345	Υ

Lab Name: Eurofins Lancaster Laboratories Env	7 Job No.: 240-168405-1	Analy Batch No.: 272051
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/04/2022 16:15	Calibration End Date: 07/04/2022 17:22	Calibration ID: 40369

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 410-272051/1	22JUL04XMCAL-01.d
Level 2	IC 410-272051/2	22JUL04XMCAL-02.d
Level 3	IC 410-272051/3	22JUL04XMCAL-03.d
Level 4	IC 410-272051/4	22JUL04XMCAL-04.d
Level 5	ICISAV 410-272051/5	22JUL04XMCAL-05.d
Level 6	IC 410-272051/6	22JUL04XMCAL-06.d
Level 7	IC 410-272051/7	22JUL04XMCAL-07.d

ANALYTE			RRF			CURVE		COEFFICIE	NT :	# MIN RRF	%RSD		IAX	R^2	#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	М1	М2			양	RSD	OR COD		OR COD
MTP	0.0671 0.0754	0.0625 0.0759	0.0663	0.0681	0.0690	AveI		0.069			7.0		20.0			
PPF Acid	0.4492 0.4597	0.4209 0.4544	0.4155	0.4248	0.4438			0.438			4.0		20.0			
PFMOAA	0.2132 0.2256	0.1964 0.2256	0.1972	0.1992		D		0.208			6.3		20.0			
Perfluorobutanoic acid	1.0025 0.9166	0.9509 0.9016	0.9709	0.9212	0.9728	ח		0.948			3.8		20.0			
R-EVE	0.1636 0.1826	0.1438 0.1666	0.1497	0.1565		ח		0.160			7.8		20.0			
R-PSDA	0.0264 0.0308	0.0252 0.0304	0.0250	0.0248		ח		0.026			9.5		20.0			
Hydrolyzed PSDA	0.1652 0.1855	0.1593 0.1698	0.1698	0.1624		ח		0.169			5.0		20.0			
PMPA	0.4787 0.5034	0.4519 0.4627	0.4573	0.4630	0.4589	AveI D		0.468			3.8		20.0			
Perfluoropropanesulfonic acid	0.4339 0.4672	0.4105 0.4597	0.4480	0.4889		AveI D		0.452			5.5		20.0			
NVHOS	0.2914 0.2711	0.2532 0.2654		0.2707	0.2741	AveI D		0.269			4.7		20.0			
PFECA F	1.0794 1.0654	0.9995 0.9410		1.0515		AveI D		1.032			4.7		20.0			
PFO2HxA	0.3420 0.3438	0.2940 0.3389		0.3142		ח		0.321			6.2		20.0			
3:3 FTCA	0.0921 0.0684	0.0649 0.0657	0.0688	0.0701	0.0696	AveI D		0.071			13.1		20.0			

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1	Analy Batch No.: 272051
---	-------------------------

SDG No.:

Instrument ID: 30733 GC Column: Gemini C18 ID: 3 (mm) Heated Purge: (Y/N) N

Calibration Start Date: 07/04/2022 16:15 Calibration End Date: 07/04/2022 17:22 Calibration ID: 40369

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD			# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSI	OR COD	OR COD
Perfluoropentanoic acid	1.3123 0.9771		1.1454	0.9868	1.0722	AveI		1.066				11.9	20.	0	
Perfluorobutanesulfonic acid	1.0317 1.0737	1.0407 0.9571	1.0684	1.0172	1.0430	AveI		1.033				3.8	20.	0	
PEPA	0.2181 0.2145	0.1993 0.1895	0.2076	0.1998	0.2112			0.205				4.9	20.	0	
PFECA A	0.6281 0.5819	0.5558 0.5430	0.5847	0.5194	0.5440	AveI		0.565				6.4	20.	0	
Perfluoro (2-ethoxyethane) sulfonic acid	2.6436 2.3831	2.4230 2.3709	2.5421	2.4817	2.2411			2.440				5.3	20.	0	
PFECA B	0.7464		0.7880	0.6951	0.7073			0.714				6.8	20.	0	
4:2 Fluorotelomer sulfonic acid	2.3162 2.5687	2.2485	2.8333	2.4037	2.4729	AveI		2.495				8.0	20.	0	
Perfluorohexanoic acid	0.9016 0.8468	0.9174 0.8585	0.9462	0.8250	0.9267	AveI		0.888				5.1	20.	0	
Perfluoropentanesulfonic acid	0.9943 0.9694	0.8756 0.8951	0.9858	0.8942	0.9325			0.935				5.2	20.	0	
PF030A	0.4490	0.3929 0.4104	0.4015	0.4577	0.3920			0.421				6.8	20.	0	
HFPODA	0.6798 0.8605		0.8421	0.8199	0.8800			0.814				8.2	20.	0	
Hydro-EVE Acid	2.0794 2.3311	2.0488	2.0155	2.2268	2.2500			2.144				5.7	20.	0	
R-PSDCA	2.1008 2.2260	2.2131 1.9076	2.0891	1.8526	2.0070	AveI		2.056				6.9	20.	0	
Hydro-PS Acid	1.5505 1.6566	1.3865 1.5440	1.4405	1.4305	1.5245			1.504				6.1	20.	0	
Perfluoroheptanoic acid	1.1550 1.0542	1.0618 1.0341	1.0732	0.9515	1.0831			1.059				5.7	20.	0	
Perfluorohexanesulfonic acid	1.1165 1.1001	1.1381	1.0831	1.0435	1.1141	AveI		1.098				2.7	20.	0	
DONA	1.5167 1.6100		1.6218	1.5467	1.8412	AveI		1.639				6.6	20.	0	
PFECA G	2.6293 2.4207	2.3363	2.5892	2.5428	2.4610			2.439				7.4	20.	0	

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1	Analy Batch No.: 272051
---	-------------------------

SDG No.:

Instrument ID: 30733 ___ GC Column: $\underline{\text{Gemini C18}}$ ID: $\underline{\text{3 (mm)}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration Start Date: 07/04/2022 16:15 Calibration End Date: 07/04/2022 17:22 Calibration ID: 40369

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD		R^2	# MIN R^2
	LVL 1	LVL 2	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RSD	OR COD	OR COD
	LVL 6														
5:3 FTCA	0.2312 0.2128	0.2173			0.2265	D		0.213				6.0	20.)	
6:2 FTUCA	1.1834 1.1091	1.1514 1.1076	1.2280	1.0657	1.2173	AveI		1.151				5.3	20.)	
6:2 FTCA	1.2258	0.9548 1.0089	1.2326	0.9410	1.0383	AveI		1.055				11.7	20.)	
PFO4DA	0.6465 0.7391	0.7600	0.7254	0.7890	0.7108	AveI		0.725				6.2	20.)	
PS Acid	0.5611 0.5638	0.5233	0.5350	0.5182	0.5353	AveI		0.531				5.0	20.		
EVE Acid	1.8287 1.9124	1.7788	2.0349	1.8523	1.7976	AveI		1.822				8.1	20.		
Perfluoro-4-ethylcyclohexanesulfon ic acid	0.9584 1.2700		1.0284	1.0578	1.1216	AveI		1.092				9.8	20.)	
6:2 Fluorotelomer sulfonic acid	2.3466			2.1926	2.7149			2.458				8.3	20.)	
Perfluoroheptanesulfonic acid	0.9473 1.0327	0.9417	0.9770	1.0479	1.1005	AveI		1.010				5.7	20.)	
Perfluorooctanoic acid	1.2154	1.0487	1.1070	0.9503	1.0642	AveI		1.053				8.4	20.)	
TAF	0.8148 0.8934	0.7613	0.7802	0.7791	0.7810	AveI		0.793				6.2	20.)	
Perfluorooctanesulfonic acid	1.0309	1.0668		1.0643	1.1468	AveI		1.089				4.3	20.)	
Perfluorononanoic acid	1.0226 0.9745		1.0936	0.9981	1.0629	AveI		1.006				5.6	20.)	
7:3 FTCA	1.8622	1.8927	2.5436	2.1964	2.3054	AveI		2.146				11.0	20.)	
8:2 FTUCA	1.1604	0.9284	1.2939	1.0093	1.0418	AveI		1.086				13.1	20.		
8:2 FTCA	1.0888	1.1744	1.0964	1.0805	0.9610	AveI		1.055				7.3	20.		
9C1-PF3ONS	0.9958	1.0526	1.0779	1.0423	1.1755	AveI		1.092				6.4	20.		
Perfluorononanesulfonic acid	1.1267	1.0879	1.1203	1.1030	1.0930	AveI		1.105				3.4	20.		

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1

Analy Batch No.: 272051

SDG No.:

Instrument ID: 30733 ___ GC Column: $\underline{\text{Gemini C18}}$ ID: $\underline{\text{3 (mm)}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration Start Date: 07/04/2022 16:15 Calibration End Date: 07/04/2022 17:22 Calibration ID: 40369

ANALYTE			RRF			CURVE		COEFFIC	ENT	#	MIN RRF	%RSD			#	MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2				%RS	D OR COI		OR COD
8:2 Fluorotelomer sulfonic acid	3.2496 3.4119	3.1086 2.9188	3.3511	2.9101	2.8301	AveI		3.111				7.5	20	.0		
Perfluorodecanoic acid	1.2106 0.9952	1.0182 0.9236	1.0620	0.9861	1.0671	AveI		1.037				8.7	20	.0		
Perfluorooctanesulfonamide	1.0918 1.0339	1.0246 1.0010	1.2365	1.0023	1.0668	AveI		1.065				7.7	20	.0		
NMeFOSAA	1.0447 0.9031	0.8987 0.8749	0.9398	0.7605	0.9508	AveI		0.910				9.5	20	.0		
Perfluorodecanesulfonic acid	1.0705 1.1674		1.1343	1.0420	1.0841	AveI		1.079				5.5	20	.0		
Perfluoroundecanoic acid	0.8982 0.9453	0.9993 0.8725	1.1177	0.8777	1.0020			0.959				9.2	20	.0		
NETFOSAA	0.7957 0.8476	0.6835 0.8258	0.8370	0.7186	0.7650	AveI		0.781				8.0	20	.0		
10:2 FTUCA	1.0301 0.8368	0.8840 0.8970	0.9402	0.8827	0.8080	AveI		0.897				8.1	20	.0		
11Cl-PF3OUdS	0.8982 0.8913	0.9425 0.8416	0.8862	0.7977	0.8161	AveI		0.867				5.9	20	.0		
10:2 FTCA	1.4574 1.0124		1.0374	1.0128	0.8819	AveI		1.039				19.2	20	.0		
Perfluorododecanoic acid	1.0612 1.0336	0.9366 0.9761	1.1529	1.0864	1.0823			1.047				6.9	20	.0		
10:2 FTS	2.8808 2.3780	2.6462 2.2771	2.7777	2.4288	2.3356	AveI		2.532				9.3	20	.0		
NMeFOSE	0.9774 0.9262	1.1070 1.1044	1.1849	1.1000	1.0670	AveI		1.066				8.2	20	.0		
NMeFOSA	1.3071 1.0357	1.0115 0.9208	1.0337	0.9534	0.9735	AveI		1.033				12.4	20	.0		
Perfluorododecanesulfonic acid	1.0388	0.9391 0.9129	0.9420	0.9508	0.8939	17		0.943				4.9	20	.0		
NETFOSE	1.2388 1.0522	1.0632 1.0939	1.1340	0.9387	1.1351	AveI		1.093				8.4	20	.0		
Perfluorotridecanoic acid	0.6874 0.7605	0.6998 0.6349	0.8566	0.8065	0.7407	AveI		0.740				10.1	20	.0		
NETFOSA	1.2334 1.2077	1.2006 1.1719	1.2551	1.2014	1.2884	AveI		1.222				3.2	20	.0		

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1	Analy Batch No.: 272051
---	-------------------------

SDG No.: ____

Instrument ID: 30733 _ _ GC Column: Gemini C18 ID: 3 (mm) Heated Purge: (Y/N) N

Calibration Start Date: 07/04/2022 16:15 Calibration End Date: 07/04/2022 17:22 Calibration ID: 40369

ANALYTE			RRF			CURVE		COEFFICIE	INT #	MIN RRF	%RSD				IN R^2
	LVL 1	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	M2			%RSD	OR COD	C	OR COD
Perfluorotetradecanoic acid	1.0512	0.8561	0.9617	0.8457	0.8506	AveI		0.887			9.7	20.	0		
Perfluorohexadecanoic acid	1.3740 1.1152		1.3245	1.2128	1.2090	AveI		1.238			8.6	20.	0		
Perfluorooctadecanoic acid	0.4885 0.4880		0.4915	0.4480	0.4659	AveI		0.480			5.2	20.	0		
13C4 PFBA	1.1782 1.0796		1.1291	1.1152	1.0804	Ave		1.118			3.4	20.	0		
13C5 PFPeA	1.0004	0.9864 0.9922	0.9808	1.0066	0.9008	Ave		0.978			3.6	20.	0		
13C3 PFBS	1.9802		1.9233	2.0006	1.9134	Ave		1.941			3.0	20.	0		
M2-4:2 FTS	0.0781		0.0708	0.0782	0.0811	Ave		0.075			4.8	20.	0		
13C5 PFHxA	1.2982		1.1147	1.1496	1.1818	Ave		1.203			5.3	20.	0		
13C3 HFPO-DA	0.3521		0.3236	0.3561	0.3501	Ave		0.359			8.7	20.	0		
13C4 PFHpA	1.3135		1.1263	1.2070	1.0793	Ave		1.143			8.1	20.	0		
13C3 PFHxS	1.7752 1.4604		1.5166	1.5511	1.5438	Ave		1.554			6.5	20.	0		
13C2-2H-Perfluoro-2-octenoic acid	1.2689 1.1287		1.1276	1.2890	1.1665	Ave		1.188			5.9	20.	0		
13C2-2-Perfluorohexylethanoic acid	0.1260 0.1287	0.1336	0.1112	0.1287	0.1181	Ave		0.124			6.0	20.	0		
M2-6:2 FTS	0.0503		0.0437	0.0511	0.0493	Ave		0.048			5.3	20.	0		
13C8 PFOA	1.0449		0.9579	1.0362	1.0200	Ave		1.003			3.8	20.	0		
13C8 PFOS	1.1037	1.0189	1.0128	1.0269	1.0019	Ave		1.017			5.1	20.	0		
13C9 PFNA	0.7807 0.6344	0.7418	0.6486	0.7034	0.6406	Ave		0.682			8.9	20.	0		
13C2-2H-Perfluoro-2-decenoic acid	1.0432		0.9962	0.9405	0.8896	Ave		1.027			14.3	20.	0		

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1 Analy Batch No.: 272051

SDG No.:

Instrument ID: 30733 GC Column: Gemini C18 ID: 3 (mm) Heated Purge: (Y/N) N

ANALYTE			RRF			CURVE		COEFFICI	ENT	#	MIN RRF	%RSD			# MIN R^2
	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	TYPE	В	M1	М2				%R	SD OR COI	OR COD
13C2-2-Perfluorooctylethanoic acid	0.1023 0.0853	0.1047 0.0896	0.1039	0.0873	0.0905	Ave		0.094				8.9	20	0.0	
13C6 PFDA	0.9848 0.9290	1.0419 0.9925	1.0029	0.9568	0.9515	Ave		0.979				3.8	20	0.0	
M2-8:2 FTS	0.0385 0.0328	0.0426 0.0373	0.0405	0.0393	0.0379	Ave		0.038				8.0	20	0.0	
13C8 FOSA	2.2069 2.0536	2.3487 2.2029	2.0684	2.2796	2.2493	Ave		2.201				4.9	20	0.0	
d3-NMeFOSAA	0.3656 0.3551	0.4051 0.3778	0.3854	0.3913	0.3747	Ave		0.379				4.4	20	0.0	
13C7 PFUnA	0.7703 0.6576			0.7228	0.6984	Ave		0.715				6.0	20	0.0	
d5-NEtFOSAA	0.3161 0.2854	0.3487 0.2913		0.3205	0.3494	Ave		0.321				8.0	20	0.0	
13C2-2H-Perfluoro-2-dodecenoic acid	0.9604 0.8272	1.1004 0.8266	1.0189	0.9374	0.9898	Ave		0.951				10.5	20	0.0	
13C2-2-Perfluorodecylethanoic acid	0.0855 0.0684	0.1051 0.0664	0.0818	0.0799	0.0817	Ave		0.081				15.7	20	0.0	
13C2-PFDoDA	0.4695 0.4240	0.5229 0.4860		0.4133	0.4522	Ave		0.459				8.1	20	0.0	
d7-N-MeFOSE-M	0.2750 0.2813		0.2740	0.2460	0.2694	Ave		0.275				5.6	20	0.0	
d3-NMePFOSA	0.3010 0.2957	0.3417 0.3547	0.3101	0.3105	0.3129	Ave		0.318				6.8	20	0.0	
d9-N-EtFOSE-M	0.3061 0.2714	0.3185 0.2988	0.2960	0.3005	0.2639	Ave		0.293				6.6	20	0.0	
d5-NEtPFOSA	0.2921 0.2561	0.3110 0.2841	0.2875	0.2701	0.2746	Ave		0.282				6.2	20	0.0	
13C2 PFTeDA	0.4168 0.3742		0.4025	0.3811	0.3929	Ave		0.401				5.0	20	0.0	

FORM VI PFAS BY ISOTOPIC DILUTION - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Lancaster Laboratories Er	<u>v</u> Job No.: <u>240-168405-1</u>	Analy Batch No.: 272051
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/04/2022 16:15	Calibration End Date: 07/04/2022 17:22	Calibration ID: 40369

Calibration Files LEVEL: LAB SAMPLE ID: LAB FILE ID: IC 410-272051/1 22JUL04XMCAL-01.d Level 1 Level 2 IC 410-272051/2 22JUL04XMCAL-02.d IC 410-272051/3 22JUL04XMCAL-03.d Level 3 IC 410-272051/4 22JUL04XMCAL-04.d Level 4 ICISAV 410-272051/5 22JUL04XMCAL-05.d Level 5 IC 410-272051/6 Level 6 22JUL04XMCAL-06.d Level 7 IC 410-272051/7 22JUL04XMCAL-07.d

ANALYTE	IS	CURVE			RESPONSE				CONCEN	TRATION (N	NG/ML)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
MTP		AveI	2819	6679	25414	101586	254265	0.200	0.500	2.00	8.00	20.0
			639792	1223832				50.0	100			
PPF Acid		AveI	18876	44986	159247	633317	1635978	0.200	0.500	2.00	8.00	20.0
			3899772	7328094				50.0	100			
PFMOAA		AveI	8960	20986	75566	297008	738542	0.200	0.500	2.00	8.00	20.0
			1914079	3638838				50.0	100			
Perfluorobutanoic acid		AveI	42127	101622	372115	1373544	3585938	0.200	0.500	2.00	8.00	20.0
			7776346	14539352				50.0	100			
R-EVE		AveI	6873	15368	57393	233305	586494	0.200	0.500	2.00	8.00	20.0
			1548787	2686179				50.0	100			
R-PSDA		AveI	1862	4713	16299	66422	170026	0.200	0.500	2.00	8.00	20.0
			459645	834418				50.0	100			
Hydrolyzed PSDA		AveI	11669	29775	110853	434262	1117428	0.200	0.500	2.00	8.00	20.0
			2769530	4661283				50.0	100			
PMPA		AveI	20116	48297	175286	690388	1691708	0.200	0.500	2.00	8.00	20.0
		D	4270426	7461773				50.0	100			
Perfluoropropanesulfonic acid		AveI	16704	40182	157305	667706	1538552	0.183	0.458	1.83	7.33	18.3
		D	3630993	6790555				45.8	91.6			

FORM VI PFAS BY ISOTOPIC DILUTION - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

Lab Name: Eurofins Lancaster Laboratories En	y Job No.: 240-168405-1	Analy Batch No.: 272051
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/04/2022 16:15	Calibration End Date: 07/04/2022 17:22	Calibration ID: 40369

ANALYTE	IS CURVE			RESPONSE				CONCEN	ITRATION (N	G/ML)	
	REF TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
NVHOS	AveI	20579	47305	167705	724077	1789394	0.200	0.500	2.00	8.00	20.0
	D										
		4048869	7285089				50.0	100			
PFECA F	AveI	45360	106820	407279	1567742	3784575	0.200	0.500	2.00	8.00	20.0
	D		45454006				50.0	100			
770011		9038202	15174886	110007	4.6051.4	1120640	50.0	100	0.00	0.00	00.0
PFO2HxA	AveI	14370	31425	118287	468514	1132649	0.200	0.500	2.00	8.00	20.0
	D	2916859	5465500				50.0	100			
3:3 FTCA	AveI	3287	5931	22908	94374	213784	0.200	0.500	2.00	8.00	20.0
0.0 11011	D	0207	0301	22300	31071	210,01	0.200	0.000	2.00	0.00	20.0
		528274	962852				50.0	100			
Perfluoropentanoic acid	AveI	46825	93737	381351	1327994	3295197	0.200	0.500	2.00	8.00	20.0
	D										
		7545933	13899440				50.0	100			
Perfluorobutanesulfonic acid	AveI	64491	172107	617318	2407776	6025507	0.177	0.443	1.77	7.08	17.7
	D										
		14190713	23249210				44.3	88.5			
PEPA	AveI	9164	21302	79557	297898	778568	0.200	0.500	2.00	8.00	20.0
	D	1819594	3056719				50.0	100			
PFECA A		44360	103861	381758	1389193	3551021	0.200	0.500	2.00	8.00	20.0
FFECA A	AveI	44300	103001	301730	1309193	3331021	0.200	0.500	2.00	8.00	20.0
		8689920	14904336				50.0	100			
Perfluoro (2-ethoxyethane)	AveI	166182	402947	1477103	5907287	13020759	0.178	0.445	1.78	7.12	17.8
sulfonic acid	D										
		31673499	57917021				44.5	89.0			
PFECA B	AveI	52716	122817	514479	1859215	4617400	0.200	0.500	2.00	8.00	20.0
	D										
		11186156	18106291				50.0	100			
4:2 Fluorotelomer sulfonic acid	AveI	7284	17817	80174	284779	739119	0.187	0.467	1.87	7.47	18.7
	D	4700411	0.000.00								
Perfluorohexanoic acid		1730490 50447	2770265 127799	451348	1539372	4319939	46.7 0.200	93.4	2.00	8.00	20.0
refiluoronexanold acid	AveI	5044/	12//99	451348	15393/2	4319939	0.200	0.500	2.00	8.00	20.0
	D	9655531	16898738				50.0	100			

FORM VI PFAS BY ISOTOPIC DILUTION - INITIAL CALIBRATION DATA RESPONSE AND CONCENTRATION

ab Name: Eurofins Lancaster Laboratories Env	7 Job No.: 240-168405-1	_ Analy Batch No.: <u>272051</u>
DG No.:		
nstrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N

ANALYTE	IS CURVE			RESPONSE				CONCEN	TRATION (N	G/ML)	20.0						
	REF TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5						
Perfluoropentanesulfonic acid	AveI	65872	153464	603694	2243428	5710014	0.188	0.469	1.88	7.50	18.8						
	D																
		13579515	23044379				46.9	93.8									
PFO3OA	AveI	18867	41989	153875	682394	1445114	0.200	0.500	2.00	8.00	20.0						
	D																
		3784242	6617696				50.0	100									
HFPODA	AveI	10314	33693	116606	473867	1215225	0.200	0.500	2.00	8.00	20.0						
	D	001.000	54.66050				50.0	100									
Hydro-EVE Acid		2916200 87383	5166859 218956	772502	3320043	8293891	50.0 0.200	0.500	2.00	8.00	20.0						
Hydro-Eve Acid	AveI	8/383	218956	112502	3320043	8293891	0.200	0.500	2.00	8.00	20.0						
	D	19776349	33250889				50.0	100									
R-PSDCA	AveI	148384	413544	1363901	4955027	13101929	0.200	0.500	2.00	8.00	20.0						
IC 1 BBC/1	D	110501	113311	1303301	4933027	13101323	0.200	0.300	2.00	0.00	20.0						
		33242053	52358479				50.0	100									
Hydro-PS Acid	AveI	109511	259084	940469	3826000	9952107	0.200	0.500	2.00	8.00	20.0						
-	D																
		24738746	42379015				50.0	100									
Perfluoroheptanoic acid	AveI	65381	142270	517229	1863823	4611203	0.200	0.500	2.00	8.00	20.0						
	D																
		10778716	16647592				50.0	100									
Perfluorohexanesulfonic acid	AveI	77904	183469	641015	2395772	6187854	0.182	0.456	1.82	7.30	18.2						
	D																
		13805691	23449832				45.6	91.2									
DONA	AveI	81136	206797	738652	2863274	7407599	0.189	0.473	1.89	7.56	18.9						
	D	15556110	05001000				47.3	0.4 5									
PFECA G		15556119 110493	25991820 249684	992401	3791285	9071844	47.3 0.200	94.5	2.00	8.00	20.0						
PFECA G	AveI	110493	249684	992401	3/91285	90/1844	0.200	0.500	2.00	8.00	20.0						
	D	20536122	33827692				50.0	100									
5:3 FTCA	7	13088	27364	96832	388568	964156	0.200	0.500	2.00	8.00	20.0						
0.0 11011	AveI	13000	2,304	50052	330300	204130	3.200	0.300	2.00	0.00	20.0						
		2175471	3498907				50.0	100									
6:2 FTUCA	AveI	64720	162429	592555	2229498	5601260	0.200	0.500	2.00	8.00	20.0						
	D																
I		11795719	19265027				50.0	100									

Lab Name: Eurofins Lancaster Laboratories Er	<u>nv</u> Job No.: <u>240-168405-1</u>	Analy Batch No.: 272051
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N

ANALYTE	IS CURVE			RESPONSE				CONCEN	TRATION (N	G/ML)	20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0
	REF TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
6:2 FTCA	AveI	6656	14791	58639	196515	483832	0.200	0.500	2.00	8.00	20.0
	D	1194100	1974240				50.0	100			
PFO4DA	AveI	27168	81218	278040	1176445	2619959	0.200	0.500	2.00	8.00	20.0
	D	6269910	11444578				50.0	100			
PS Acid	AveI	39632	97790	349302	1386005	3494406	0.200	0.500	2.00	8.00	20.0
	D	8420444	13341936				50.0	100			
EVE Acid	AveI	76848	190105	779954	2761697	6626338	0.200	0.500	2.00	8.00	20.0
	D										
		16224177	25023261				50.0	100			
Perfluoro-4-ethylcyclohexanesulf	AveI	67607	167353	615349	2455233	6297498	0.184	0.461	1.84	7.38	18.4
onic acid	D	16112603	25617238				46.1	92.2			
6:2 Fluorotelomer sulfonic acid	AveI	4823	13136	48103	172505	500102	0.190	0.474	1.90	7.58	19.0
	D	1038582	1721814				47.4	94.8			
Perfluoroheptanesulfonic acid	AveI	69001	158470	603620	2511420	6380030	0.190	0.476	1.90	7.62	19.0
	D	13528755	22945246				47.6	95.2			
Perfluorooctanoic acid	AveI	54731	125539	453735	1598218	4281798	0.200	0.500	2.00	8.00	20.0
	D										
		9012811	15024508				50.0	100			
TAF	AveI	34241	81357	299027	1161653	2878746	0.200	0.500	2.00	8.00	20.0
	D	7578926	11986451				50.0	100			
Perfluorooctanesulfonic acid	AveI	61162	148800	602724	2232793	6145211	0.185	0.463	1.85	7.40	18.5
	D										
		13999350	24081345				46.3	92.6			
Perfluorononanoic acid	AveI	46367	104995	395668	1549706	3935208	0.200	0.500	2.00	8.00	20.0
	D	9065838	14032209				50.0	100			
7:3 FTCA	AveI	10112	29319	121012	458689	1074286	0.200	0.500	2.00	8.00	20.0
	D										
		2565135	4129394				50.0	100			

Lab Name: Eurofins Lancaster Laboratories En	Job No.: 240-168405-1	Analy Batch No.: 272051
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/04/2022 16:15	Calibration End Date: 07/04/2022 17:22	Calibration ID: 40369

ANALYTE	IS CURVE			RESPONSE			CONCENTRATION (NG/ML)					
	REF TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	
8:2 FTUCA	AveI	48655	111722	459273	1488801	3494755	0.200	0.500	2.00	8.00	20.0	
		+++++	+++++				+++++	+++++				
8:2 FTCA	AveI	4477	11650	40595	147951	328071	0.200	0.500	2.00	8.00	20.0	
		873555	1366392				50.0	100				
9Cl-PF3ONS	AveI	59364	147540	566411	2197270	6330028	0.186	0.465	1.86	7.44	18.6	
	D	14944539	25771986				46.5	93.0				
Perfluorononanesulfonic acid	AveI	69335	157409	607634	2400216	6075581	0.192	0.480	1.92	7.68	19.2	
	D	15214236	24710430				48.0	96.0				
8:2 Fluorotelomer sulfonic acid	AveI	4818	12021	46367	171905	387439	0.192	0.479	1.92	7.66	19.2	
		1077105	1641664				47.9	95.8				
Perfluorodecanoic acid	AveI	47915	100561	379462	1479889	3828333	0.200	0.500	2.00	8.00	20.0	
	D	9299417	14438308				50.0	100				
Perfluorooctanesulfonamide	AveI	96841	228111	911276	3583768	9047807	0.200	0.500	2.00	8.00	20.0	
		21355975	34729840				50.0	100				
NMeFOSAA	AveI	15352	34509	129063	466688	1343486	0.200	0.500	2.00	8.00	20.0	
		3226158	5206043				50.0	100				
Perfluorodecanesulfonic acid	AveI	66152	156015	617819	2276831	6050852	0.193	0.482	1.93	7.71	19.3	
	D	15325156	23398727				48.2	96.4				
Perfluoroundecanoic acid	AveI	27808	72386	266662	995128	2638528	0.200	0.500	2.00	8.00	20.0	
	Δ	6251960	9936449				50.0	100				
NETFOSAA	AveI	10109	22595	100329	361184	1007844	0.200	0.500	2.00	8.00	20.0	
	D	2433413	3789071				50.0	100				
10:2 FTUCA	AveI	39763	92210	341334	1297949	3015516	0.200	0.500	2.00	8.00	20.0	
	D	6962411	11678016				50.0	100				

Lab Name:	Eurofins	Lancaster	Laboratories Env	Job No.:	Job No.: 240-168405-1				Analy Batch No.: 2720				
SDG No.: _													
Instrument	t ID: <u>3073</u>	33		GC Columr	n: Gemini C18	ID:	3 (mm)	Heated Purge	: (Y/N)	N			

Calibration End Date: 07/04/2022 17:22

Calibration ID: 40369

Calibration Start Date: 07/04/2022 16:15

CONCENTRATION (NG/ML) ANALYTE CURVE RESPONSE REF TYPE LVL 1 LVL 2 LVL 3 LVL 4 LVL 5 LVL 1 LVL 2 LVL 3 LVL 4 LVL 5 LVL 6 LVL 7 LVL 6 LVL 7 11Cl-PF3OUdS 53547 132104 465676 1681674 4394656 1.86 7.44 18.6 0.186 0.465 AveI 11288012 19292617 46.5 93.0 10:2 FTCA 8415 30239 126934 0.200 0.500 5007 271781 2.00 8.00 20.0 AveI D 697009 1077242 50.0 100 20024 46423 184354 704208 1845370 0.200 0.500 2.00 8.00 20.0 Perfluorododecanoic acid AveI 4408565 7471703 50.0 100 10:2 FTS 4298 10297 38673 144373 321741 0.193 0.482 1.93 7.71 19.3 AveI D 755421 1288770 48.2 96.4 NMeFOSE 10805 30978 115676 424339 1083824 0.200 0.500 2.00 8.00 20.0 AveI 2620394 4940254 50.0 100 NMeFOSA 15812 32760 114213 464367 1148327 0.200 0.500 2.00 8.00 20.0 AveI 3080437 5144091 50.0 100 Perfluorododecanesulfonic acid 64461 137016 515207 2086211 5010220 0.194 0.484 7.74 19.4 1.94 AveI 12186011 21782743 48.4 96.8 NETFOSE 15242 32096 119602 442488 1129277 0.200 0.500 2.00 8.00 20.0 AveI 2872416 5147664 50.0 100 12971 34689 136973 522754 0.200 0.500 Perfluorotridecanoic acid 1262834 2.00 8.00 20.0 AveI 3243571 4860307 50.0 100 NEtFOSA 14483 35390 128548 508949 1333841 0.200 0.500 2.00 8.00 20.0 AveI D 3110463 5243620 50.0 34906 Perfluorotetradecanoic acid 17608 137922 505547 1260284 0.200 0.500 2.00 8.00 20.0 AveI D 3103466 5345034 50.0 100 Perfluorohexadecanoic acid 23014 54096 189946 725040 1791203 0.200 0.500 2.00 8.00 20.0 AveI D 4197400 7176016 50.0 100

Lab Name: Eurofins Lancaster Laboratories Env Job No.: 240-168405-1 Analy Batch No.: 2720

SDG No.:

Instrument ID: 30733 GC Column: Gemini C18 ID: 3 (mm) Heated Purge: (Y/N) N

Calibration Start Date: 07/04/2022 16:15 Calibration End Date: 07/04/2022 17:22 Calibration ID: 40369

ANALYTE	IS	CURVE			RESPONSE				CONCEN	TRATION (N	G/ML)	
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5
Perfluorooctadecanoic acid		AveI	8183	18617	70489	267812	690285	0.200	0.500	2.00	8.00	20.0
			1836531	3383430				50.0	100			
13C4 PFBA	13C3 PFBA	Ave	2101154	2137451	1916434	1863715	1843086	10.0	10.0	10.0	10.0	10.0
	11211		1696732	1612678				10.0	10.0			
13C5 PFPeA	13C3 PFBA	Ave	1784071	1828787	1664660	1682197	1536670	10.0	10.0	10.0	10.0	10.0
			1544486	1465737				10.0	10.0			
13C3 PFBS	13C3 PFBA	Ave	3284332	3475553	3035796	3109208	3035528	9.30	9.30	9.30	9.30	9.30
	11221		2777696	2552580				9.30	9.30			
M2-4:2 FTS	13PF OA	Ave	157242	158476	141483	148095	149442	9.34	9.34	9.34	9.34	9.34
	011		134737	105491				9.34	9.34			
13C5 PFHxA	13PF OA	Ave	2797591	2786208	2385095	2332334	2330898	10.0	10.0	10.0	10.0	10.0
	011		2280457	1968497				10.0	10.0			
13C3 HFPO-DA	13PF OA	Ave	758656	808010	692316	722488	690483	10.0	10.0	10.0	10.0	10.0
	011		677806	659673				10.0	10.0			
13C4 PFHpA	13PF OA	Ave	2830440	2679848	2409861	2448622	2128681	10.0	10.0	10.0	10.0	10.0
	011		2044845	1609868				10.0	10.0			
13C3 PFHxS	13PF OA	Ave	3618920	3344331	3069574	2976920	2880513	9.46	9.46	9.46	9.46	9.46
			2603514	2217737				9.46	9.46			
13C2-2H-Perfluoro-2-octenoic acid	13PF OA	Ave	2734418	2821400	2412679	2614986	2300628	10.0	10.0	10.0	10.0	10.0
			2127007	1739388				10.0	10.0			
13C2-2-Perfluorohexylethanoic acid	13PF OA	Ave	271500	309817	237874	261040	232995	10.0	10.0	10.0	10.0	10.0
			242457	195691				10.0	10.0			
M2-6:2 FTS	13PF OA	Ave	102982	102962	88880	98553	92299	9.50	9.50	9.50	9.50	9.50
	011		89394	73175				9.50	9.50			

Lab Name:	Eurofins Lancaster	Laboratories Env	Job No.:	240-168405-1	Analy Batch No.: 272051	
SDG No ·						

Instrument ID: 30733 ___ GC Column: $\underline{\text{Gemini C18}}$ ID: $\underline{\text{3 (mm)}}$ Heated Purge: (Y/N) $\underline{\text{N}}$

Calibration Start Date: 07/04/2022 16:15 Calibration End Date: 07/04/2022 17:22 Calibration ID: 40369

ANALYTE	IS	CURVE			RESPONSE			CONCENTRATION (NG/ML)						
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5		
13C8 PFOA	13PF	Ave	2251638	2394150	2049481	2102178	2011823	10.0	10.0	10.0	10.0	10.0		
	OA		1833583	1490170				10.0	10.0					
13C8 PFOS	PFOS	Ave	3064122	2881715	2700744	2708769	2767662	9.56	9.56	9.56	9.56	9.56		
			2603744	2356492				9.56	9.56					
13C9 PFNA	PFOS	Ave	2267150	2194542	1809019	1940910	1851229	10.0	10.0	10.0	10.0	10.0		
			1860703	1496983				10.0	10.0					
13C2-2H-Perfluoro-2-decenoic acid	PFDA	Ave	2096413	2406827	1774708	1843898	1677217	10.0	10.0	10.0	10.0	10.0		
			+++++	+++++				+++++	+++++					
13C2-2-Perfluorooctylethanoic	PFDA	Ave	205599	198407	185130	171156	170700	10.0	10.0	10.0	10.0	10.0		
4014			171556	141109				10.0	10.0					
13C6 PFDA	PFDA	Ave	1978966	1975274	1786583	1875882	1793818	10.0	10.0	10.0	10.0	10.0		
			1868920	1563297				10.0	10.0					
M2-8:2 FTS	PFDA	Ave	74132 63138	77341 56245	69181	73841	68449	9.58 9.58	9.58 9.58	9.58	9.58	9.58		
13C8 FOSA	PFDA	Ave	4434931	4452784	3684837	4469328	4240465	10.0	10.0	10.0	10.0	10.0		
13C0 FOSA	PFDA	Ave	4131241	3469663	3004037	4409320	4240465	10.0	10.0	10.0	10.0	10.0		
d3-NMeFOSAA	PFDA	Ave	734730	767937	686654	767120	706487	10.0	10.0	10.0	10.0	10.0		
us inicional	11211	1100	714424	595029	000001	707120	,0010,	10.0	10.0	10.0	10.0	10.0		
13C7 PFUnA	PFDA	Ave	1547972	1448677	1192931	1417169	1316665	10.0	10.0	10.0	10.0	10.0		
			1322815	1138786				10.0	10.0					
d5-NEtFOSAA	PFDA	Ave	635248	661116	599346	628314	658695	10.0	10.0	10.0	10.0	10.0		
			574196	458826				10.0	10.0					
13C2-2H-Perfluoro-2-dodecenoic acid	PFDA	Ave	1930082	2086206	1815159	1837938	1866044	10.0	10.0	10.0	10.0	10.0		
4014			1664000	1301910				10.0	10.0					
13C2-2-Perfluorodecylethanoic	PFDA	Ave	171776	199322	145749	156669	154092	10.0	10.0	10.0	10.0	10.0		
acid			137691	104527				10.0	10.0					
13C2-PFDoDA	PFDA	Ave	943425	991347	799501	810247	852495	10.0	10.0	10.0	10.0	10.0		
	1		853011	765464			322 230	10.0	10.0					
d7-N-MeFOSE-M	PFDA	Ave	552724	559670	488105	482212	507864	10.0	10.0	10.0	10.0	10.0		
			565817	447340				10.0	10.0					
d3-NMePFOSA	PFDA	Ave	604830	647769	552438	608855	589816		10.0	10.0	10.0	10.0		

Lab Name: Eurofins Lancaster Laboratories Env	7 Job No.: 240-168405-1	_ Analy Batch No.: 272051
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/04/2022 16:15	Calibration End Date: 07/04/2022 17:22	Calibration ID: 40369

ANALYTE	IS	CURVE	RESPONSE					CONCENTRATION (NG/ML)					
	REF	TYPE	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	LVL 1 LVL 6	LVL 2 LVL 7	LVL 3	LVL 4	LVL 5	
			594870	558683				10.0	10.0				
d9-N-EtFOSE-M	PFDA	Ave	615179	603743	527334	589247	497451	10.0	10.0	10.0	10.0	10.0	
			545966	470583				10.0	10.0				
d5-NEtPFOSA	PFDA	Ave	587094	589557	512091	529546	517624	10.0	10.0	10.0	10.0	10.0	
			515120	447455				10.0	10.0				
13C2 PFTeDA	PFDA	Ave	837509	815440	717038	747252	740780	10.0	10.0	10.0	10.0	10.0	
			752750	648385				10.0	10.0				

Curve Type Legend

Ave = Average ISTD

AveID = Average isotope dilution

FORM VI

PFAS BY ISOTOPIC DILUTION - INITIAL CALIBRATION DATA READBACK PERCENT ERROR

Lab Name:	Eurofins Lancaster Laboratories Env	Job No.: $240-168405-1$		Analy Batch No.: 272051		
SDG No.: _						
Instrument	: ID: 30733	GC Column: Gemini C18	ID: 3 (mm)	Heated Purge: (Y/N) N		
Calibratio	on Start Date: 07/04/2022 16:15	Calibration End Date:	07/04/2022 17:22	Calibration ID: 40369		

Calibration Files

LEVEL:	LAB SAMPLE ID:	LAB FILE ID:
Level 1	IC 410-272051/1	22JUL04XMCAL-01.d
Level 2	IC 410-272051/2	22JUL04XMCAL-02.d
Level 3	IC 410-272051/3	22JUL04XMCAL-03.d
Level 4	IC 410-272051/4	22JUL04XMCAL-04.d
Level 5	ICISAV 410-272051/5	22JUL04XMCAL-05.d
Level 6	IC 410-272051/6	22JUL04XMCAL-06.d
Level 7	IC 410-272051/7	22JUL04XMCAL-07.d

ANALYTE			PERCEN'	I ERROR				PI	ERCENT EF	RROR LIMI	Т	
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
MTP	-3.0 9.7	-9.7	-4.2	-1.5	-0.3	9.0	50 30	30	30	30	30	30
PPF Acid	2.5 3.7	-4.0	-5.2	-3.1	1.3	4.9	50 30	30	30	30	30	30
PFMOAA	2.4 8.4	-5.7	-5.3	-4.3	-3.8	8.4	50 30	30	30	30	30	30
Perfluorobutanoic acid	5.7 -4.9	0.3	2.4	-2.8	2.6	-3.3	50 30	30	30	30	30	30
R-EVE	2.1 3.9	-10.3	-6.6	-2.4	-0.7	13.9	50 30	30	30	30	30	30
R-PSDA	-2.2 12.8	-6.4	-7.3	-7.8	-3.3	14.2	50 30	30	30	30	30	30
Hydrolyzed PSDA	-2.3 0.5	-5.7	0.5	-3.9	1.3	9.7	50 30	30	30	30	30	30
PMPA	2.3 -1.1	-3.4	-2.3	-1.1	-1.9	7.6	50 30	30	30	30	30	30
Perfluoropropanesulfonic acid	-4.0 1.7	-9.2	-0.9	8.2	0.8	3.4	50 30	30	30	30	30	30
NVHOS	8.3 -1.3	-5.9	-4.5	0.7	1.9	0.8	50 30	30	30	30	30	30
PFECA F	4.6 -8.8	-3.2	2.9	1.9	-0.5	3.2	50 30	30	30	30	30	30
PFO2HxA	6.4 5.5	-8.5	-3.9	-2.2	-4.4	7.0	50 30	30	30	30	30	30
3:3 FTCA	29.1 -8.0	-9.1	-3.6	-1.7	-2.5	-4.1	50 30	30	30	30	30	30
Perfluoropentanoic acid	23.0 -11.1	-3.9	7.4	-7.5	0.5	-8.4	50 30	30	30	30	30	30

Lab Name:	Eurofins	Lancaster	Laboratories Er	nv Job No.:	240-168405-1			Analy Batch No.: 272	2051
SDG No.:									
Instrumen	t ID: 307	733		GC Column	: Gemini C18	ID:	3 (mm)	Heated Purge: (Y/N)	N

ANALYTE			PERCEN'	r error				PI	ERCENT EF	RROR LIMI	Т	
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
Perfluorobutanesulfonic acid	-0.1 -7.4	0.7	3.4	-1.5	1.0	3.9	50 30		30	30	30	30
PEPA	6.0 -7.9	-3.1	0.9	-2.9	2.7	4.3	50 30	30	30	30	30	30
PFECA A	11.1 -3.9	-1.7	3.4	-8.1	-3.8	2.9	50 30	30	30	30	30	30
Perfluoro (2-ethoxyethane) sulfonic acid	8.3 -2.9	-0.7	4.2	1.7	-8.2	-2.4	50 30	30	30	30	30	30
PFECA B	4.4 -7.7	-8.0	10.3	-2.7	-1.0	4.8	50 30	30	30	30	30	30
4:2 Fluorotelomer sulfonic acid	-7.2 5.2	-9.9	13.5	-3.7	-0.9	2.9	50 30	30	30	30	30	30
Perfluorohexanoic acid	1.4 -3.4	3.2	6.4	-7.2	4.3	-4.7	50 30	30		30		
Perfluoropentanesulfonic acid	6.3 -4.3	-6.4	5.4	-4.4	-0.3	3.7	50 30	30	30	30		30
PF030A	6.6 -2.6	-6.8	-4.7	8.6	-7.0	5.9	50 30	30	30	30		30
HFPODA	-16.5 -3.8	2.4	3.4	0.7	8.1	5.7	50 30	30	30	30	30	30
Hydro-EVE Acid	-3.0 -3.9	-4.5	-6.0	3.8	4.9	8.7	50 30	30	30	30	30	30
R-PSDCA	2.2 -7.2	7.6	1.6	-9.9	-2.4	8.2	50 30	30	30	30	30	30
Hydro-PS Acid	3.0 2.6	-7.9	-4.3	-4.9	1.3	10.1	50 30	30	30	30	30	30
Perfluoroheptanoic acid	9.1 -2.3	0.3	1.3	-10.2	2.3	-0.4	50 30	30		30		
Perfluorohexanesulfonic acid	1.6 -0.2	3.6	-1.4	-5.0	1.4	0.1	50 30	30		30	30	
DONA	-7.5 4.2	-0.4	-1.1	-5.7	12.3	-1.8	50 30	30		30		
PFECA G	7.8 -14.0	-4.2	6.1	4.2	0.9	-0.8	50 30	30	30	30		30
5:3 FTCA	8.5 2.0	-4.1	-5.7	-6.9	6.3	-0.1	50 30	30	30	30		
6:2 FTUCA	2.7 -3.8	0.0	6.6	-7.5	5.7	-3.7	50 30	30	30	30	30	30

Lab Name	: Eurofin	s Lancaster	Laboratories En	Job No.:	240-168405-1			Analy Batch No.	: <u>272</u>	2051	
SDG No.:											
Instrume	nt ID: 30	733		GC Column	n: Gemini C18	ID:	3 (mm)	Heated Purge: (Y/N)	N	

ANALYTE			PERCEN'	r error			PERCENT ERROR LIMIT						
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	
6:2 FTCA	16.2 -4.4	-9.5	16.8	-10.8	-1.6	-6.7	50 30	30	30	30	30	30	
PFO4DA	-10.9 -2.2	4.7	0.0	8.7	-2.1	1.8	50 30	30	30	30	30	30	
PS Acid	5.5 -8.6	-1.6	0.6	-2.6	0.6	6.0	50 30	30	30	30	30	30	
EVE Acid	0.3	-2.4	11.7	1.6	-1.4	4.9	50 30	30	30	30	30	30	
Perfluoro-4-ethylcyclohexanesulfon ic acid	-12.3 8.5	-6.0	-5.9	-3.2	2.7	16.2	50 30	30	30	30	30	30	
6:2 Fluorotelomer sulfonic acid	-4.6 -4.1	4.0	10.3	-10.8	10.4	-5.3	50 30	30	30	30	30	30	
Perfluoroheptanesulfonic acid	-6.3 1.7	-6.8	-3.3	3.7	8.9	2.2	50 30	30		30		30	
Perfluorooctanoic acid	15.3 -4.3	-0.5	5.0	-9.8	1.0	-6.7	50 30	30	30	30		30	
TAF	2.7 -6.3	-4.0	-1.7	-1.8	-1.6	12.6	50 30	30	30	30		30	
Perfluorooctanesulfonic acid	-5.4 -3.1	-2.1	5.8	-2.3	5.2	1.9	50 30	30	30	30	30	30	
Perfluorononanoic acid	1.6 -6.9	-4.9	8.6	-0.8	5.6	-3.2	50 30	30	30	30		30	
7:3 FTCA	-13.2 -1.7	-11.8	18.5	2.3	7.4	-1.4	50 30	30	30	30	30	30	
8:2 FTUCA	6.8	-14.6	19.1	-7.1	-4.1	+++++	50	30	30	30	30		
8:2 FTCA	3.2 -8.2	11.3	3.9	2.4	-8.9	-3.5	50 30	30		30		30	
9C1-PF3ONS	-8.9 2.9	-3.7	-1.3	-4.6	7.6	8.0	50 30	30		30		30	
Perfluorononanesulfonic acid	1.9 -5.5	-1.6	1.3	-0.2	-1.1	5.3	50 30	30		30		30	
8:2 Fluorotelomer sulfonic acid	4.4 -6.2	-0.1	7.7	-6.5	-9.0	9.7	50 30	30	30	30		30	
Perfluorodecanoic acid	16.7 -11.0	-1.9	2.4	-5.0	2.8	-4.1	50 30	30	30	30		30	
Perfluorooctanesulfonamide	2.5 -6.0	-3.8	16.1	-5.9	0.1	-2.9	50 30	30	30	30	30	30	

Lab Name: Eurofins Lancaster Laboratories Env	Job No.: 240-168405-1	Analy Batch No.: 272051
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N

Calibration Start Date: 07/04/2022 16:15 Calibration End Date: 07/04/2022 17:22 Calibration ID: 40369

ANALYTE			PERCENT	r error				PI	ERCENT EF	RROR LIMI	ГТ	
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
NMeFOSAA	14.8 -3.9	-1.3	3.2	-16.5	4.4	-0.8	50 30	30	30	30	30	30
Perfluorodecanesulfonic acid	-0.8 -8.8	-0.5	5.1	-3.5	0.4	8.1	50 30	30	30	30	30	30
Perfluoroundecanoic acid	-6.3 -9.0	4.2	16.6	-8.5	4.5	-1.4	50 30	30	30	30	30	30
NETFOSAA	1.8 5.6	-12.6	7.0	-8.1	-2.2	8.4	50 30	30	30	30	30	30
10:2 FTUCA	14.8	-1.4	4.8	-1.6	-9.9	-6.7	50 30	30	30	30	30	30
11Cl-PF3OUdS	3.5 -3.0	8.6	2.1	-8.1	-5.9	2.7	50 30	30	30	30	30	30
10:2 FTCA	40.2	-18.8	-0.2	-2.6	-15.2	-2.6	50 30	30	30	30	30	30
Perfluorododecanoic acid	1.4 -6.8	-10.6	10.1	3.8	3.4	-1.3	50 30	30	30	30	30	30
10:2 FTS	13.8 -10.1	4.5	9.7	-4.1	-7.8	-6.1	50 30	30	30	30	30	30
NMeFOSE	-8.4 3.5	3.8	11.1	3.1	0.0	-13.2	50 30	30	30	30	30	30
NMeFOSA	26.5 -10.9	-2.1	0.0	-7.8	-5.8	0.2	50 30	30	30	30	30	30
Perfluorododecanesulfonic acid	10.1 -3.2	-0.4	-0.1	0.8	-5.2	-2.0	50 30	30	30	30	30	30
NETFOSE	13.3 0.0	-2.8	3.7	-14.2	3.8	-3.8	50 30	30	30	30	30	30
Perfluorotridecanoic acid	-7.2 -14.3	-5.5	15.6	8.8	0.0	2.6	50 30	30	30	30	30	30
NETFOSA	0.9 -4.2	-1.8	2.7	-1.7	5.4	-1.2	50 30	30	30	30	30	30
Perfluorotetradecanoic acid	18.4 -7.1	-3.6	8.3	-4.7	-4.2	-7.1	50 30	30	30	30	30	30
Perfluorohexadecanoic acid	10.9 -10.6	7.1	7.0	-2.1	-2.4	-9.9	50 30	30	30	30	30	30
Perfluorooctadecanoic acid	1.8 8.7	-4.9	2.4	-6.7	-2.9	1.6	50 30	30	30	30	30	30
13C4 PFBA	5.4 -2.4	3.1	1.0	-0.3	-3.4	-3.4	30 30	30	30	30	30	30

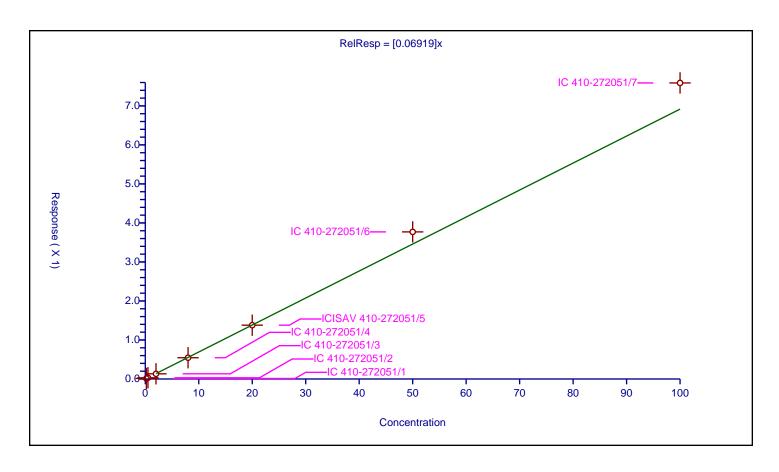
Lab Name: Eurofins Lancaster Laboratories Env	7 Job No.: 240-168405-1	Analy Batch No.: 272051
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/04/2022 16:15	Calibration End Date: 07/04/2022 17:22	Calibration ID: 40369

ANALYTE			PERCEN'	T ERROR			PERCENT ERROR LIMIT						
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6	
13C5 PFPeA	2.2	0.8	0.2	2.9	-7.9	0.4	30 30	30	30	30	30	30	
13C3 PFBS	2.0 -4.3	3.8	-0.9	3.0	-1.5	-2.1	30 30	30	30	30	30	30	
M2-4:2 FTS	3.0 -3.9	-3.5	-6.6	3.1	7.0	1.0	30 30	30	30	30	30	30	
13C5 PFHxA	7.9 5.5	-0.2	-7.4	-4.5	-1.8	0.5	30 30	30	30	30	30	30	
13C3 HFPO-DA	-2.0 18.4	-3.1	-10.0	-0.9	-2.6	0.1	30 30	30	30	30	30	30	
13C4 PFHpA	14.9 -9.2	1.0	-1.5	5.5	-5.6	-5.1	30 30	30	30	30	30	30	
13C3 PFHxS	14.2 -2.8	-2.0	-2.5	-0.2	-0.7	-6.1	30 30	30	30	30	30	30	
13C2-2H-Perfluoro-2-octenoic acid	6.8 -5.6	2.4	-5.1	8.5	-1.8	-5.0	30 30	30	30	30	30	30	
13C2-2-Perfluorohexylethanoic acid	1.1	7.2	-10.8	3.2	-5.2	3.2	30 30	30	30	30	30	30	
M2-6:2 FTS	3.3 2.1	-4.0	-10.2	5.0	1.2	2.6	30 30	30	30	30	30	30	
13C8 PFOA	4.1 -4.2	2.8	-4.6	3.2	1.6	-3.0	30 30	30	30	30	30	30	
13C8 PFOS	8.4	0.1	-0.5	0.9	-1.6	-8.8	30 30	30	30	30	30	30	
13C9 PFNA	14.4 -8.2	8.7	-4.9	3.1	-6.1	-7.0	30 30	30	30	30	30	30	
13C2-2H-Perfluoro-2-decenoic acid	1.5	23.5	-3.1	-8.5	-13.4	+++++	30	30	30	30	30		
13C2-2-Perfluorooctylethanoic acid	7.9 -5.5	10.4	9.6	-7.9	-4.5	-10.0	30 30	30	30	30	30	30	
13C6 PFDA	0.5 1.3	6.3	2.3	-2.4	-2.9	-5.2	30 30	30	30	30	30	30	
M2-8:2 FTS	0.2	10.9	5.5	2.3	-1.3	-14.7	30 30	30	30	30	30	30	
13C8 FOSA	0.3	6.7	-6.0	3.6	2.2	-6.7	30 30	30	30	30	30	30	
d3-NMeFOSAA	-3.6 -0.4	6.8	1.6	3.2	-1.2	-6.4	30 30	30	30	30	30	30	

Lab Name: Eurofins Lancaster Laboratories Er	<u>v</u> Job No.: <u>240-168405-1</u>	Analy Batch No.: 272051
SDG No.:		
Instrument ID: 30733	GC Column: Gemini C18 ID: 3 (mm)	Heated Purge: (Y/N) N
Calibration Start Date: 07/04/2022 16:15	Calibration End Date: 07/04/2022 17:22	Calibration ID: 40369

ANALYTE			PERCEN'	PERCENT ERROR LIMIT								
	LVL 1 #	LVL 2 #	LVL 3 #	LVL 4 #	LVL 5 #	LVL 6 #	LVL 1 LVL 7	LVL 2	LVL 3	LVL 4	LVL 5	LVL 6
13C7 PFUnA	7.7 1.1	6.9	-6.4	1.1	-2.3	-8.0	30 30	30	30	30	30	30
d5-NEtFOSAA	-1.6 -9.3	8.6	4.8	-0.2	8.8	-11.1	30 30	30	30	30	30	30
13C2-2H-Perfluoro-2-dodecenoic acid	0.9 -13.1	15.6	7.1	-1.5	4.0	-13.1	30 30	30	30	30	30	30
13C2-2-Perfluorodecylethanoic acid	5.2 -18.3	29.4	0.7	-1.7	0.6	-15.8	30 30	30	30	30	30	30
13C2-PFDoDA	2.2 5.8	13.8	-2.3	-10.1	-1.6	-7.7	30 30	30	30	30	30	30
d7-N-MeFOSE-M	0.0	7.4	-0.4	-10.6	-2.0	2.3	30 30	30	30	30	30	30
d3-NMePFOSA	-5.4 11.5	7.4	-2.5	-2.4	-1.6	-7.0	30 30	30	30	30	30	30
d9-N-EtFOSE-M	4.3 1.8	8.5	0.8	2.4	-10.1	-7.6	30 30	30	30	30	30	30
d5-NEtPFOSA	3.5 0.7	10.2	1.9	-4.3	-2.7	-9.3	30 30	30	30	30	30	30
13C2 PFTeDA	3.8 2.6	7.2	0.3	-5.0	-2.1	-6.8	30 30	30	30	30	30	30

Calibration / MTP


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

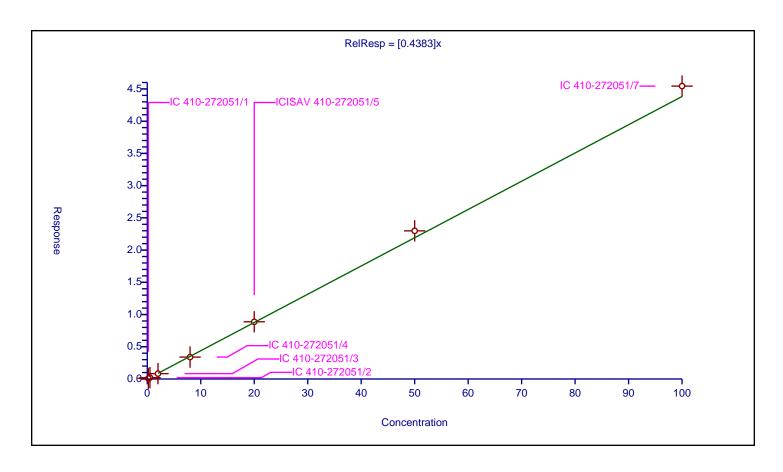
	Curve Coefficients
Intercept:	0
Slope:	0.06919

Error Coefficients

Standard Error:575000Relative Standard Error:7.0Correlation Coefficient:1.000Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.013416	10.0	2101154.0	0.067082	Υ
2	IC 410-272051/2	0.5	0.031247	10.0	2137451.0	0.062495	Υ
3	IC 410-272051/3	2.0	0.132611	10.0	1916434.0	0.066305	Υ
4	IC 410-272051/4	8.0	0.545073	10.0	1863715.0	0.068134	Υ
5	ICISAV 410-272051/5	20.0	1.379561	10.0	1843086.0	0.068978	Υ
6	IC 410-272051/6	50.0	3.770731	10.0	1696732.0	0.075415	Υ
7	IC 410-272051/7	100.0	7.588818	10.0	1612678.0	0.075888	Υ

Calibration / PPF Acid


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 0.4383

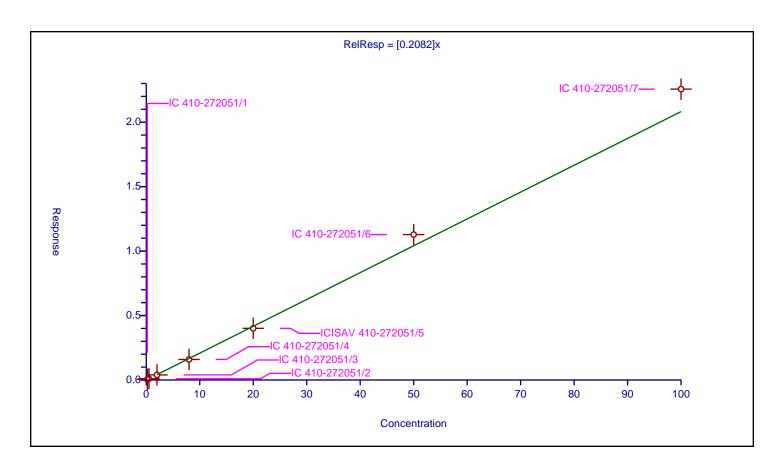
Error Coefficients

Standard Error:3460000Relative Standard Error:4.0Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.089836	10.0	2101154.0	0.449182	Υ
2	IC 410-272051/2	0.5	0.210466	10.0	2137451.0	0.420931	Υ
3	IC 410-272051/3	2.0	0.830955	10.0	1916434.0	0.415477	Υ
4	IC 410-272051/4	8.0	3.398143	10.0	1863715.0	0.424768	Υ
5	ICISAV 410-272051/5	20.0	8.876298	10.0	1843086.0	0.443815	Υ
6	IC 410-272051/6	50.0	22.984019	10.0	1696732.0	0.45968	Υ
7	IC 410-272051/7	100.0	45.440528	10.0	1612678.0	0.454405	Υ

Calibration / PFMOAA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2082

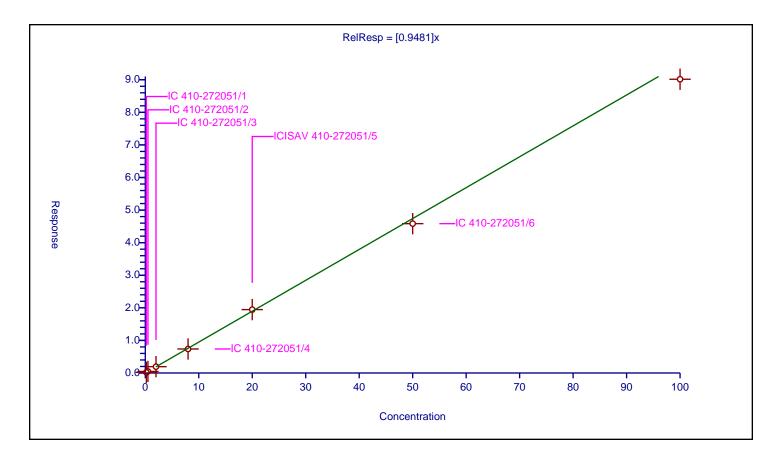
Curve Coefficients

Error Coefficients

Standard Error:1710000Relative Standard Error:6.3Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.042643	10.0	2101154.0	0.213216	Υ
2	IC 410-272051/2	0.5	0.098182	10.0	2137451.0	0.196365	Υ
3	IC 410-272051/3	2.0	0.394305	10.0	1916434.0	0.197153	Υ
4	IC 410-272051/4	8.0	1.593634	10.0	1863715.0	0.199204	Υ
5	ICISAV 410-272051/5	20.0	4.007095	10.0	1843086.0	0.200355	Υ
6	IC 410-272051/6	50.0	11.280974	10.0	1696732.0	0.225619	Υ
7	IC 410-272051/7	100.0	22.563946	10.0	1612678.0	0.225639	Υ

Calibration / Perfluorobutanoic acid


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients				
Intercept:	0			
Slope:	0.9481			

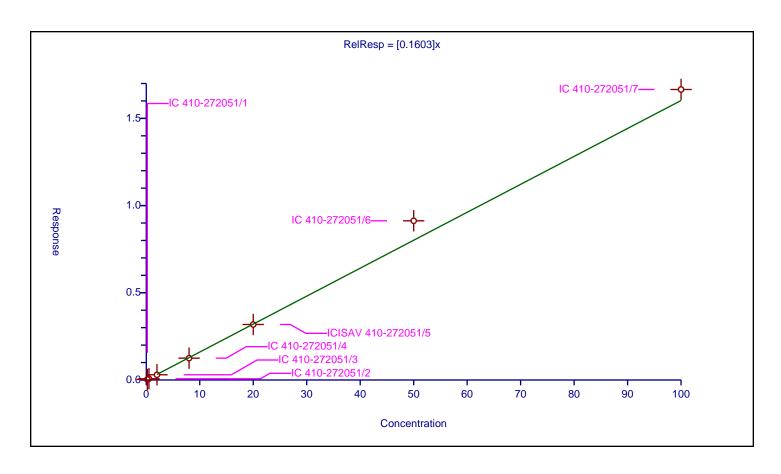
Error Coefficients

Standard Error:6910000Relative Standard Error:3.8Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.200495	10.0	2101154.0	1.002473	Υ
2	IC 410-272051/2	0.5	0.475435	10.0	2137451.0	0.950871	Υ
3	IC 410-272051/3	2.0	1.941705	10.0	1916434.0	0.970853	Υ
4	IC 410-272051/4	8.0	7.369925	10.0	1863715.0	0.921241	Υ
5	ICISAV 410-272051/5	20.0	19.456162	10.0	1843086.0	0.972808	Υ
6	IC 410-272051/6	50.0	45.831316	10.0	1696732.0	0.916626	Υ
7	IC 410-272051/7	100.0	90.156572	10.0	1612678.0	0.901566	Υ

Calibration / R-EVE

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.1603

Curve Coefficients

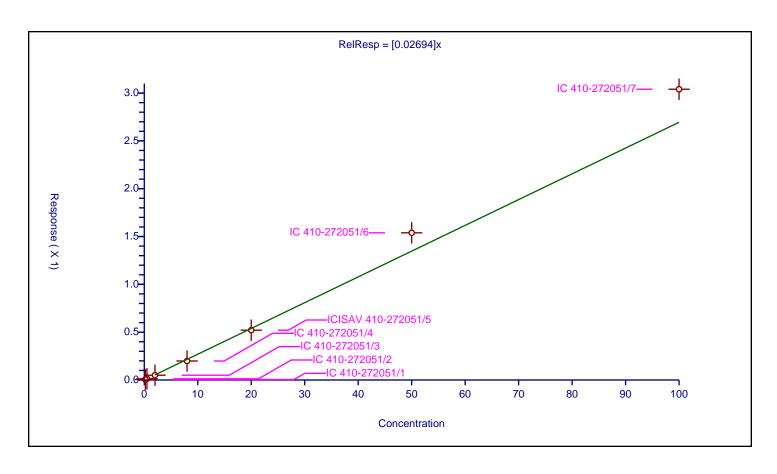
Error Coefficients

Standard Error:1290000Relative Standard Error:7.8Correlation Coefficient:0.995Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.032711	10.0	2101154.0	0.163553	Υ
2	IC 410-272051/2	0.5	0.071899	10.0	2137451.0	0.143797	Υ
3	IC 410-272051/3	2.0	0.299478	10.0	1916434.0	0.149739	Υ
4	IC 410-272051/4	8.0	1.251828	10.0	1863715.0	0.156478	Υ
5	ICISAV 410-272051/5	20.0	3.18213	10.0	1843086.0	0.159107	Υ
6	IC 410-272051/6	50.0	9.128059	10.0	1696732.0	0.182561	Υ
7	IC 410-272051/7	100.0	16.656636	10.0	1612678.0	0.166566	Υ

Calibration / R-PSDA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.02694

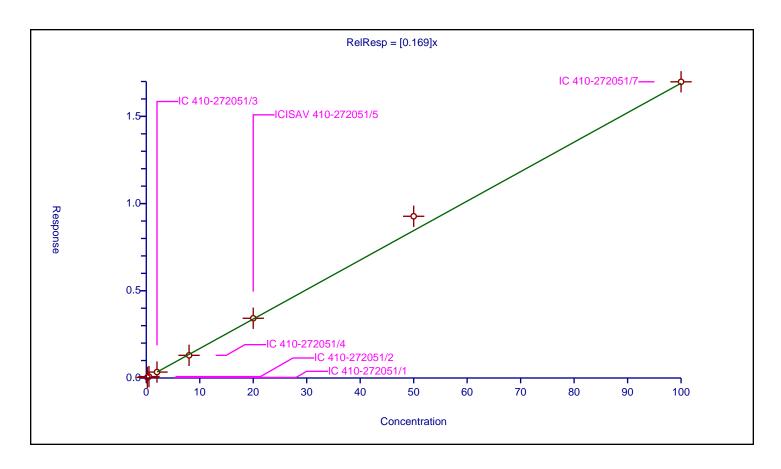
Curve Coefficients

Error Coefficients

Standard Error:396000Relative Standard Error:9.5Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.005272	9.3	3284332.0	0.026362	Υ
2	IC 410-272051/2	0.5	0.012611	9.3	3475553.0	0.025222	Υ
3	IC 410-272051/3	2.0	0.049931	9.3	3035796.0	0.024966	Υ
4	IC 410-272051/4	8.0	0.198676	9.3	3109208.0	0.024834	Υ
5	ICISAV 410-272051/5	20.0	0.520912	9.3	3035528.0	0.026046	Υ
6	IC 410-272051/6	50.0	1.538937	9.3	2777696.0	0.030779	Υ
7	IC 410-272051/7	100.0	3.040096	9.3	2552580.0	0.030401	Υ

Calibration / Hydrolyzed PSDA


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	0.169

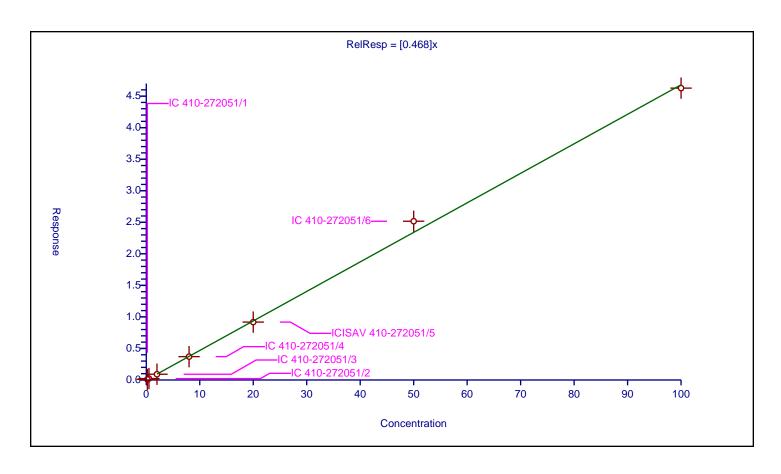
Error Coefficients

Standard Error:2270000Relative Standard Error:5.0Correlation Coefficient:0.992Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.033042	9.3	3284332.0	0.165211	Υ
2	IC 410-272051/2	0.5	0.079673	9.3	3475553.0	0.159346	Υ
3	IC 410-272051/3	2.0	0.339592	9.3	3035796.0	0.169796	Υ
4	IC 410-272051/4	8.0	1.298928	9.3	3109208.0	0.162366	Υ
5	ICISAV 410-272051/5	20.0	3.423484	9.3	3035528.0	0.171174	Υ
6	IC 410-272051/6	50.0	9.272659	9.3	2777696.0	0.185453	Υ
7	IC 410-272051/7	100.0	16.982791	9.3	2552580.0	0.169828	Υ

Calibration / PMPA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.468

Curve Coefficients

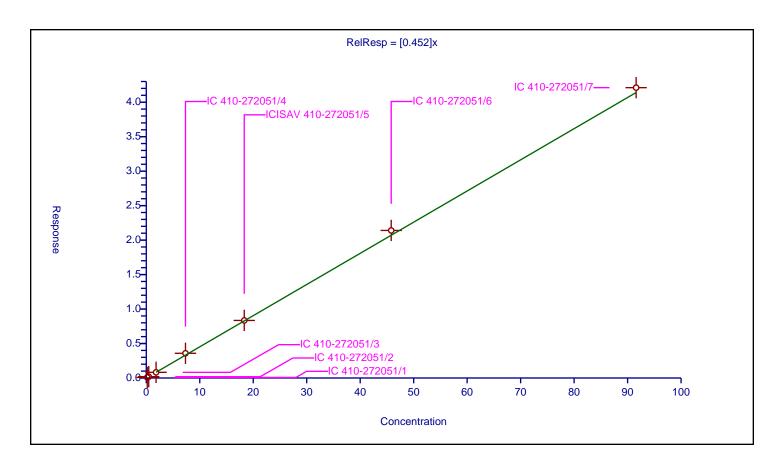
Error Coefficients

Standard Error:3590000Relative Standard Error:3.8Correlation Coefficient:0.995Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.095738	10.0	2101154.0	0.478689	Υ
2	IC 410-272051/2	0.5	0.225956	10.0	2137451.0	0.451912	Υ
3	IC 410-272051/3	2.0	0.914647	10.0	1916434.0	0.457323	Υ
4	IC 410-272051/4	8.0	3.704365	10.0	1863715.0	0.463046	Υ
5	ICISAV 410-272051/5	20.0	9.178671	10.0	1843086.0	0.458934	Υ
6	IC 410-272051/6	50.0	25.168536	10.0	1696732.0	0.503371	Υ
7	IC 410-272051/7	100.0	46.269454	10.0	1612678.0	0.462695	Υ

Calibration / PFPrS

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.452

Curve Coefficients

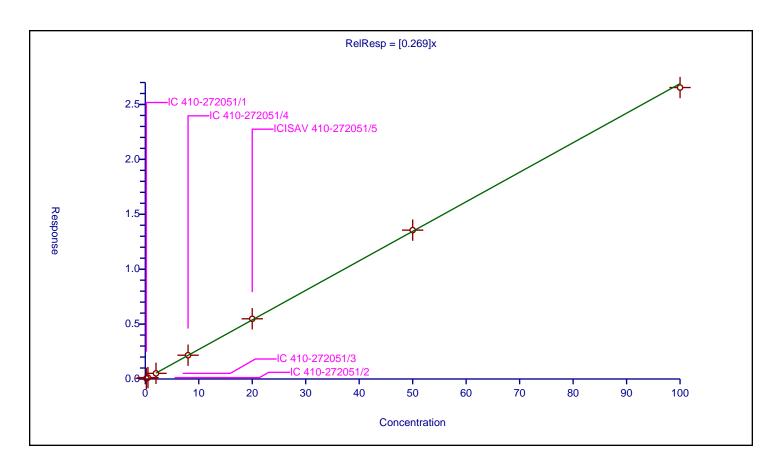
Error Coefficients

Standard Error:3220000Relative Standard Error:5.5Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.1832	0.079499	10.0	2101154.0	0.433947	Υ
2	IC 410-272051/2	0.458	0.18799	10.0	2137451.0	0.410459	Υ
3	IC 410-272051/3	1.832	0.820821	10.0	1916434.0	0.448047	Υ
4	IC 410-272051/4	7.328	3.582662	10.0	1863715.0	0.4889	Υ
5	ICISAV 410-272051/5	18.32	8.347695	10.0	1843086.0	0.45566	Υ
6	IC 410-272051/6	45.8	21.399921	10.0	1696732.0	0.467247	Υ
7	IC 410-272051/7	91.6	42.107321	10.0	1612678.0	0.459687	Υ

Calibration / NVHOS

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.269

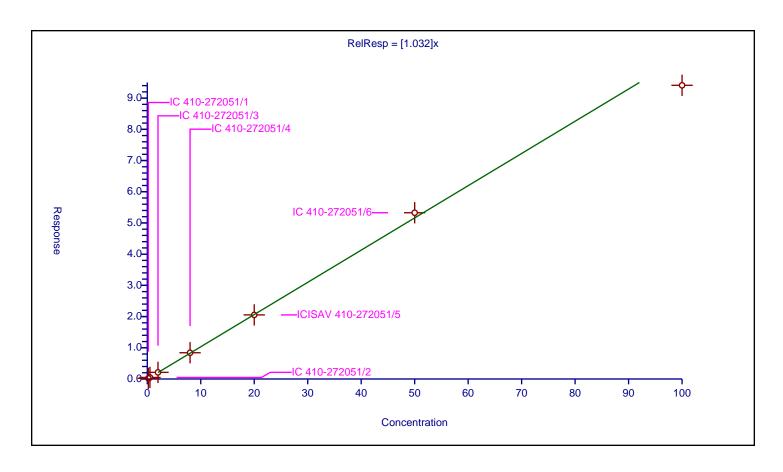
Curve Coefficients

Error Coefficients

Standard Error:3490000Relative Standard Error:4.7Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.058272	9.3	3284332.0	0.29136	Υ
2	IC 410-272051/2	0.5	0.12658	9.3	3475553.0	0.253161	Υ
3	IC 410-272051/3	2.0	0.513755	9.3	3035796.0	0.256878	Υ
4	IC 410-272051/4	8.0	2.165798	9.3	3109208.0	0.270725	Υ
5	ICISAV 410-272051/5	20.0	5.482198	9.3	3035528.0	0.27411	Υ
6	IC 410-272051/6	50.0	13.556013	9.3	2777696.0	0.27112	Υ
7	IC 410-272051/7	100.0	26.542294	9.3	2552580.0	0.265423	Υ

Calibration / PFECA F


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 1.032

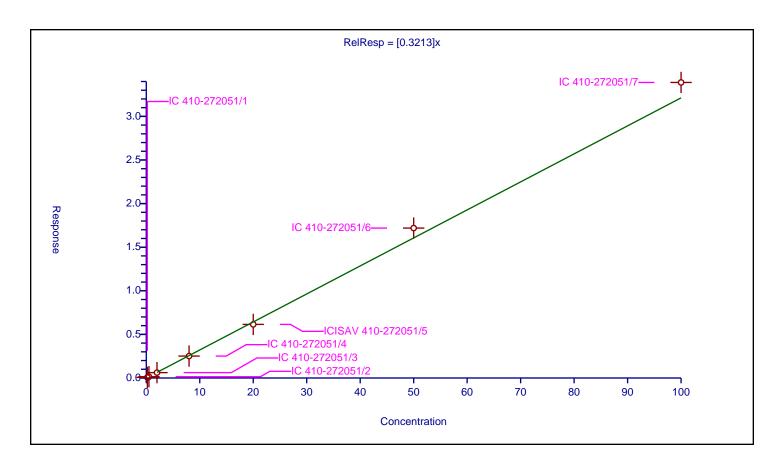
Error Coefficients

Standard Error:7400000Relative Standard Error:4.7Correlation Coefficient:0.991Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.215881	10.0	2101154.0	1.079407	Υ
2	IC 410-272051/2	0.5	0.499754	10.0	2137451.0	0.999508	Υ
3	IC 410-272051/3	2.0	2.125192	10.0	1916434.0	1.062596	Υ
4	IC 410-272051/4	8.0	8.411919	10.0	1863715.0	1.05149	Υ
5	ICISAV 410-272051/5	20.0	20.533903	10.0	1843086.0	1.026695	Υ
6	IC 410-272051/6	50.0	53.268295	10.0	1696732.0	1.065366	Υ
7	IC 410-272051/7	100.0	94.097433	10.0	1612678.0	0.940974	Υ

Calibration / PFO2HxA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.3213

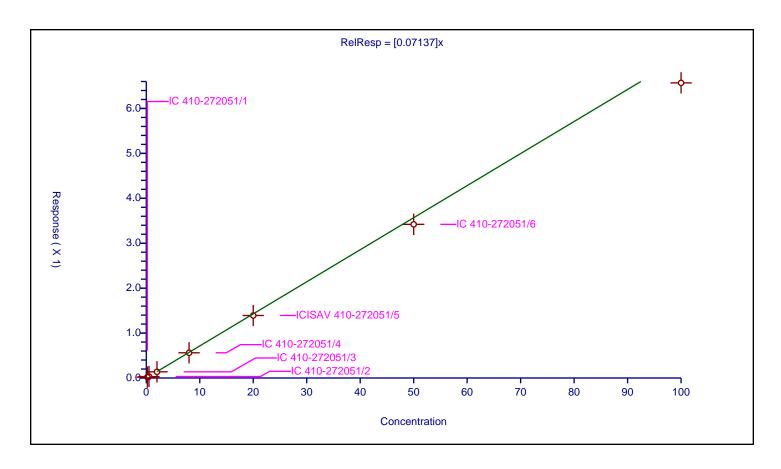
Curve Coefficients

Error Coefficients

Standard Error:2580000Relative Standard Error:6.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.068391	10.0	2101154.0	0.341955	Υ
2	IC 410-272051/2	0.5	0.147021	10.0	2137451.0	0.294042	Υ
3	IC 410-272051/3	2.0	0.617224	10.0	1916434.0	0.308612	Υ
4	IC 410-272051/4	8.0	2.513871	10.0	1863715.0	0.314234	Υ
5	ICISAV 410-272051/5	20.0	6.145394	10.0	1843086.0	0.30727	Υ
6	IC 410-272051/6	50.0	17.191041	10.0	1696732.0	0.343821	Υ
7	IC 410-272051/7	100.0	33.890833	10.0	1612678.0	0.338908	Υ

Calibration /3:3 FTCA


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.07137

Error Coefficients

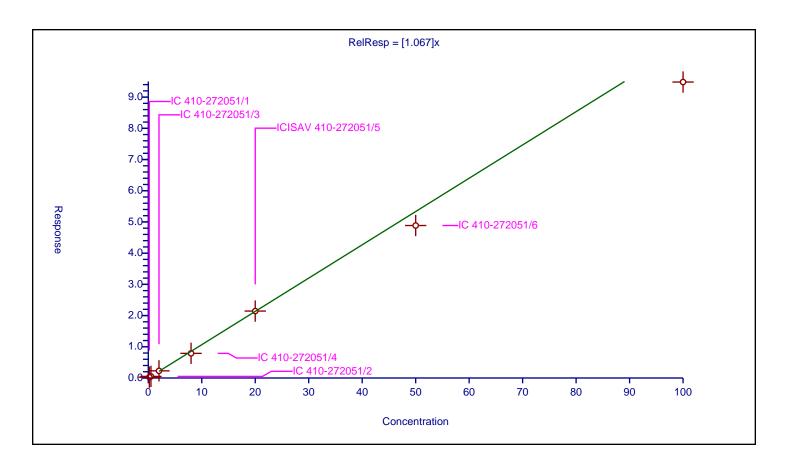
Standard Error:458000Relative Standard Error:13.1Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.976

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.018424	10.0	1784071.0	0.092121	Υ
2	IC 410-272051/2	0.5	0.032431	10.0	1828787.0	0.064863	Υ
3	IC 410-272051/3	2.0	0.137614	10.0	1664660.0	0.068807	Υ
4	IC 410-272051/4	8.0	0.561016	10.0	1682197.0	0.070127	Υ
5	ICISAV 410-272051/5	20.0	1.391216	10.0	1536670.0	0.069561	Υ
6	IC 410-272051/6	50.0	3.420387	10.0	1544486.0	0.068408	Υ
7	IC 410-272051/7	100.0	6.569064	10.0	1465737.0	0.065691	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients


 Intercept:
 0

 Slope:
 1.067

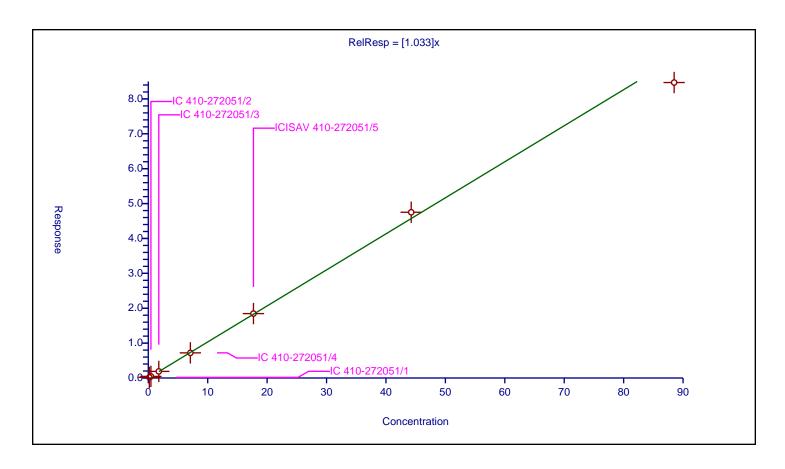
Error Coefficients

Standard Error:6620000Relative Standard Error:11.9Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.981

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.262462	10.0	1784071.0	1.312308	Υ
2	IC 410-272051/2	0.5	0.512564	10.0	1828787.0	1.025128	Υ
3	IC 410-272051/3	2.0	2.290864	10.0	1664660.0	1.145432	Υ
4	IC 410-272051/4	8.0	7.894402	10.0	1682197.0	0.9868	Υ
5	ICISAV 410-272051/5	20.0	21.443752	10.0	1536670.0	1.072188	Υ
6	IC 410-272051/6	50.0	48.857244	10.0	1544486.0	0.977145	Υ
7	IC 410-272051/7	100.0	94.829018	10.0	1465737.0	0.94829	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Coefficients

Intercept:	0
Slope:	1.033

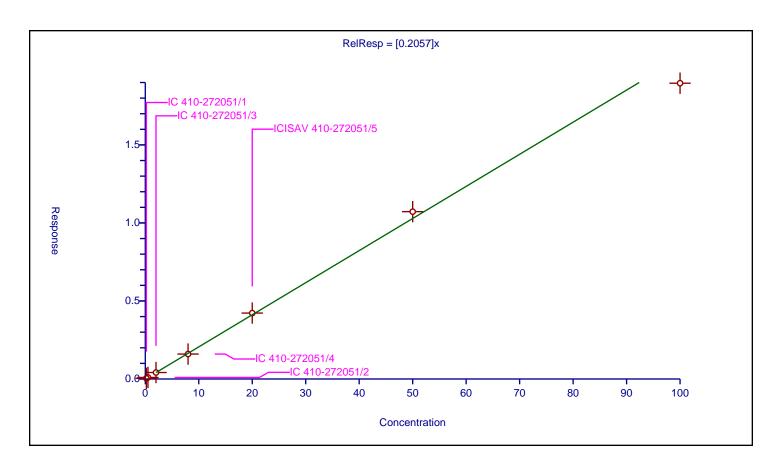
Error Coefficients

Standard Error:11400000Relative Standard Error:3.8Correlation Coefficient:0.988Coefficient of Determination (Adjusted):0.998

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 410-272051/1	0.177	0.182614	9.3	3284332.0	1.03172	Υ
IC 410-272051/2	0.4425	0.46053	9.3	3475553.0	1.040745	Υ
IC 410-272051/3	1.77	1.891121	9.3	3035796.0	1.06843	Υ
IC 410-272051/4	7.08	7.201936	9.3	3109208.0	1.017223	Υ
ICISAV 410-272051/5	17.7	18.460451	9.3	3035528.0	1.042963	Υ
IC 410-272051/6	44.25	47.511906	9.3	2777696.0	1.073715	Υ
IC 410-272051/7	88.5	84.705534	9.3	2552580.0	0.957125	Υ
	IC 410-272051/1 IC 410-272051/2 IC 410-272051/3 IC 410-272051/4 ICISAV 410-272051/5 IC 410-272051/6	IC 410-272051/1 0.177 IC 410-272051/2 0.4425 IC 410-272051/3 1.77 IC 410-272051/4 7.08 ICISAV 410-272051/5 17.7 IC 410-272051/6 44.25	IC 410-272051/1 0.177 0.182614 IC 410-272051/2 0.4425 0.46053 IC 410-272051/3 1.77 1.891121 IC 410-272051/4 7.08 7.201936 ICISAV 410-272051/5 17.7 18.460451 IC 410-272051/6 44.25 47.511906	IC 410-272051/1 0.177 0.182614 9.3 IC 410-272051/2 0.4425 0.46053 9.3 IC 410-272051/3 1.77 1.891121 9.3 IC 410-272051/4 7.08 7.201936 9.3 ICISAV 410-272051/5 17.7 18.460451 9.3 IC 410-272051/6 44.25 47.511906 9.3	IC 410-272051/1 0.177 0.182614 9.3 3284332.0 IC 410-272051/2 0.4425 0.46053 9.3 3475553.0 IC 410-272051/3 1.77 1.891121 9.3 3035796.0 IC 410-272051/4 7.08 7.201936 9.3 3109208.0 ICISAV 410-272051/5 17.7 18.460451 9.3 3035528.0 IC 410-272051/6 44.25 47.511906 9.3 2777696.0	IC 410-272051/1 0.177 0.182614 9.3 3284332.0 1.03172 IC 410-272051/2 0.4425 0.46053 9.3 3475553.0 1.040745 IC 410-272051/3 1.77 1.891121 9.3 3035796.0 1.06843 IC 410-272051/4 7.08 7.201936 9.3 3109208.0 1.017223 ICISAV 410-272051/5 17.7 18.460451 9.3 3035528.0 1.042963 IC 410-272051/6 44.25 47.511906 9.3 2777696.0 1.073715

Calibration / PEPA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.2057

Curve Coefficients

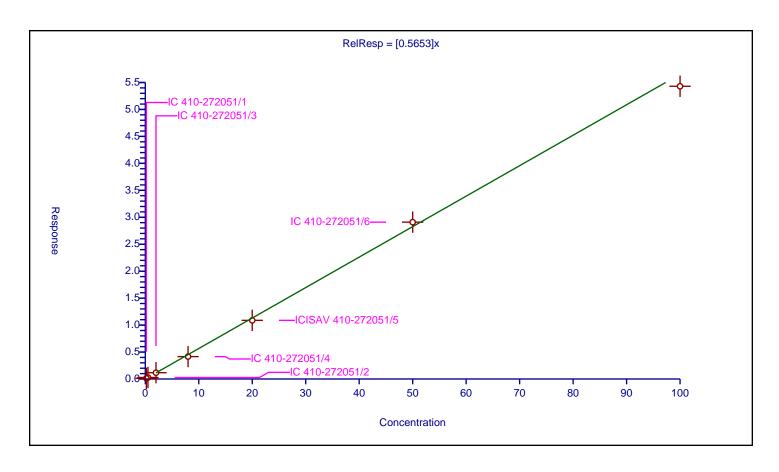
Error Coefficients

Standard Error:1490000Relative Standard Error:4.9Correlation Coefficient:0.991Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.043614	10.0	2101154.0	0.218071	Υ
2	IC 410-272051/2	0.5	0.099661	10.0	2137451.0	0.199322	Υ
3	IC 410-272051/3	2.0	0.41513	10.0	1916434.0	0.207565	Υ
4	IC 410-272051/4	8.0	1.59841	10.0	1863715.0	0.199801	Υ
5	ICISAV 410-272051/5	20.0	4.224263	10.0	1843086.0	0.211213	Υ
6	IC 410-272051/6	50.0	10.72411	10.0	1696732.0	0.214482	Υ
7	IC 410-272051/7	100.0	18.954305	10.0	1612678.0	0.189543	Υ

Calibration / PFECA A

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.5653

Curve Coefficients

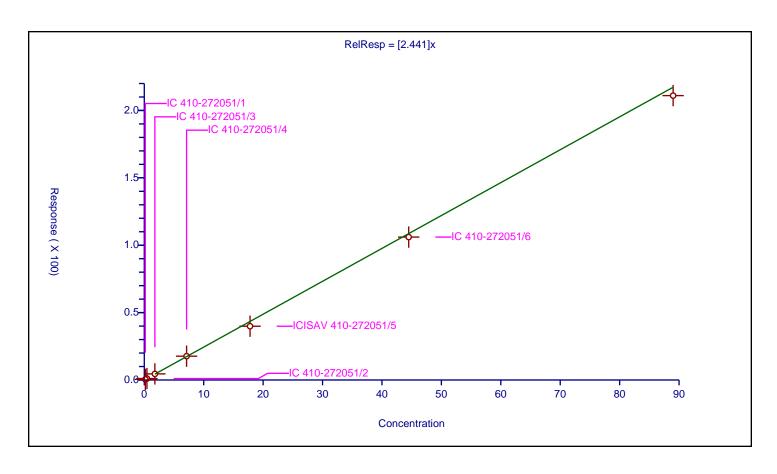
Error Coefficients

Standard Error:7220000Relative Standard Error:6.4Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.125611	9.3	3284332.0	0.628055	Υ
2	IC 410-272051/2	0.5	0.277915	9.3	3475553.0	0.555829	Υ
3	IC 410-272051/3	2.0	1.169495	9.3	3035796.0	0.584748	Υ
4	IC 410-272051/4	8.0	4.155237	9.3	3109208.0	0.519405	Υ
5	ICISAV 410-272051/5	20.0	10.879325	9.3	3035528.0	0.543966	Υ
6	IC 410-272051/6	50.0	29.094709	9.3	2777696.0	0.581894	Υ
7	IC 410-272051/7	100.0	54.302049	9.3	2552580.0	0.54302	Υ

Calibration / PES

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.441

Curve Coefficients

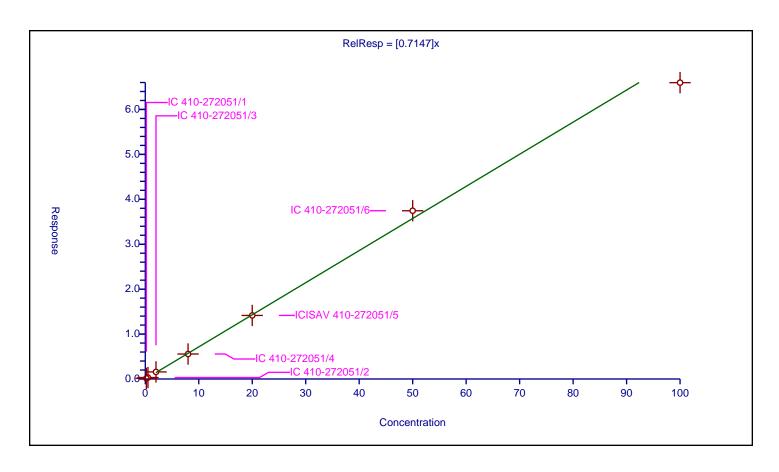
Error Coefficients

Standard Error:27600000Relative Standard Error:5.3Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.178	0.470565	9.3	3284332.0	2.643625	Υ
2	IC 410-272051/2	0.445	1.078219	9.3	3475553.0	2.422964	Υ
3	IC 410-272051/3	1.78	4.525027	9.3	3035796.0	2.54215	Υ
4	IC 410-272051/4	7.12	17.669377	9.3	3109208.0	2.481654	Υ
5	ICISAV 410-272051/5	17.8	39.891926	9.3	3035528.0	2.241119	Υ
6	IC 410-272051/6	44.5	106.045997	9.3	2777696.0	2.383056	Υ
7	IC 410-272051/7	89.0	211.013287	9.3	2552580.0	2.370936	Υ

Calibration / PFECA B

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7147

Curve Coefficients

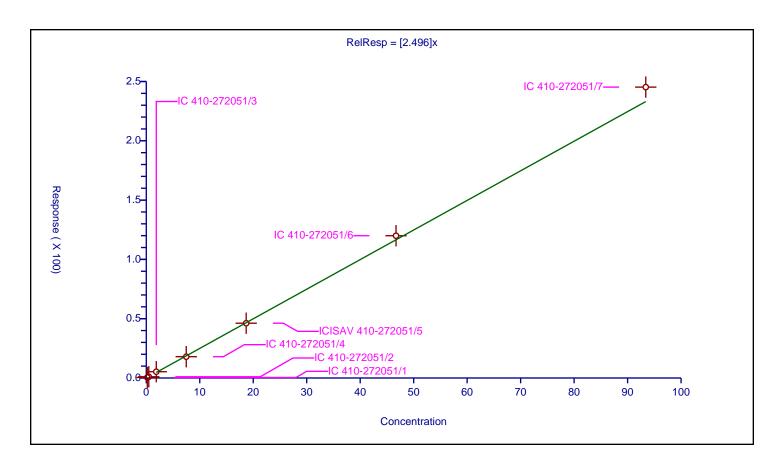
Error Coefficients

Standard Error:8930000Relative Standard Error:6.8Correlation Coefficient:0.988Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.149272	9.3	3284332.0	0.74636	Υ
2	IC 410-272051/2	0.5	0.328638	9.3	3475553.0	0.657276	Υ
3	IC 410-272051/3	2.0	1.576079	9.3	3035796.0	0.78804	Υ
4	IC 410-272051/4	8.0	5.561127	9.3	3109208.0	0.695141	Υ
5	ICISAV 410-272051/5	20.0	14.146409	9.3	3035528.0	0.70732	Υ
6	IC 410-272051/6	50.0	37.452353	9.3	2777696.0	0.749047	Υ
7	IC 410-272051/7	100.0	65.967964	9.3	2552580.0	0.65968	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Coefficients

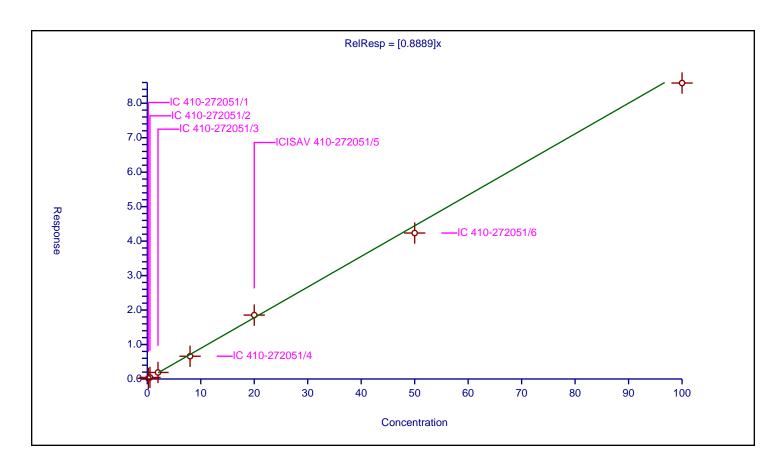
Intercept:	0
Slope:	2.496

Error Coefficients

Standard Error:1370000Relative Standard Error:8.0Correlation Coefficient:0.985Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.1868	0.432662	9.34	157242.0	2.316175	Υ
2	IC 410-272051/2	0.467	1.050069	9.34	158476.0	2.248542	Υ
3	IC 410-272051/3	1.868	5.292686	9.34	141483.0	2.833344	Υ
4	IC 410-272051/4	7.472	17.960335	9.34	148095.0	2.403685	Υ
5	ICISAV 410-272051/5	18.68	46.194319	9.34	149442.0	2.472929	Υ
6	IC 410-272051/6	46.7	119.957967	9.34	134737.0	2.568693	Υ
7	IC 410-272051/7	93.4	245.274716	9.34	105491.0	2.626068	Υ

Calibration / Perfluorohexanoic acid


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

(Curve Coefficients
Intercept:	0
Slope:	0.8889

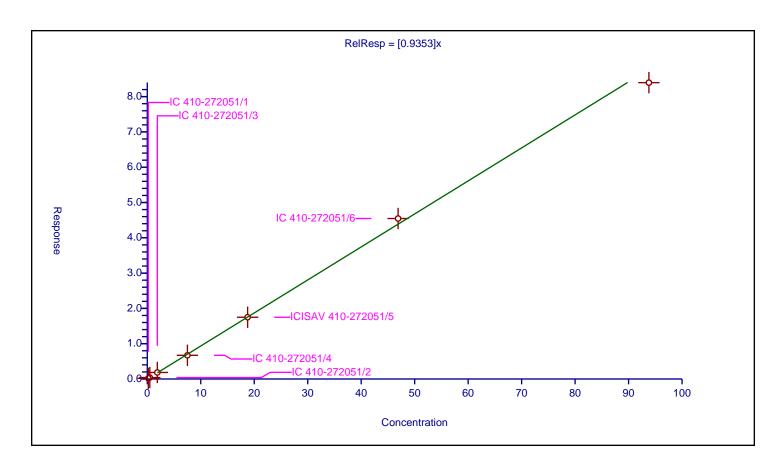
Error Coefficients

Standard Error:8170000Relative Standard Error:5.1Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.180323	10.0	2797591.0	0.901615	Υ
2	IC 410-272051/2	0.5	0.458684	10.0	2786208.0	0.917369	Υ
3	IC 410-272051/3	2.0	1.892369	10.0	2385095.0	0.946185	Υ
4	IC 410-272051/4	8.0	6.600135	10.0	2332334.0	0.825017	Υ
5	ICISAV 410-272051/5	20.0	18.533368	10.0	2330898.0	0.926668	Υ
6	IC 410-272051/6	50.0	42.340334	10.0	2280457.0	0.846807	Υ
7	IC 410-272051/7	100.0	85.845892	10.0	1968497.0	0.858459	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Coefficients

Intercept:	0
Slope:	0.9353

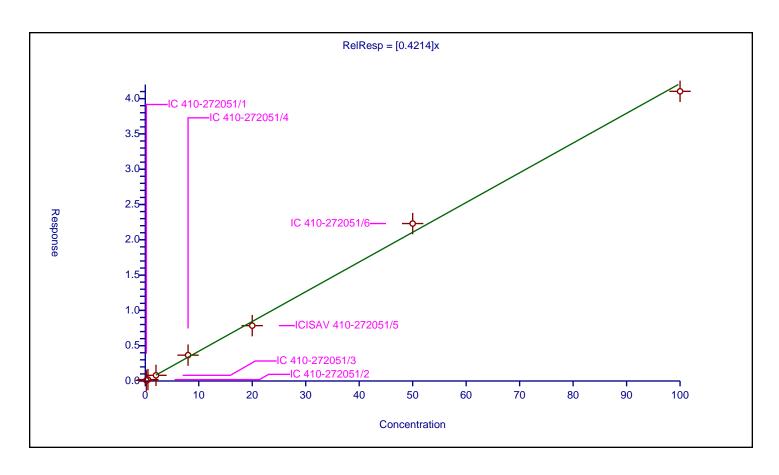
Error Coefficients

Standard Error:11200000Relative Standard Error:5.2Correlation Coefficient:0.992Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.1876	0.186525	9.3	3284332.0	0.994269	Υ
2	IC 410-272051/2	0.469	0.410644	9.3	3475553.0	0.875574	Υ
3	IC 410-272051/3	1.876	1.849385	9.3	3035796.0	0.985813	Υ
4	IC 410-272051/4	7.504	6.710352	9.3	3109208.0	0.894237	Υ
5	ICISAV 410-272051/5	18.76	17.493869	9.3	3035528.0	0.932509	Υ
6	IC 410-272051/6	46.9	45.465555	9.3	2777696.0	0.969415	Υ
7	IC 410-272051/7	93.8	83.959259	9.3	2552580.0	0.895088	Υ

Calibration / PFO3OA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.4214

Curve Coefficients

Error Coefficients

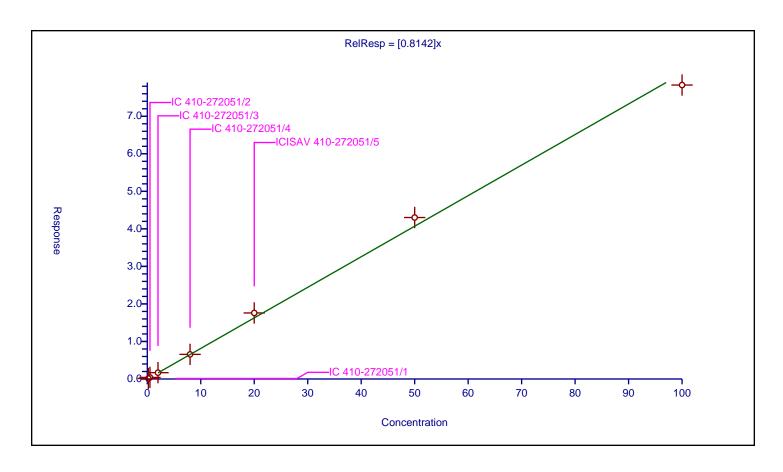
Standard Error:3180000Relative Standard Error:6.8Correlation Coefficient:0.995Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.089794	10.0	2101154.0	0.448968	Υ
2	IC 410-272051/2	0.5	0.196444	10.0	2137451.0	0.392889	Υ
3	IC 410-272051/3	2.0	0.802924	10.0	1916434.0	0.401462	Υ
4	IC 410-272051/4	8.0	3.661472	10.0	1863715.0	0.457684	Υ
5	ICISAV 410-272051/5	20.0	7.84073	10.0	1843086.0	0.392037	Υ
6	IC 410-272051/6	50.0	22.303122	10.0	1696732.0	0.446062	Υ
7	IC 410-272051/7	100.0	41.035445	10.0	1612678.0	0.410354	Υ

Calibration

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients


 Intercept:
 0

 Slope:
 0.8142

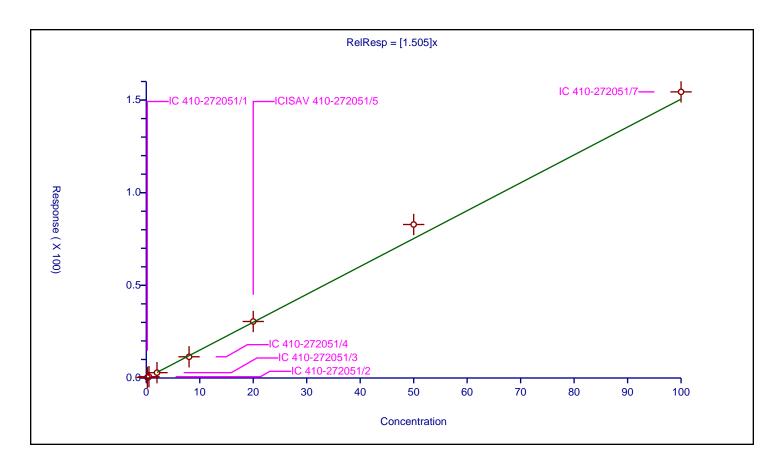
Error Coefficients

Standard Error:2480000Relative Standard Error:8.2Correlation Coefficient:0.996Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.135951	10.0	758656.0	0.679755	Υ
2	IC 410-272051/2	0.5	0.416987	10.0	808010.0	0.833975	Υ
3	IC 410-272051/3	2.0	1.684289	10.0	692316.0	0.842144	Υ
4	IC 410-272051/4	8.0	6.558822	10.0	722488.0	0.819853	Υ
5	ICISAV 410-272051/5	20.0	17.599637	10.0	690483.0	0.879982	Υ
6	IC 410-272051/6	50.0	43.02411	10.0	677806.0	0.860482	Υ
7	IC 410-272051/7	100.0	78.324549	10.0	659673.0	0.783245	Υ

Calibration / Hydro-PS Acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.505

Curve Coefficients

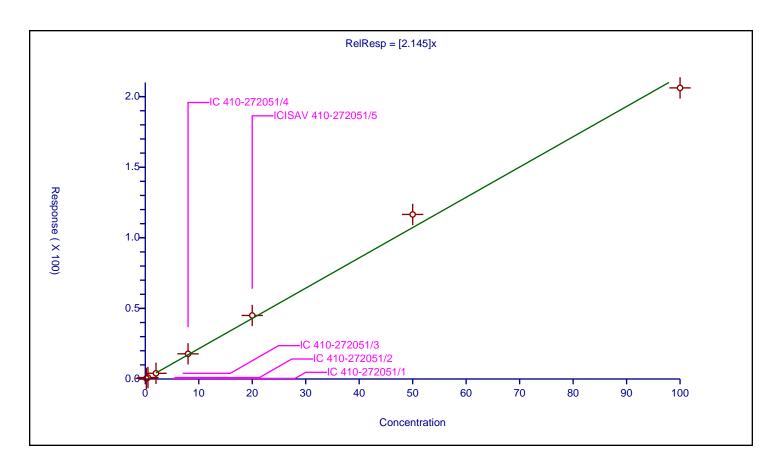
Error Coefficients

Standard Error:20500000Relative Standard Error:6.1Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.310094	9.3	3284332.0	1.550471	Υ
2	IC 410-272051/2	0.5	0.693266	9.3	3475553.0	1.386531	Υ
3	IC 410-272051/3	2.0	2.881077	9.3	3035796.0	1.440538	Υ
4	IC 410-272051/4	8.0	11.444008	9.3	3109208.0	1.430501	Υ
5	ICISAV 410-272051/5	20.0	30.490444	9.3	3035528.0	1.524522	Υ
6	IC 410-272051/6	50.0	82.82776	9.3	2777696.0	1.656555	Υ
7	IC 410-272051/7	100.0	154.402542	9.3	2552580.0	1.544025	Υ

Calibration / Hydro-EVE Acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.145

Curve Coefficients

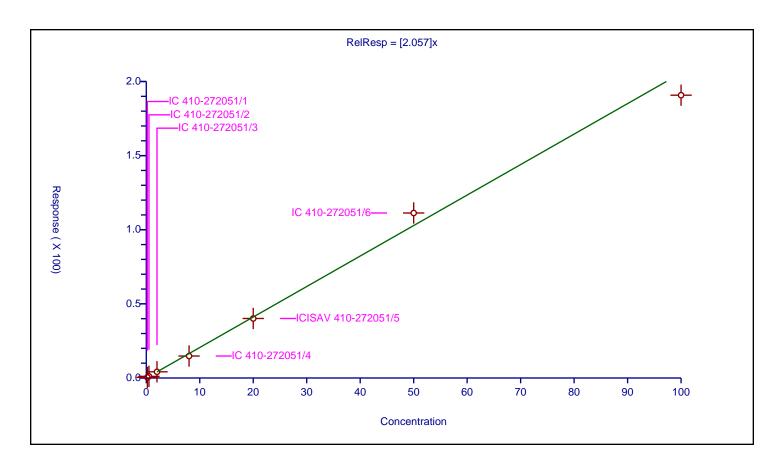
Error Coefficients

Standard Error:16200000Relative Standard Error:5.7Correlation Coefficient:0.991Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.415881	10.0	2101154.0	2.079405	Υ
2	IC 410-272051/2	0.5	1.024379	10.0	2137451.0	2.048758	Υ
3	IC 410-272051/3	2.0	4.030935	10.0	1916434.0	2.015467	Υ
4	IC 410-272051/4	8.0	17.814113	10.0	1863715.0	2.226764	Υ
5	ICISAV 410-272051/5	20.0	45.000022	10.0	1843086.0	2.250001	Υ
6	IC 410-272051/6	50.0	116.555526	10.0	1696732.0	2.331111	Υ
7	IC 410-272051/7	100.0	206.184303	10.0	1612678.0	2.061843	Υ

Calibration / R-PSDCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.057

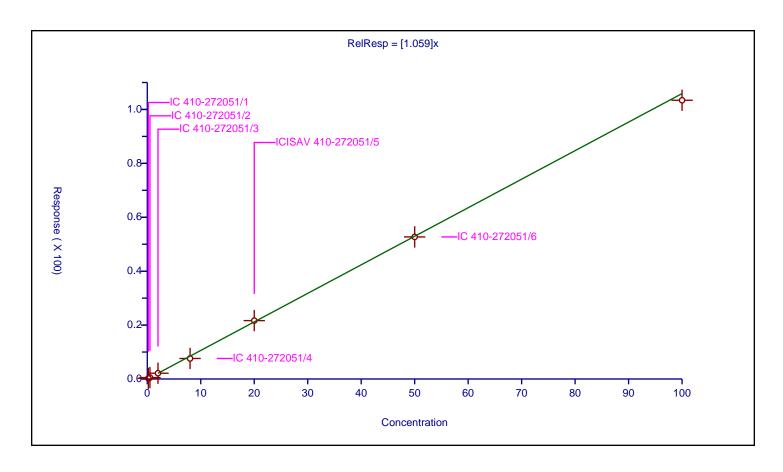
Curve Coefficients

Error Coefficients

Standard Error:26000000Relative Standard Error:6.9Correlation Coefficient:0.984Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.420168	9.3	3284332.0	2.10084	Υ
2	IC 410-272051/2	0.5	1.106575	9.3	3475553.0	2.21315	Υ
3	IC 410-272051/3	2.0	4.178238	9.3	3035796.0	2.089119	Υ
4	IC 410-272051/4	8.0	14.821058	9.3	3109208.0	1.852632	Υ
5	ICISAV 410-272051/5	20.0	40.140608	9.3	3035528.0	2.00703	Υ
6	IC 410-272051/6	50.0	111.29767	9.3	2777696.0	2.225953	Υ
7	IC 410-272051/7	100.0	190.761447	9.3	2552580.0	1.907614	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Co	pefficients
----------	-------------

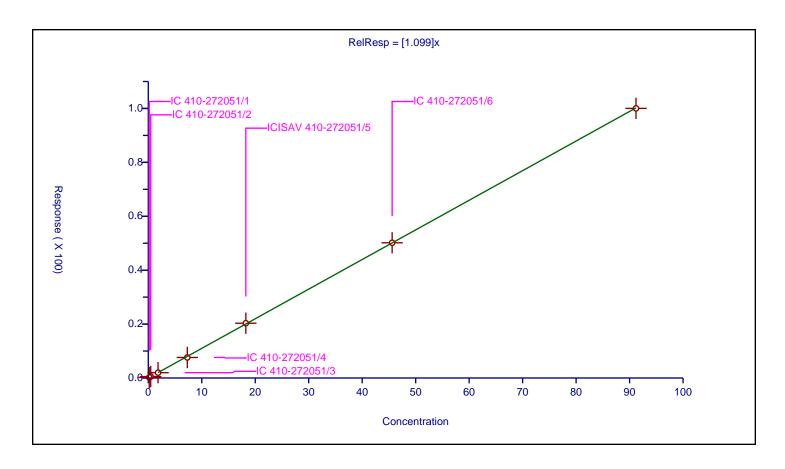
Intercept:	0
Slope:	1.059

Error Coefficients

Standard Error:8350000Relative Standard Error:5.7Correlation Coefficient:0.980Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.230992	10.0	2830440.0	1.154962	Υ
2	IC 410-272051/2	0.5	0.530888	10.0	2679848.0	1.061777	Υ
3	IC 410-272051/3	2.0	2.146302	10.0	2409861.0	1.073151	Υ
4	IC 410-272051/4	8.0	7.611722	10.0	2448622.0	0.951465	Υ
5	ICISAV 410-272051/5	20.0	21.662255	10.0	2128681.0	1.083113	Υ
6	IC 410-272051/6	50.0	52.711653	10.0	2044845.0	1.054233	Υ
7	IC 410-272051/7	100.0	103.409671	10.0	1609868.0	1.034097	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Coefficients

Intercept:	0
Slope:	1.099

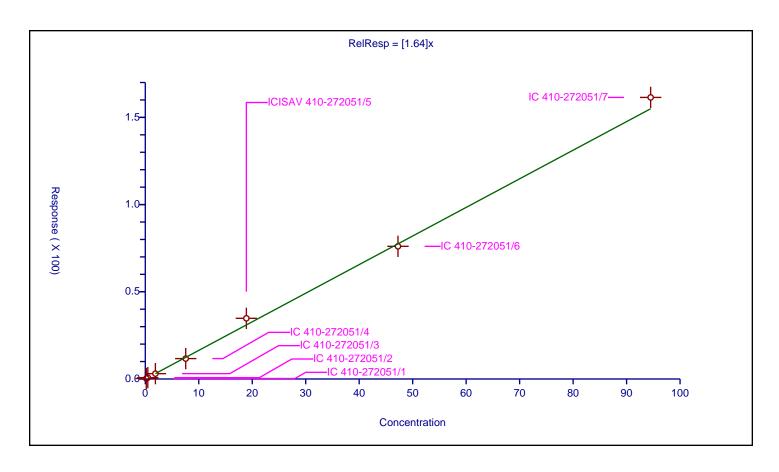
Error Coefficients

Standard Error:11400000Relative Standard Error:2.7Correlation Coefficient:0.991Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.1824	0.203644	9.46	3618920.0	1.11647	Υ
2	IC 410-272051/2	0.456	0.518973	9.46	3344331.0	1.138098	Υ
3	IC 410-272051/3	1.824	1.975519	9.46	3069574.0	1.08307	Υ
4	IC 410-272051/4	7.296	7.613239	9.46	2976920.0	1.043481	Υ
5	ICISAV 410-272051/5	18.24	20.321762	9.46	2880513.0	1.114132	Υ
6	IC 410-272051/6	45.6	50.163678	9.46	2603514.0	1.100081	Υ
7	IC 410-272051/7	91.2	100.027826	9.46	2217737.0	1.096796	Υ

Calibration / DONA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.64

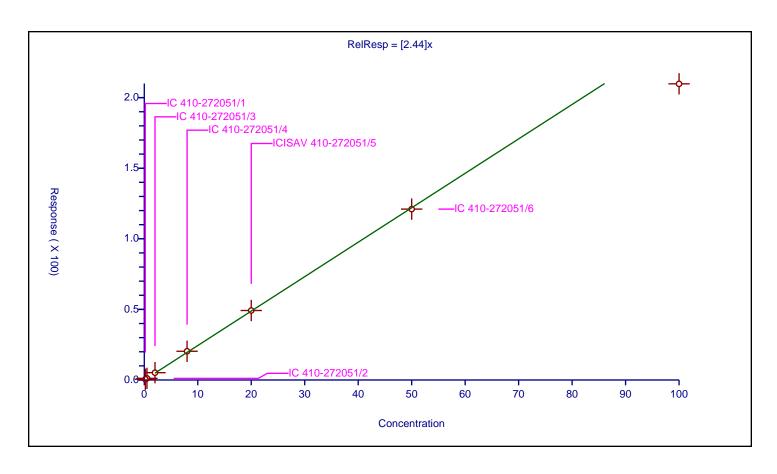
Curve Coefficients

Error Coefficients

Standard Error:12800000Relative Standard Error:6.6Correlation Coefficient:0.988Coefficient of Determination (Adjusted):0.995

Υ
Υ
Υ
Υ
Υ
Υ
Υ

Calibration / PFECA G


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients				
Intercept: Slope:		0 2.44			

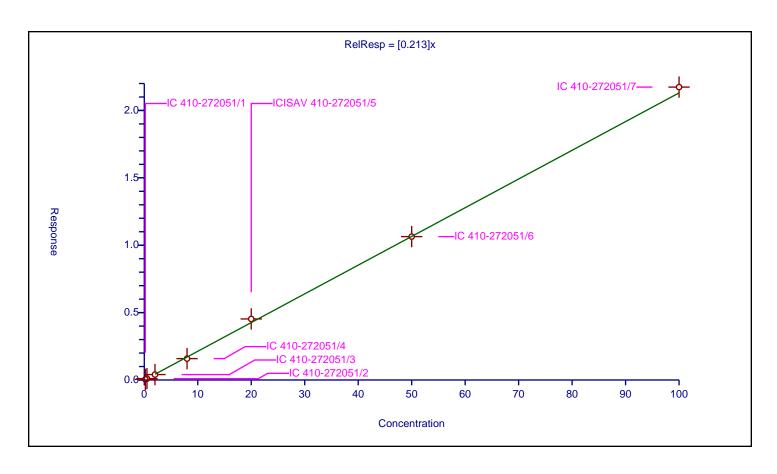
Error Coefficients

Standard Error:16700000Relative Standard Error:7.4Correlation Coefficient:0.988Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.525868	10.0	2101154.0	2.629341	Υ
2	IC 410-272051/2	0.5	1.168139	10.0	2137451.0	2.336278	Υ
3	IC 410-272051/3	2.0	5.178373	10.0	1916434.0	2.589186	Υ
4	IC 410-272051/4	8.0	20.342622	10.0	1863715.0	2.542828	Υ
5	ICISAV 410-272051/5	20.0	49.220948	10.0	1843086.0	2.461047	Υ
6	IC 410-272051/6	50.0	121.033387	10.0	1696732.0	2.420668	Υ
7	IC 410-272051/7	100.0	209.760981	10.0	1612678.0	2.09761	Υ

Calibration /5:3 FTCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.213

Curve Coefficients

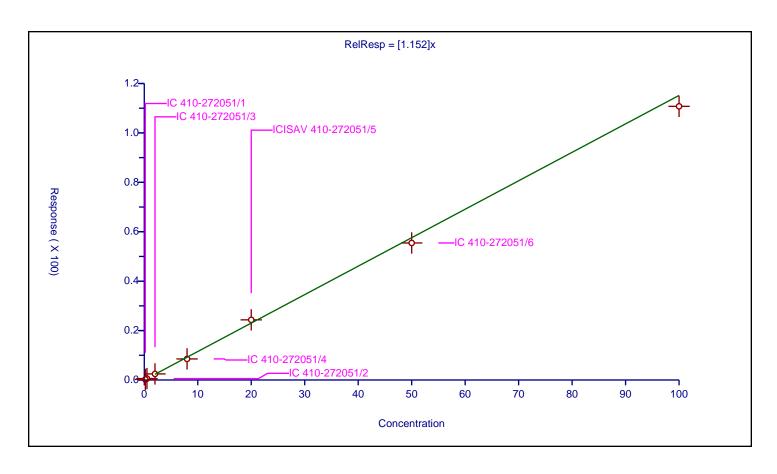
Error Coefficients

Standard Error:1740000Relative Standard Error:6.0Correlation Coefficient:0.985Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.04624	10.0	2830440.0	0.231201	Υ
2	IC 410-272051/2	0.5	0.10211	10.0	2679848.0	0.204221	Υ
3	IC 410-272051/3	2.0	0.401816	10.0	2409861.0	0.200908	Υ
4	IC 410-272051/4	8.0	1.586884	10.0	2448622.0	0.198361	Υ
5	ICISAV 410-272051/5	20.0	4.529359	10.0	2128681.0	0.226468	Υ
6	IC 410-272051/6	50.0	10.638806	10.0	2044845.0	0.212776	Υ
7	IC 410-272051/7	100.0	21.734124	10.0	1609868.0	0.217341	Υ

Calibration / 6:2 FTUCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.152

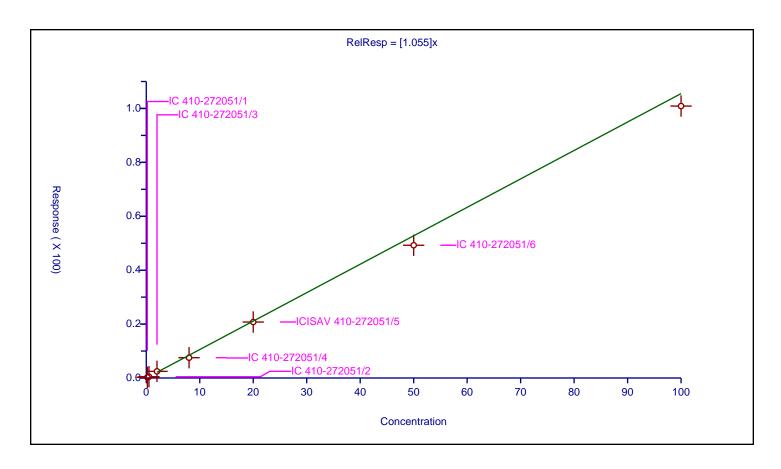
Curve Coefficients

Error Coefficients

Standard Error:9550000Relative Standard Error:5.3Correlation Coefficient:0.985Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.236687	10.0	2734418.0	1.183433	Υ
2	IC 410-272051/2	0.5	0.575704	10.0	2821400.0	1.151407	Υ
3	IC 410-272051/3	2.0	2.456004	10.0	2412679.0	1.228002	Υ
4	IC 410-272051/4	8.0	8.525851	10.0	2614986.0	1.065731	Υ
5	ICISAV 410-272051/5	20.0	24.346657	10.0	2300628.0	1.217333	Υ
6	IC 410-272051/6	50.0	55.456888	10.0	2127007.0	1.109138	Υ
7	IC 410-272051/7	100.0	110.757502	10.0	1739388.0	1.107575	Υ

Calibration / 6:2 FTCA


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 1.055

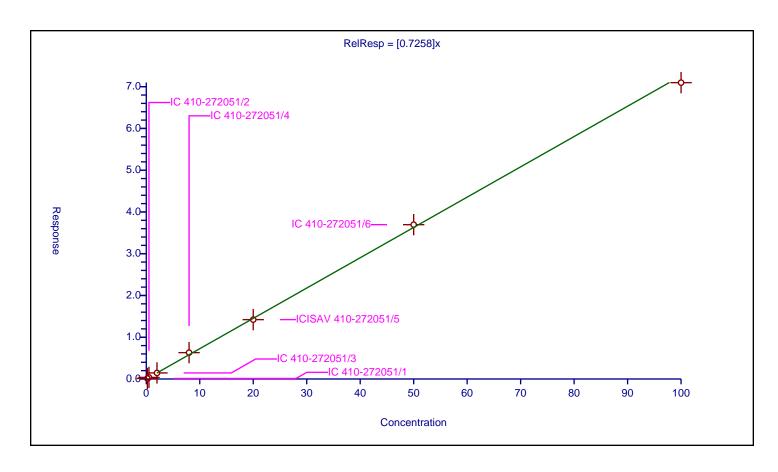
Error Coefficients

Standard Error:966000Relative Standard Error:11.7Correlation Coefficient:0.990Coefficient of Determination (Adjusted):0.983

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.245157	10.0	271500.0	1.225783	Υ
2	IC 410-272051/2	0.5	0.477411	10.0	309817.0	0.954822	Υ
3	IC 410-272051/3	2.0	2.465129	10.0	237874.0	1.232564	Υ
4	IC 410-272051/4	8.0	7.528157	10.0	261040.0	0.94102	Υ
5	ICISAV 410-272051/5	20.0	20.765768	10.0	232995.0	1.038288	Υ
6	IC 410-272051/6	50.0	49.24997	10.0	242457.0	0.984999	Υ
7	IC 410-272051/7	100.0	100.88558	10.0	195691.0	1.008856	Υ

Calibration / PFO4DA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7258

Curve Coefficients

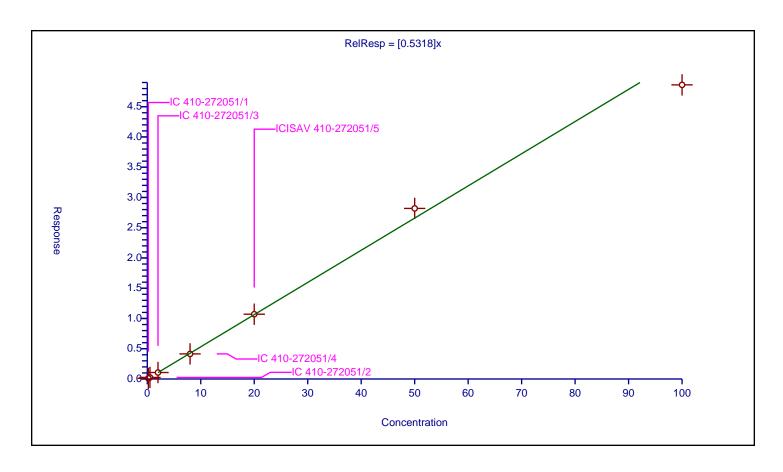
Error Coefficients

Standard Error:5460000Relative Standard Error:6.2Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.1293	10.0	2101154.0	0.646502	Υ
2	IC 410-272051/2	0.5	0.379976	10.0	2137451.0	0.759952	Υ
3	IC 410-272051/3	2.0	1.45082	10.0	1916434.0	0.72541	Υ
4	IC 410-272051/4	8.0	6.312365	10.0	1863715.0	0.789046	Υ
5	ICISAV 410-272051/5	20.0	14.215066	10.0	1843086.0	0.710753	Υ
6	IC 410-272051/6	50.0	36.95286	10.0	1696732.0	0.739057	Υ
7	IC 410-272051/7	100.0	70.966293	10.0	1612678.0	0.709663	Υ

Calibration / PS Acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.5318

Curve Coefficients

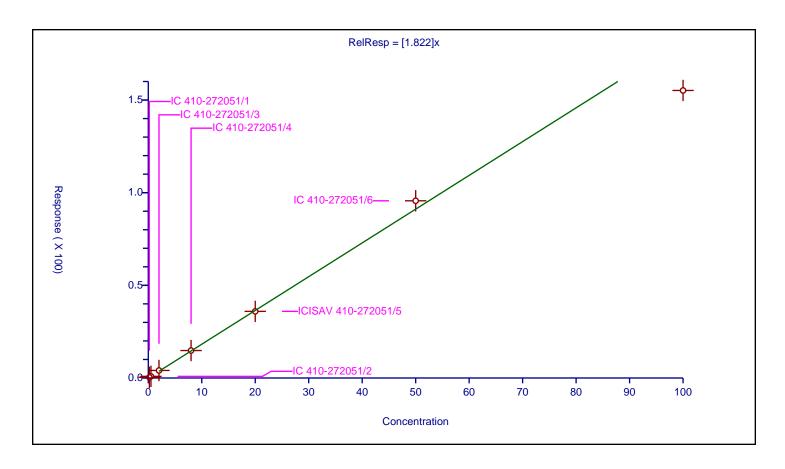
Error Coefficients

Standard Error:6620000Relative Standard Error:5.0Correlation Coefficient:0.985Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.112223	9.3	3284332.0	0.561115	Υ
2	IC 410-272051/2	0.5	0.26167	9.3	3475553.0	0.523339	Υ
3	IC 410-272051/3	2.0	1.070068	9.3	3035796.0	0.535034	Υ
4	IC 410-272051/4	8.0	4.145701	9.3	3109208.0	0.518213	Υ
5	ICISAV 410-272051/5	20.0	10.705873	9.3	3035528.0	0.535294	Υ
6	IC 410-272051/6	50.0	28.192476	9.3	2777696.0	0.56385	Υ
7	IC 410-272051/7	100.0	48.609644	9.3	2552580.0	0.486096	Υ

Calibration / EVE Acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.822

Curve Coefficients

Error Coefficients

Standard Error:12500000Relative Standard Error:8.1Correlation Coefficient:0.981Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.365742	10.0	2101154.0	1.828709	Υ
2	IC 410-272051/2	0.5	0.889401	10.0	2137451.0	1.778801	Υ
3	IC 410-272051/3	2.0	4.069819	10.0	1916434.0	2.03491	Υ
4	IC 410-272051/4	8.0	14.818237	10.0	1863715.0	1.85228	Υ
5	ICISAV 410-272051/5	20.0	35.952408	10.0	1843086.0	1.79762	Υ
6	IC 410-272051/6	50.0	95.620151	10.0	1696732.0	1.912403	Υ
7	IC 410-272051/7	100.0	155.165886	10.0	1612678.0	1.551659	Υ

Calibration / PFECHS

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Intercept:	0
intercept.	U
Slope:	1.093

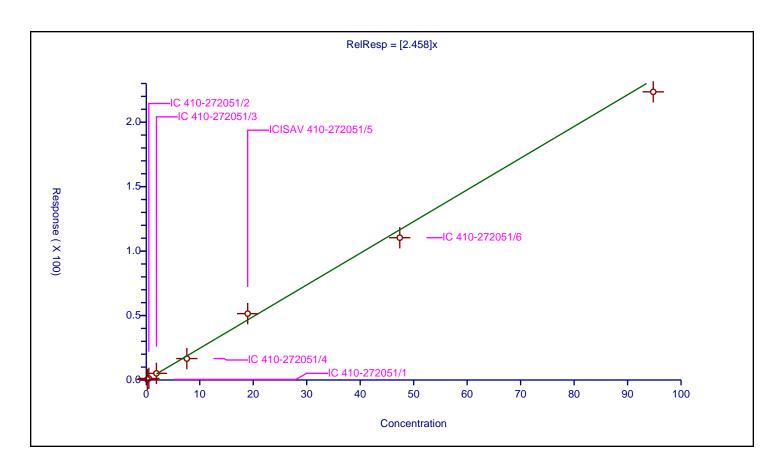
Curve Coefficients

Error Coefficients

Standard Error:12700000Relative Standard Error:9.8Correlation Coefficient:0.986Coefficient of Determination (Adjusted):0.989

0.176727	9.46	3618920.0	0.958391	Υ
0.473386	9.46	3344331.0	1.026868	Υ
1.89642	9.46	3069574.0	1.028427	Υ
7.802193	9.46	2976920.0	1.057781	Υ
20.681848	9.46	2880513.0	1.121575	Υ
58.545959	9.46	2603514.0	1.269977	Υ
109.273134	9.46	2217737.0	1.185175	Υ
	0.473386 1.89642 7.802193 20.681848 58.545959	0.473386 9.46 1.89642 9.46 7.802193 9.46 20.681848 9.46 58.545959 9.46	0.473386 9.46 3344331.0 1.89642 9.46 3069574.0 7.802193 9.46 2976920.0 20.681848 9.46 2880513.0 58.545959 9.46 2603514.0	0.473386 9.46 3344331.0 1.026868 1.89642 9.46 3069574.0 1.028427 7.802193 9.46 2976920.0 1.057781 20.681848 9.46 2880513.0 1.121575 58.545959 9.46 2603514.0 1.269977

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Coefficients

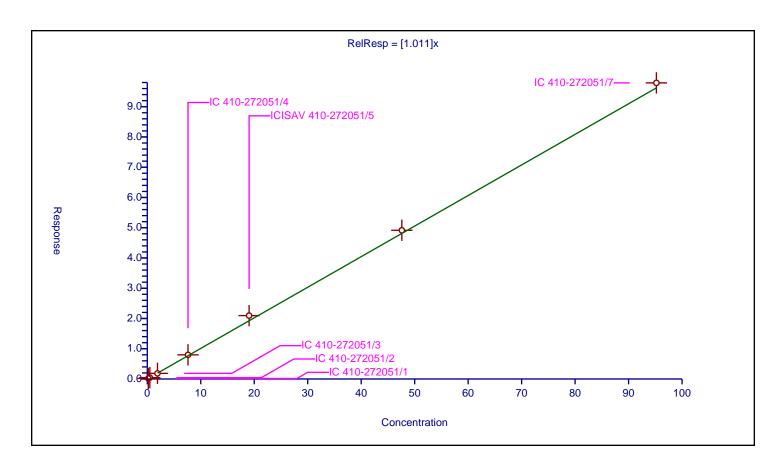
Intercept:	0
Slope:	2.458

Error Coefficients

Standard Error:	849000
Relative Standard Error:	8.3
Correlation Coefficient:	0.986
Coefficient of Determination (Adjusted):	0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.1896	0.444918	9.5	102982.0	2.346612	Υ
2	IC 410-272051/2	0.474	1.21202	9.5	102962.0	2.557004	Υ
3	IC 410-272051/3	1.896	5.141522	9.5	88880.0	2.711773	Υ
4	IC 410-272051/4	7.584	16.628591	9.5	98553.0	2.192588	Υ
5	ICISAV 410-272051/5	18.96	51.473678	9.5	92299.0	2.714856	Υ
6	IC 410-272051/6	47.4	110.371267	9.5	89394.0	2.328508	Υ
7	IC 410-272051/7	94.8	223.535811	9.5	73175.0	2.357973	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve	Coefficients
-------	--------------

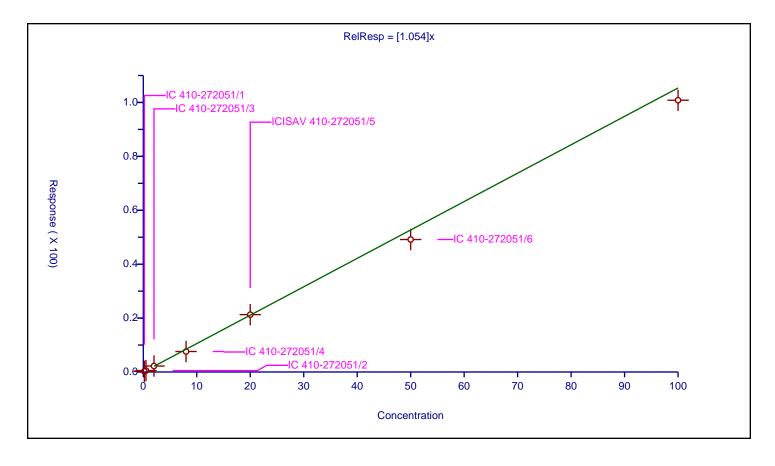
Intercept:	0
Slope:	1.011

Error Coefficients

Standard Error:11200000Relative Standard Error:5.7Correlation Coefficient:0.990Coefficient of Determination (Adjusted):0.996

Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
IC 410-272051/1	0.1904	0.180371	9.46	3618920.0	0.947328	Υ
IC 410-272051/2	0.476	0.448259	9.46	3344331.0	0.94172	Υ
IC 410-272051/3	1.904	1.860273	9.46	3069574.0	0.977034	Υ
IC 410-272051/4	7.616	7.980743	9.46	2976920.0	1.047892	Υ
ICISAV 410-272051/5	19.04	20.952894	9.46	2880513.0	1.100467	Υ
IC 410-272051/6	47.6	49.157417	9.46	2603514.0	1.032719	Υ
IC 410-272051/7	95.2	97.875459	9.46	2217737.0	1.028104	Υ
	IC 410-272051/1 IC 410-272051/2 IC 410-272051/3 IC 410-272051/4 ICISAV 410-272051/5 IC 410-272051/6	IC 410-272051/1 0.1904 IC 410-272051/2 0.476 IC 410-272051/3 1.904 IC 410-272051/4 7.616 ICISAV 410-272051/5 19.04 IC 410-272051/6 47.6	IC 410-272051/1 0.1904 0.180371 IC 410-272051/2 0.476 0.448259 IC 410-272051/3 1.904 1.860273 IC 410-272051/4 7.616 7.980743 ICISAV 410-272051/5 19.04 20.952894 IC 410-272051/6 47.6 49.157417	IC 410-272051/1 0.1904 0.180371 9.46 IC 410-272051/2 0.476 0.448259 9.46 IC 410-272051/3 1.904 1.860273 9.46 IC 410-272051/4 7.616 7.980743 9.46 ICISAV 410-272051/5 19.04 20.952894 9.46 IC 410-272051/6 47.6 49.157417 9.46	IC 410-272051/1 0.1904 0.180371 9.46 3618920.0 IC 410-272051/2 0.476 0.448259 9.46 3344331.0 IC 410-272051/3 1.904 1.860273 9.46 3069574.0 IC 410-272051/4 7.616 7.980743 9.46 2976920.0 ICISAV 410-272051/5 19.04 20.952894 9.46 2880513.0 IC 410-272051/6 47.6 49.157417 9.46 2603514.0	IC 410-272051/1 0.1904 0.180371 9.46 3618920.0 0.947328 IC 410-272051/2 0.476 0.448259 9.46 3344331.0 0.94172 IC 410-272051/3 1.904 1.860273 9.46 3069574.0 0.977034 IC 410-272051/4 7.616 7.980743 9.46 2976920.0 1.047892 ICISAV 410-272051/5 19.04 20.952894 9.46 2880513.0 1.100467 IC 410-272051/6 47.6 49.157417 9.46 2603514.0 1.032719

Calibration / Perfluorooctanoic acid


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients	
Intercept: Slope:		0 1.054

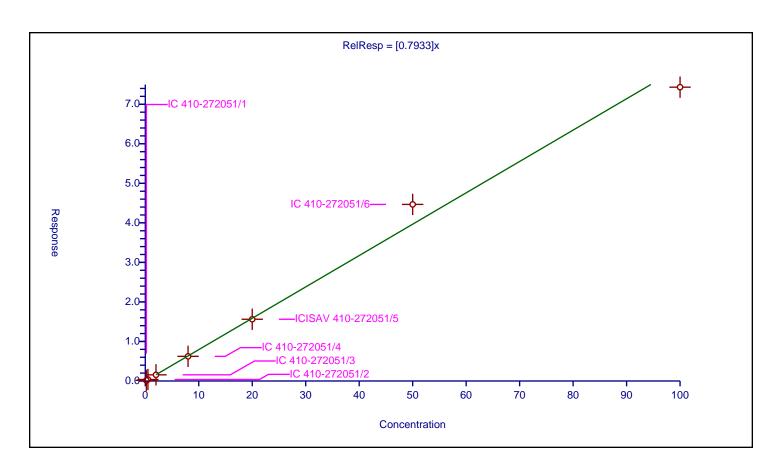
Error Coefficients

Standard Error:7390000Relative Standard Error:8.4Correlation Coefficient:0.988Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.243072	10.0	2251638.0	1.21536	Υ
2	IC 410-272051/2	0.5	0.524357	10.0	2394150.0	1.048715	Υ
3	IC 410-272051/3	2.0	2.213902	10.0	2049481.0	1.106951	Υ
4	IC 410-272051/4	8.0	7.602677	10.0	2102178.0	0.950335	Υ
5	ICISAV 410-272051/5	20.0	21.283175	10.0	2011823.0	1.064159	Υ
6	IC 410-272051/6	50.0	49.154093	10.0	1833583.0	0.983082	Υ
7	IC 410-272051/7	100.0	100.824121	10.0	1490170.0	1.008241	Υ

Calibration / TAF

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.7933

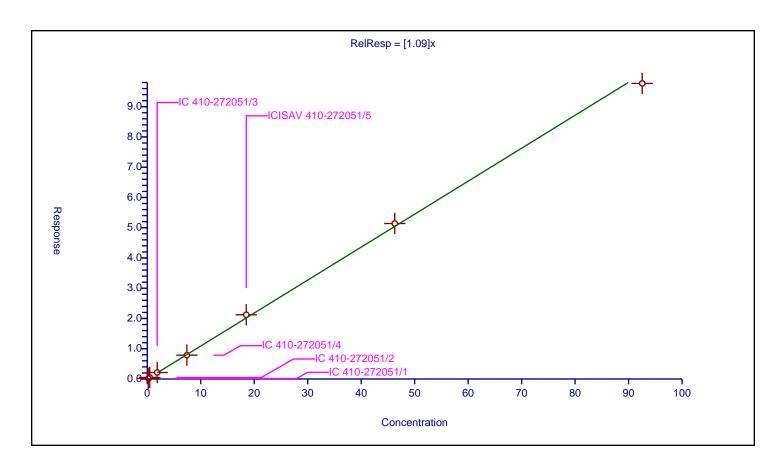
Curve Coefficients

Error Coefficients

Standard Error:5930000Relative Standard Error:6.2Correlation Coefficient:0.985Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.162963	10.0	2101154.0	0.814814	Υ
2	IC 410-272051/2	0.5	0.380626	10.0	2137451.0	0.761253	Υ
3	IC 410-272051/3	2.0	1.56033	10.0	1916434.0	0.780165	Υ
4	IC 410-272051/4	8.0	6.232997	10.0	1863715.0	0.779125	Υ
5	ICISAV 410-272051/5	20.0	15.619163	10.0	1843086.0	0.780958	Υ
6	IC 410-272051/6	50.0	44.667785	10.0	1696732.0	0.893356	Υ
7	IC 410-272051/7	100.0	74.326375	10.0	1612678.0	0.743264	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Coefficients
our to occiment

Intercept:	0
Slope:	1.09

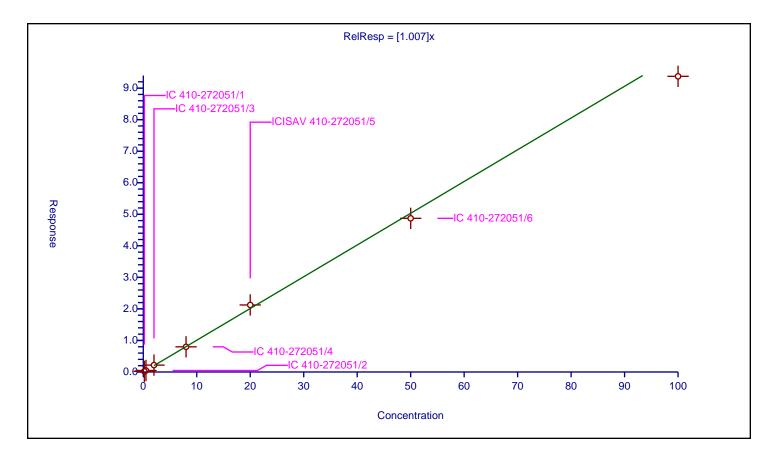
Error Coefficients

Standard Error:11700000Relative Standard Error:4.3Correlation Coefficient:0.993Coefficient of Determination (Adjusted):0.998

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.1851	0.190824	9.56	3064122.0	1.030925	Υ
2	IC 410-272051/2	0.46275	0.493639	9.56	2881715.0	1.066752	Υ
3	IC 410-272051/3	1.851	2.133502	9.56	2700744.0	1.152621	Υ
4	IC 410-272051/4	7.404	7.880148	9.56	2708769.0	1.06431	Υ
5	ICISAV 410-272051/5	18.51	21.226659	9.56	2767662.0	1.146767	Υ
6	IC 410-272051/6	46.275	51.400516	9.56	2603744.0	1.110762	Υ
7	IC 410-272051/7	92.55	97.695073	9.56	2356492.0	1.055592	Υ

Calibration / Perfluorononanoic acid

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.007

Curve Coefficients

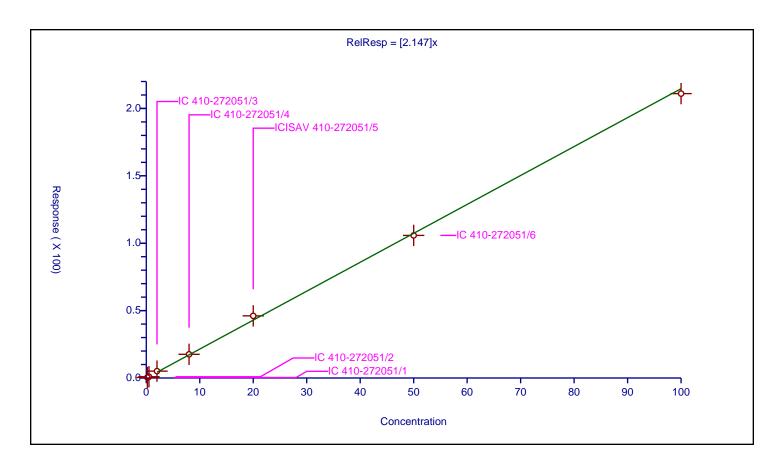
Error Coefficients

Standard Error:7040000Relative Standard Error:5.6Correlation Coefficient:0.980Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.204517	10.0	2267150.0	1.022583	Υ
2	IC 410-272051/2	0.5	0.478437	10.0	2194542.0	0.956874	Υ
3	IC 410-272051/3	2.0	2.187196	10.0	1809019.0	1.093598	Υ
4	IC 410-272051/4	8.0	7.98443	10.0	1940910.0	0.998054	Υ
5	ICISAV 410-272051/5	20.0	21.257273	10.0	1851229.0	1.062864	Υ
6	IC 410-272051/6	50.0	48.722649	10.0	1860703.0	0.974453	Υ
7	IC 410-272051/7	100.0	93.736596	10.0	1496983.0	0.937366	Υ

Calibration /7:3 FTCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	2.147

Curve Coefficients

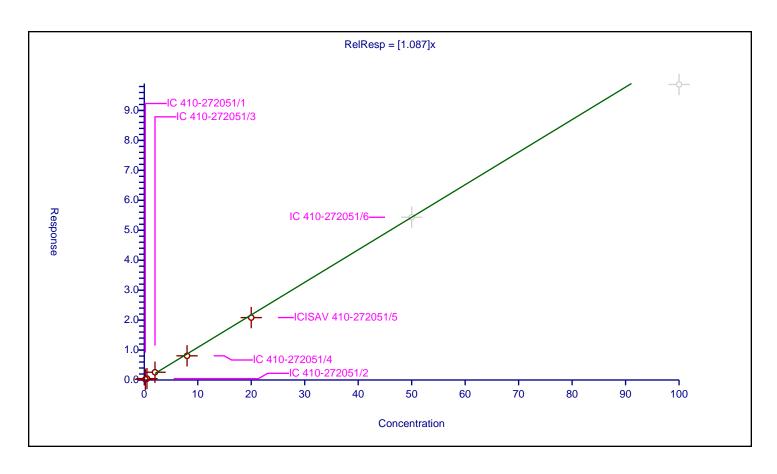
Error Coefficients

Standard Error:2040000Relative Standard Error:11.0Correlation Coefficient:0.987Coefficient of Determination (Adjusted):0.987

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.372449	10.0	271500.0	1.862247	Υ
2	IC 410-272051/2	0.5	0.946333	10.0	309817.0	1.892666	Υ
3	IC 410-272051/3	2.0	5.087231	10.0	237874.0	2.543616	Υ
4	IC 410-272051/4	8.0	17.571598	10.0	261040.0	2.19645	Υ
5	ICISAV 410-272051/5	20.0	46.107685	10.0	232995.0	2.305384	Υ
6	IC 410-272051/6	50.0	105.797523	10.0	242457.0	2.11595	Υ
7	IC 410-272051/7	100.0	211.016041	10.0	195691.0	2.11016	Υ

Calibration /8:2 FTUCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.087

Curve Coefficients

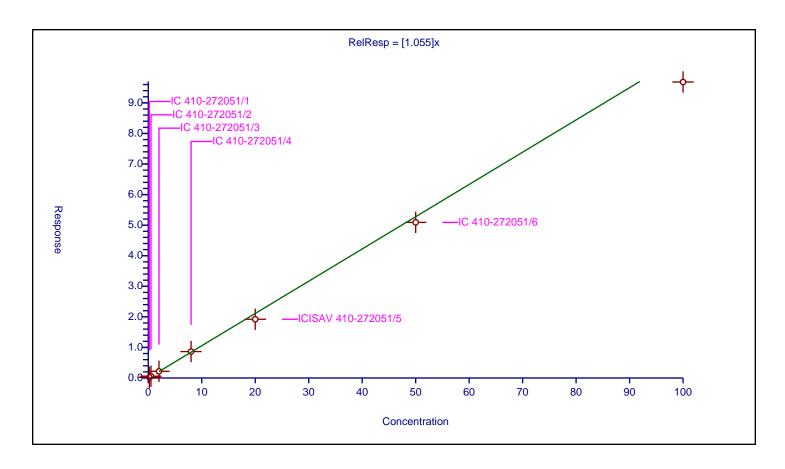
Error Coefficients

Standard Error:1910000Relative Standard Error:13.1Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.977

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.232087	10.0	2096413.0	1.160435	Υ
2	IC 410-272051/2	0.5	0.464188	10.0	2406827.0	0.928376	Υ
3	IC 410-272051/3	2.0	2.587879	10.0	1774708.0	1.29394	Υ
4	IC 410-272051/4	8.0	8.074205	10.0	1843898.0	1.009276	Υ
5	ICISAV 410-272051/5	20.0	20.83663	10.0	1677217.0	1.041831	Υ
6	IC 410-272051/6	50.0	54.3407	10.0	1578978.0	1.086814	N
7	IC 410-272051/7	100.0	98.680901	10.0	1377736.0	0.986809	N

Calibration /8:2 FTCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

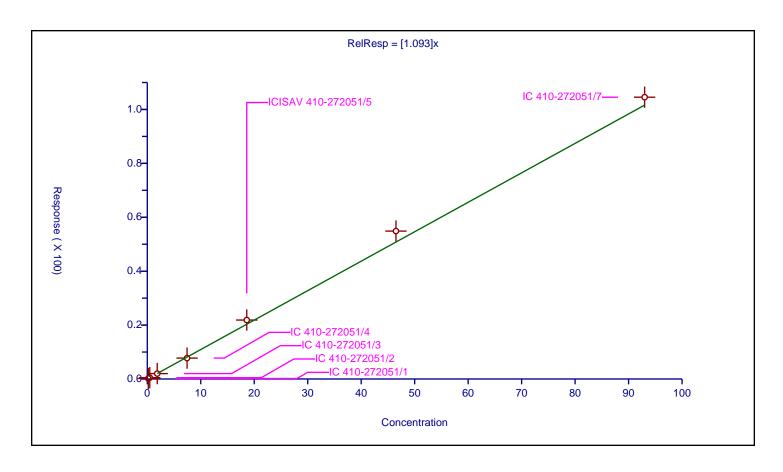

Intercept:	0
Slope:	1.055

Curve Coefficients

Error Coefficients

Standard Error:678000Relative Standard Error:7.3Correlation Coefficient:0.984Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.217754	10.0	205599.0	1.08877	Υ
2	IC 410-272051/2	0.5	0.587177	10.0	198407.0	1.174354	Υ
3	IC 410-272051/3	2.0	2.192783	10.0	185130.0	1.096392	Υ
4	IC 410-272051/4	8.0	8.644219	10.0	171156.0	1.080527	Υ
5	ICISAV 410-272051/5	20.0	19.219156	10.0	170700.0	0.960958	Υ
6	IC 410-272051/6	50.0	50.919525	10.0	171556.0	1.01839	Υ
7	IC 410-272051/7	100.0	96.832378	10.0	141109.0	0.968324	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Cur	ve Coefficients
Intercept:	0
Slope:	1.093

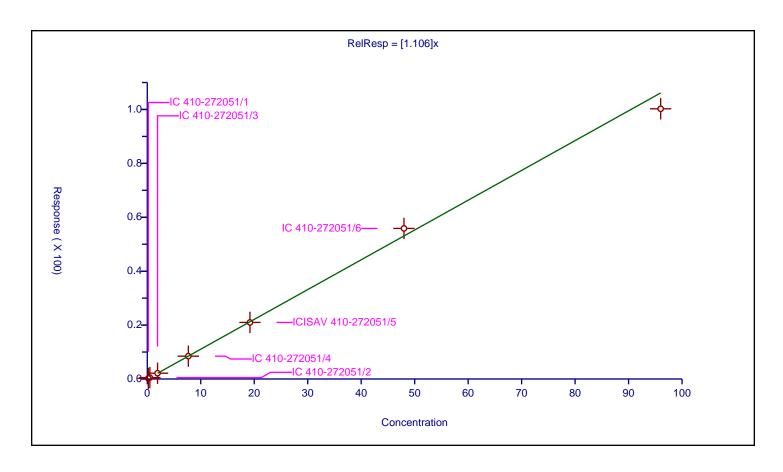
Error Coefficients

Standard Error:12500000Relative Standard Error:6.4Correlation Coefficient:0.993Coefficient of Determination (Adjusted):0.995

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.186	0.185215	9.56	3064122.0	0.995777	Υ
2	IC 410-272051/2	0.465	0.489459	9.56	2881715.0	1.052601	Υ
3	IC 410-272051/3	1.86	2.004962	9.56	2700744.0	1.077937	Υ
4	IC 410-272051/4	7.44	7.754778	9.56	2708769.0	1.042309	Υ
5	ICISAV 410-272051/5	18.6	21.86505	9.56	2767662.0	1.17554	Υ
6	IC 410-272051/6	46.5	54.870906	9.56	2603744.0	1.180019	Υ
7	IC 410-272051/7	93.0	104.553797	9.56	2356492.0	1.124234	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve	Coefficients	

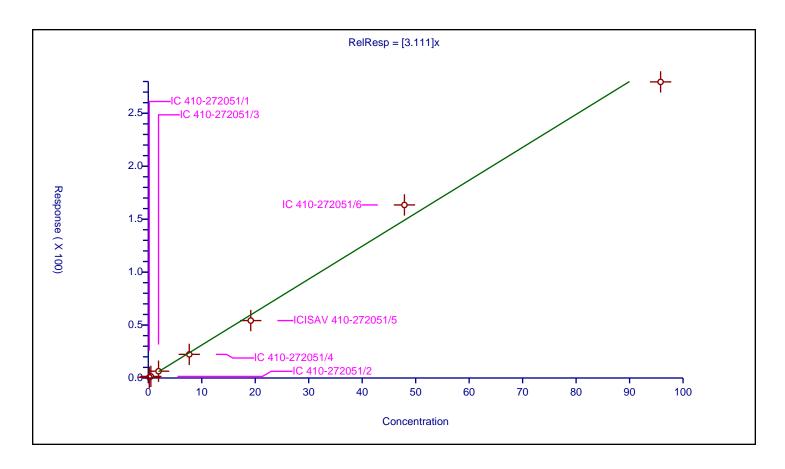

 Intercept:
 0

 Slope:
 1.106

Error Coefficients

Standard Error:12100000Relative Standard Error:3.4Correlation Coefficient:0.988Coefficient of Determination (Adjusted):0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.192	0.216324	9.56	3064122.0	1.126687	Υ
2	IC 410-272051/2	0.48	0.522199	9.56	2881715.0	1.087916	Υ
3	IC 410-272051/3	1.92	2.150882	9.56	2700744.0	1.120251	Υ
4	IC 410-272051/4	7.68	8.471031	9.56	2708769.0	1.102999	Υ
5	ICISAV 410-272051/5	19.2	20.986144	9.56	2767662.0	1.093028	Υ
6	IC 410-272051/6	48.0	55.861135	9.56	2603744.0	1.163774	Υ
7	IC 410-272051/7	96.0	100.247194	9.56	2356492.0	1.044242	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

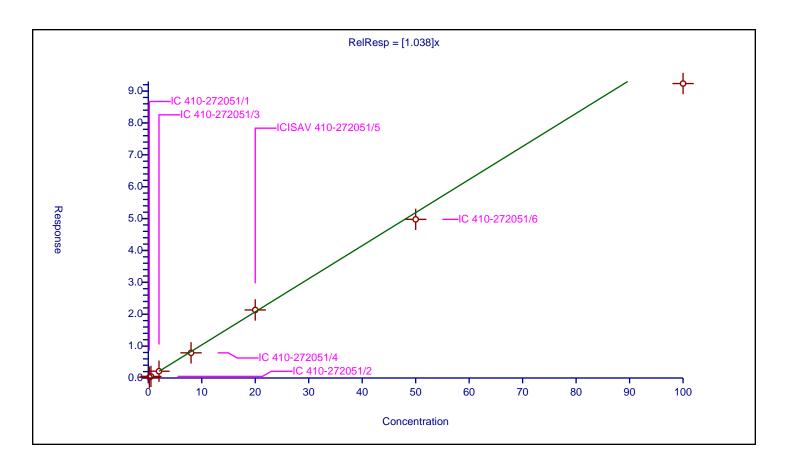
Curve Coefficients	
Intercept:	0
Slope:	3.111

Error Coefficients

Standard Error:820000Relative Standard Error:7.5Correlation Coefficient:0.980Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.1916	0.622625	9.58	74132.0	3.249609	Υ
2	IC 410-272051/2	0.479	1.489006	9.58	77341.0	3.108571	Υ
3	IC 410-272051/3	1.916	6.420778	9.58	69181.0	3.351137	Υ
4	IC 410-272051/4	7.664	22.302649	9.58	73841.0	2.910053	Υ
5	ICISAV 410-272051/5	19.16	54.225272	9.58	68449.0	2.830129	Υ
6	IC 410-272051/6	47.9	163.430357	9.58	63138.0	3.411907	Υ
7	IC 410-272051/7	95.8	279.618475	9.58	56245.0	2.918773	Υ

Calibration / Perfluorodecanoic acid

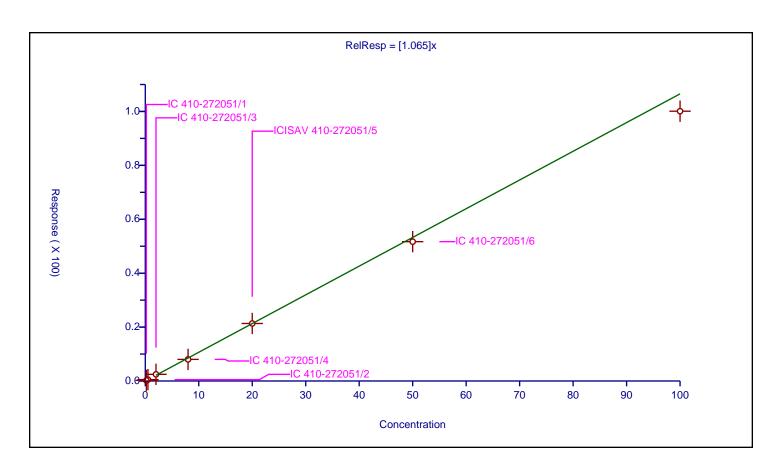

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

	Curve Coefficients
Intercept:	0
Slope:	1.038

Error Coefficients

Standard Error:7210000Relative Standard Error:8.7Correlation Coefficient:0.982Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.242121	10.0	1978966.0	1.210607	Υ
2	IC 410-272051/2	0.5	0.509099	10.0	1975274.0	1.018198	Υ
3	IC 410-272051/3	2.0	2.123954	10.0	1786583.0	1.061977	Υ
4	IC 410-272051/4	8.0	7.88903	10.0	1875882.0	0.986129	Υ
5	ICISAV 410-272051/5	20.0	21.341814	10.0	1793818.0	1.067091	Υ
6	IC 410-272051/6	50.0	49.75824	10.0	1868920.0	0.995165	Υ
7	IC 410-272051/7	100.0	92.358061	10.0	1563297.0	0.923581	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

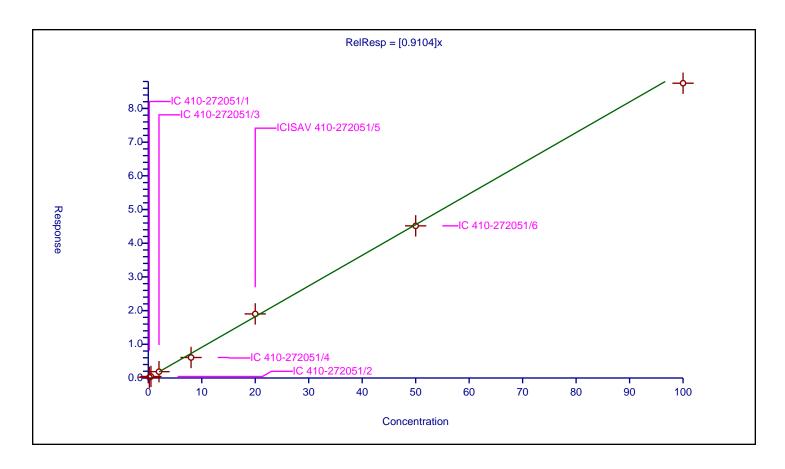
	Curve Coefficients	
Intercept: Slope:		0 1.065

Error Coefficients

Standard Error:17100000Relative Standard Error:7.7Correlation Coefficient:0.988Coefficient of Determination (Adjusted):0.993

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.21836	10.0	4434931.0	1.091798	Υ
2	IC 410-272051/2	0.5	0.512288	10.0	4452784.0	1.024577	Υ
3	IC 410-272051/3	2.0	2.473043	10.0	3684837.0	1.236521	Υ
4	IC 410-272051/4	8.0	8.018584	10.0	4469328.0	1.002323	Υ
5	ICISAV 410-272051/5	20.0	21.336827	10.0	4240465.0	1.066841	Υ
6	IC 410-272051/6	50.0	51.693849	10.0	4131241.0	1.033877	Υ
7	IC 410-272051/7	100.0	100.095715	10.0	3469663.0	1.000957	Υ

/ N-methylperfluorooctanesulfonamidoacetic acid

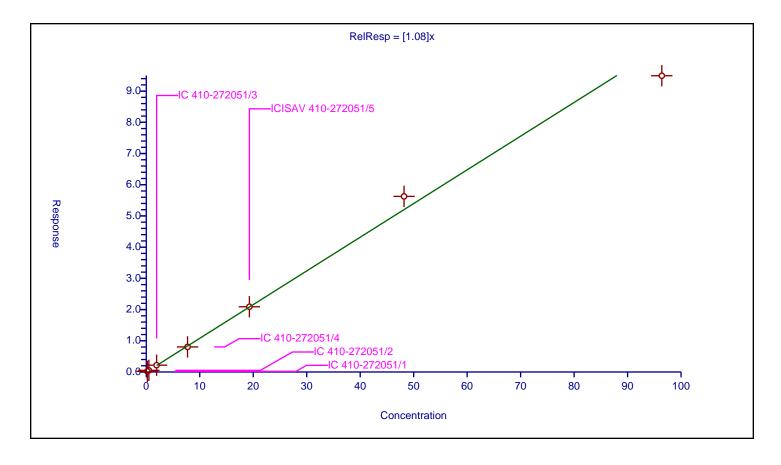

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.9104

Error Coefficients

Standard Error:2570000Relative Standard Error:9.5Correlation Coefficient:0.987Coefficient of Determination (Adjusted):0.988

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.208948	10.0	734730.0	1.044738	Υ
2	IC 410-272051/2	0.5	0.449373	10.0	767937.0	0.898746	Υ
3	IC 410-272051/3	2.0	1.879593	10.0	686654.0	0.939796	Υ
4	IC 410-272051/4	8.0	6.083638	10.0	767120.0	0.760455	Υ
5	ICISAV 410-272051/5	20.0	19.016429	10.0	706487.0	0.950821	Υ
6	IC 410-272051/6	50.0	45.15747	10.0	714424.0	0.903149	Υ
7	IC 410-272051/7	100.0	87.492257	10.0	595029.0	0.874923	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

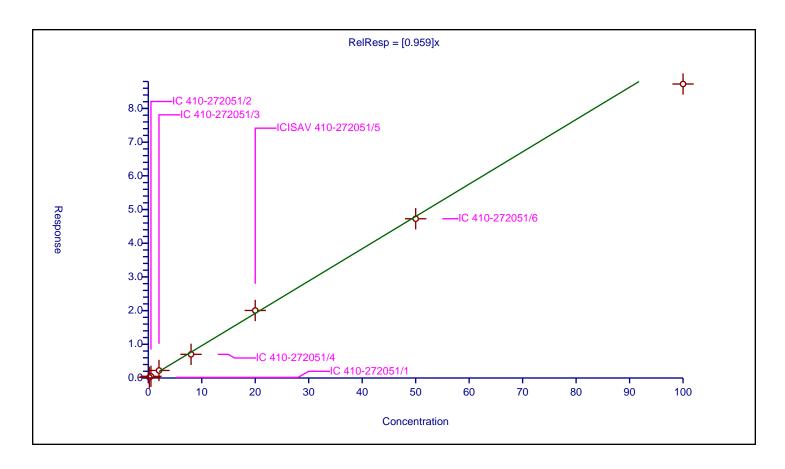
Curve Co	efficients
Intercept:	0
Slope:	1.08

Error Coefficients

Standard Error:11700000Relative Standard Error:5.5Correlation Coefficient:0.980Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.1928	0.206393	9.56	3064122.0	1.070503	Υ
2	IC 410-272051/2	0.482	0.517575	9.56	2881715.0	1.073807	Υ
3	IC 410-272051/3	1.928	2.186934	9.56	2700744.0	1.134302	Υ
4	IC 410-272051/4	7.712	8.035571	9.56	2708769.0	1.041957	Υ
5	ICISAV 410-272051/5	19.28	20.900726	9.56	2767662.0	1.084063	Υ
6	IC 410-272051/6	48.2	56.268393	9.56	2603744.0	1.167394	Υ
7	IC 410-272051/7	96.4	94.925775	9.56	2356492.0	0.984707	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Co	pefficients
----------	-------------

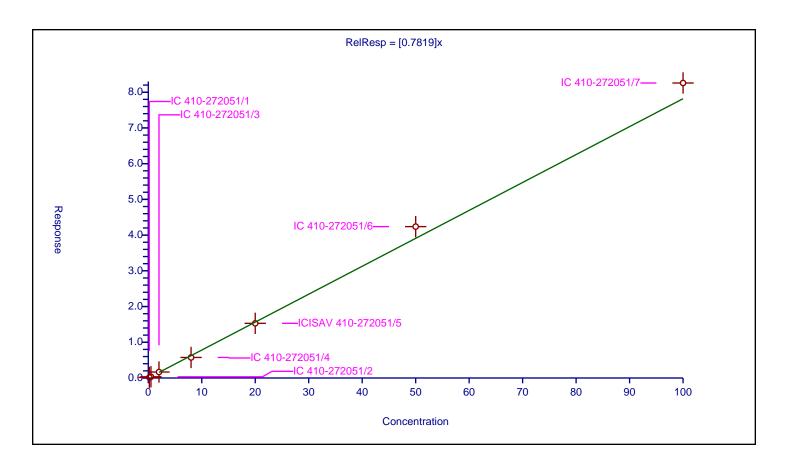
Intercept:	0
Slope:	0.959

Error Coefficients

Standard Error:4930000Relative Standard Error:9.2Correlation Coefficient:0.985Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.179641	10.0	1547972.0	0.898207	Υ
2	IC 410-272051/2	0.5	0.49967	10.0	1448677.0	0.999339	Υ
3	IC 410-272051/3	2.0	2.235351	10.0	1192931.0	1.117676	Υ
4	IC 410-272051/4	8.0	7.021943	10.0	1417169.0	0.877743	Υ
5	ICISAV 410-272051/5	20.0	20.039479	10.0	1316665.0	1.001974	Υ
6	IC 410-272051/6	50.0	47.262542	10.0	1322815.0	0.945251	Υ
7	IC 410-272051/7	100.0	87.254752	10.0	1138786.0	0.872548	Υ

/ N-ethylperfluorooctanesulfonamidoacetic acid


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	0.7819

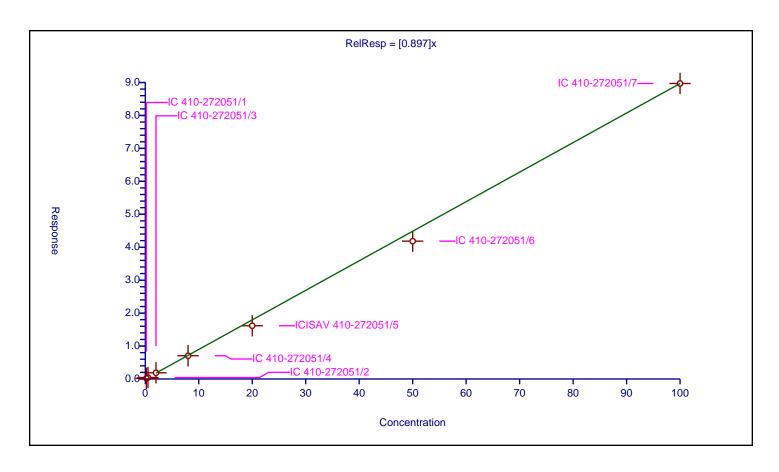
Error Coefficients

Standard Error:1890000Relative Standard Error:8.0Correlation Coefficient:0.982Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.159135	10.0	635248.0	0.795674	Υ
2	IC 410-272051/2	0.5	0.341771	10.0	661116.0	0.683541	Υ
3	IC 410-272051/3	2.0	1.673975	10.0	599346.0	0.836987	Υ
4	IC 410-272051/4	8.0	5.748463	10.0	628314.0	0.718558	Υ
5	ICISAV 410-272051/5	20.0	15.300617	10.0	658695.0	0.765031	Υ
6	IC 410-272051/6	50.0	42.379484	10.0	574196.0	0.84759	Υ
7	IC 410-272051/7	100.0	82.581872	10.0	458826.0	0.825819	Υ

Calibration / 10:2 FTUCA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	0.897

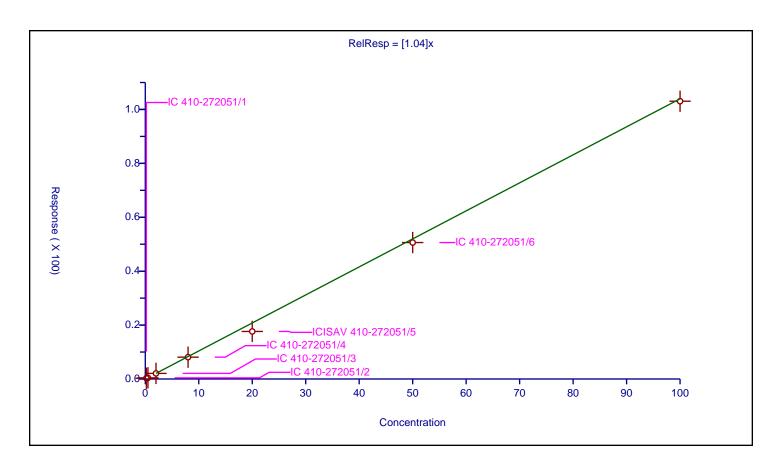
Curve Coefficients

Error Coefficients

Standard Error:5710000Relative Standard Error:8.1Correlation Coefficient:0.991Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.206017	10.0	1930082.0	1.030086	Υ
2	IC 410-272051/2	0.5	0.441999	10.0	2086206.0	0.883997	Υ
3	IC 410-272051/3	2.0	1.880463	10.0	1815159.0	0.940232	Υ
4	IC 410-272051/4	8.0	7.061985	10.0	1837938.0	0.882748	Υ
5	ICISAV 410-272051/5	20.0	16.15994	10.0	1866044.0	0.807997	Υ
6	IC 410-272051/6	50.0	41.841412	10.0	1664000.0	0.836828	Υ
7	IC 410-272051/7	100.0	89.699104	10.0	1301910.0	0.896991	Υ

Calibration / 10:2 FTCA


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

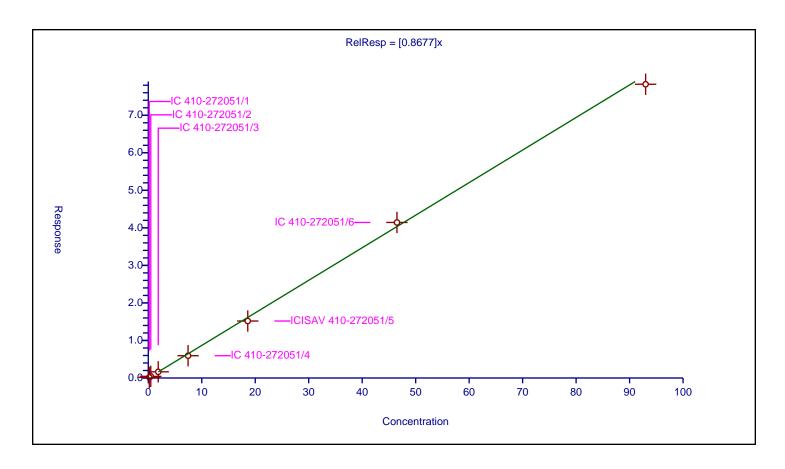
	Curve Coefficients	
Intercept: Slope:		0 1.04

Error Coefficients

538000
19.2
0.982
0.948

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.291484	10.0	171776.0	1.457421	Υ
2	IC 410-272051/2	0.5	0.422181	10.0	199322.0	0.844362	Υ
3	IC 410-272051/3	2.0	2.074731	10.0	145749.0	1.037366	Υ
4	IC 410-272051/4	8.0	8.10205	10.0	156669.0	1.012756	Υ
5	ICISAV 410-272051/5	20.0	17.63758	10.0	154092.0	0.881879	Υ
6	IC 410-272051/6	50.0	50.621246	10.0	137691.0	1.012425	Υ
7	IC 410-272051/7	100.0	103.058731	10.0	104527.0	1.030587	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Curve Coefficients

Intercept:	0
Slope:	0.8677

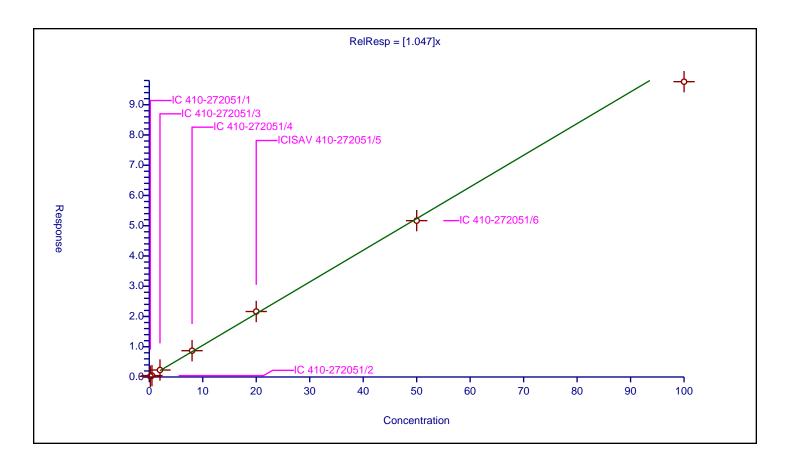
Error Coefficients

Standard Error:9330000Relative Standard Error:5.9Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.996

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.186	0.167066	9.56	3064122.0	0.898202	Υ
2	IC 410-272051/2	0.465	0.438251	9.56	2881715.0	0.942475	Υ
3	IC 410-272051/3	1.86	1.648384	9.56	2700744.0	0.886228	Υ
4	IC 410-272051/4	7.44	5.935096	9.56	2708769.0	0.797728	Υ
5	ICISAV 410-272051/5	18.6	15.179929	9.56	2767662.0	0.816125	Υ
6	IC 410-272051/6	46.5	41.44547	9.56	2603744.0	0.8913	Υ
7	IC 410-272051/7	93.0	78.267789	9.56	2356492.0	0.841589	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

(Curve Coefficients	
		0


 Intercept:
 0

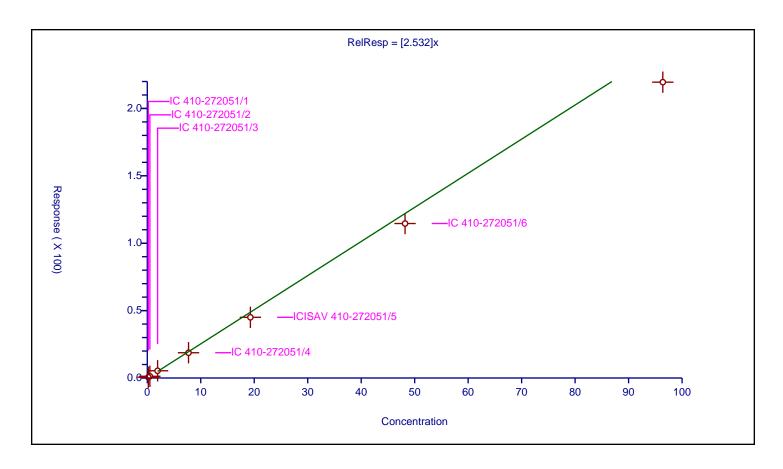
 Slope:
 1.047

Error Coefficients

Standard Error:3630000Relative Standard Error:6.9Correlation Coefficient:0.992Coefficient of Determination (Adjusted):0.994

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.212248	10.0	943425.0	1.06124	Υ
2	IC 410-272051/2	0.5	0.468282	10.0	991347.0	0.936564	Υ
3	IC 410-272051/3	2.0	2.305863	10.0	799501.0	1.152932	Υ
4	IC 410-272051/4	8.0	8.691276	10.0	810247.0	1.086409	Υ
5	ICISAV 410-272051/5	20.0	21.646696	10.0	852495.0	1.082335	Υ
6	IC 410-272051/6	50.0	51.682393	10.0	853011.0	1.033648	Υ
7	IC 410-272051/7	100.0	97.610116	10.0	765464.0	0.976101	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

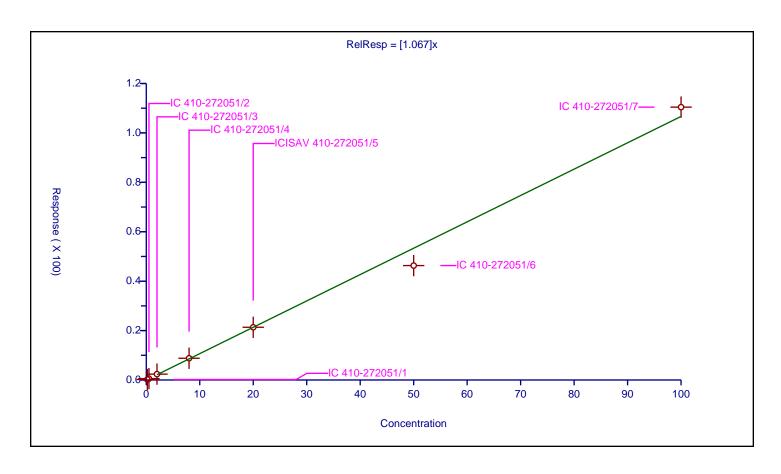

Curve Coefficients

Intercept:	0
Slope:	2.532

Error Coefficients

Standard Error:	627000
Relative Standard Error:	9.3
Correlation Coefficient:	0.993
Coefficient of Determination (Adjusted):	0.989

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.1928	0.555426	9.58	74132.0	2.88084	Υ
2	IC 410-272051/2	0.482	1.275459	9.58	77341.0	2.64618	Υ
3	IC 410-272051/3	1.928	5.355334	9.58	69181.0	2.777663	Υ
4	IC 410-272051/4	7.712	18.730696	9.58	73841.0	2.428773	Υ
5	ICISAV 410-272051/5	19.28	45.030297	9.58	68449.0	2.335596	Υ
6	IC 410-272051/6	48.2	114.620881	9.58	63138.0	2.378027	Υ
7	IC 410-272051/7	96.4	219.511363	9.58	56245.0	2.277089	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

Curve Coefficients	
Intercept:	0
Slope:	1.067

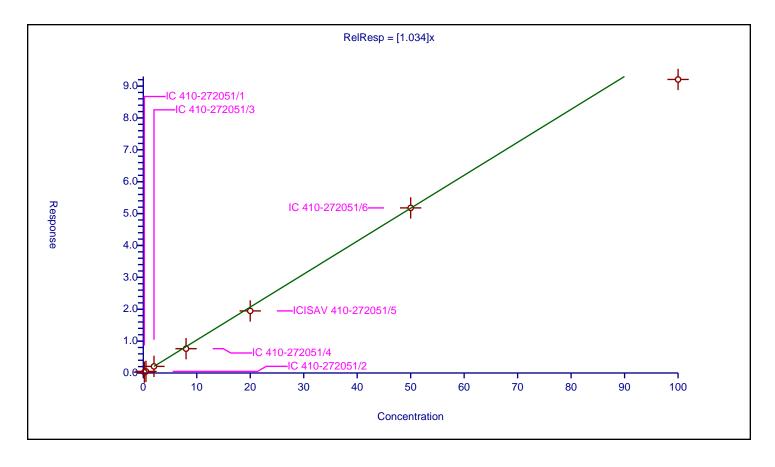
Error Coefficients

Standard Error:2330000Relative Standard Error:8.2Correlation Coefficient:0.999Coefficient of Determination (Adjusted):0.992

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.195486	10.0	552724.0	0.977432	Υ
2	IC 410-272051/2	0.5	0.553505	10.0	559670.0	1.107009	Υ
3	IC 410-272051/3	2.0	2.3699	10.0	488105.0	1.18495	Υ
4	IC 410-272051/4	8.0	8.799843	10.0	482212.0	1.09998	Υ
5	ICISAV 410-272051/5	20.0	21.340831	10.0	507864.0	1.067042	Υ
6	IC 410-272051/6	50.0	46.311687	10.0	565817.0	0.926234	Υ
7	IC 410-272051/7	100.0	110.436223	10.0	447340.0	1.104362	Υ

Calibration / NMeFOSA

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0


Intercept:	0
Slope:	1.034

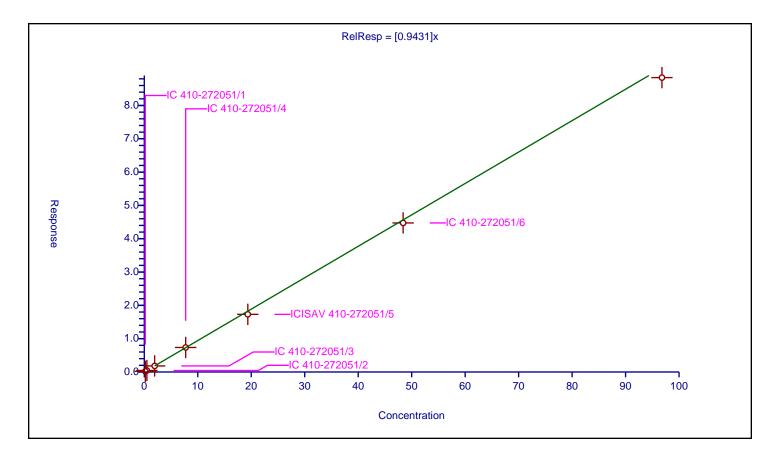
Curve Coefficients

Error Coefficients

Standard Error:2500000Relative Standard Error:12.4Correlation Coefficient:0.992Coefficient of Determination (Adjusted):0.979

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.261429	10.0	604830.0	1.307144	Υ
2	IC 410-272051/2	0.5	0.505736	10.0	647769.0	1.011472	Υ
3	IC 410-272051/3	2.0	2.067436	10.0	552438.0	1.033718	Υ
4	IC 410-272051/4	8.0	7.62689	10.0	608855.0	0.953361	Υ
5	ICISAV 410-272051/5	20.0	19.469241	10.0	589816.0	0.973462	Υ
6	IC 410-272051/6	50.0	51.783364	10.0	594870.0	1.035667	Υ
7	IC 410-272051/7	100.0	92.075309	10.0	558683.0	0.920753	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

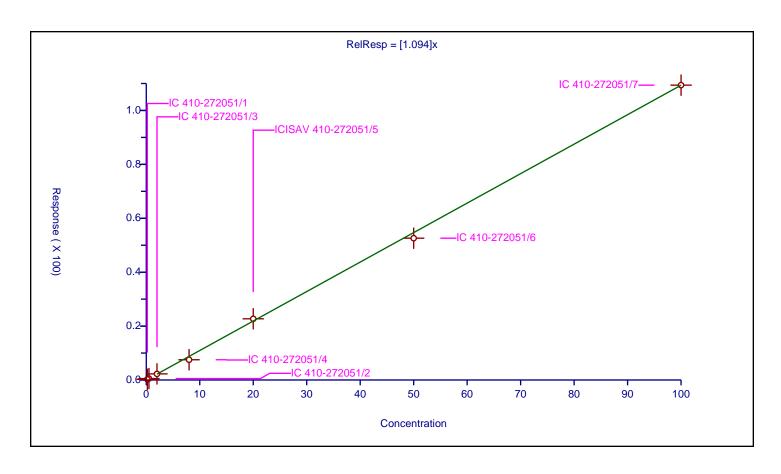

Curve Coefficients

Intercept:	0
Slope:	0.9431

Error Coefficients

Standard Error:10400000Relative Standard Error:4.9Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.1936	0.201117	9.56	3064122.0	1.038828	Υ
2	IC 410-272051/2	0.484	0.454546	9.56	2881715.0	0.939145	Υ
3	IC 410-272051/3	1.936	1.823712	9.56	2700744.0	0.942	Υ
4	IC 410-272051/4	7.744	7.362819	9.56	2708769.0	0.950777	Υ
5	ICISAV 410-272051/5	19.36	17.306197	9.56	2767662.0	0.893915	Υ
6	IC 410-272051/6	48.4	44.742596	9.56	2603744.0	0.924434	Υ
7	IC 410-272051/7	96.8	88.369926	9.56	2356492.0	0.912912	Υ


Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

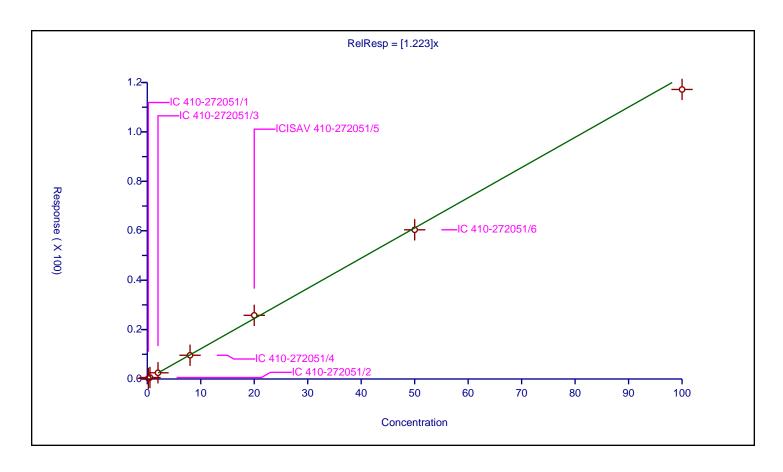
Curve Coe	fficients
Intercept:	0
Slope:	1.094

Error Coefficients

Standard Error:2460000Relative Standard Error:8.4Correlation Coefficient:0.997Coefficient of Determination (Adjusted):0.991

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.247765	10.0	615179.0	1.238826	Υ
2	IC 410-272051/2	0.5	0.531617	10.0	603743.0	1.063234	Υ
3	IC 410-272051/3	2.0	2.26805	10.0	527334.0	1.134025	Υ
4	IC 410-272051/4	8.0	7.509381	10.0	589247.0	0.938673	Υ
5	ICISAV 410-272051/5	20.0	22.701271	10.0	497451.0	1.135064	Υ
6	IC 410-272051/6	50.0	52.611628	10.0	545966.0	1.052233	Υ
7	IC 410-272051/7	100.0	109.389077	10.0	470583.0	1.093891	Υ

Curve Type: Average
Weighting: Conc_Sq
Origin: Force
Dependency: Response
Calib Mode: IsoDil
Response Base: AREA
RF Rounding: 0

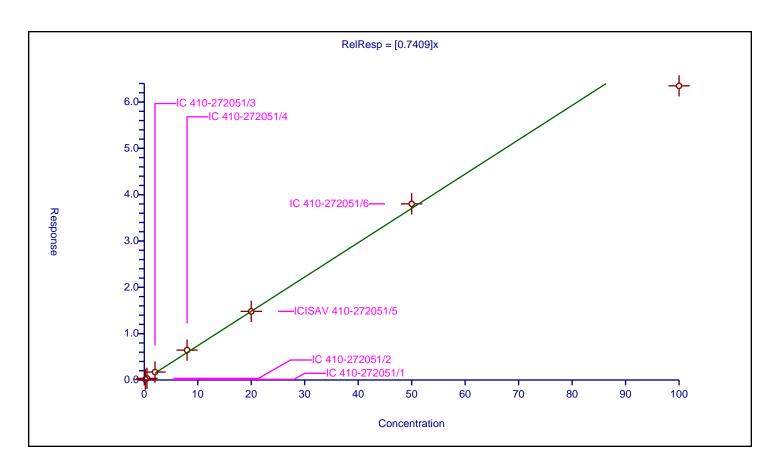

Curve Coefficients

Intercept:	0
Slope:	1.223

Error Coefficients

Standard Error:	2560000
Relative Standard Error:	3.2
Correlation Coefficient:	0.991
Coefficient of Determination (Adjusted):	0.999

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.24669	10.0	587094.0	1.233448	Υ
2	IC 410-272051/2	0.5	0.600281	10.0	589557.0	1.200562	Υ
3	IC 410-272051/3	2.0	2.510257	10.0	512091.0	1.255128	Υ
4	IC 410-272051/4	8.0	9.611044	10.0	529546.0	1.201381	Υ
5	ICISAV 410-272051/5	20.0	25.768531	10.0	517624.0	1.288427	Υ
6	IC 410-272051/6	50.0	60.38327	10.0	515120.0	1.207665	Υ
7	IC 410-272051/7	100.0	117.18765	10.0	447455.0	1.171877	Υ

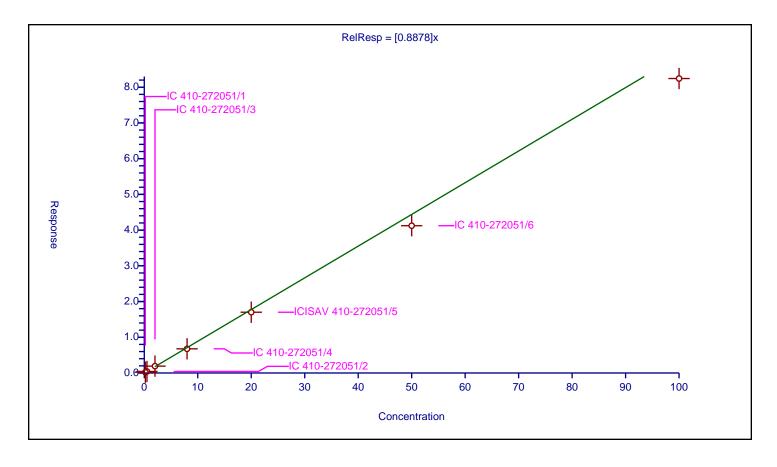


Curve Coefficients	
Intercept: Slope:	0 0.7409
Slope.	0.7409

Error Coefficients

Standard Error:2450000Relative Standard Error:10.1Correlation Coefficient:0.977Coefficient of Determination (Adjusted):0.988

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.137488	10.0	943425.0	0.687442	Υ
2	IC 410-272051/2	0.5	0.349918	10.0	991347.0	0.699836	Υ
3	IC 410-272051/3	2.0	1.713231	10.0	799501.0	0.856616	Υ
4	IC 410-272051/4	8.0	6.451786	10.0	810247.0	0.806473	Υ
5	ICISAV 410-272051/5	20.0	14.813389	10.0	852495.0	0.740669	Υ
6	IC 410-272051/6	50.0	38.024961	10.0	853011.0	0.760499	Υ
7	IC 410-272051/7	100.0	63.494913	10.0	765464.0	0.634949	Υ

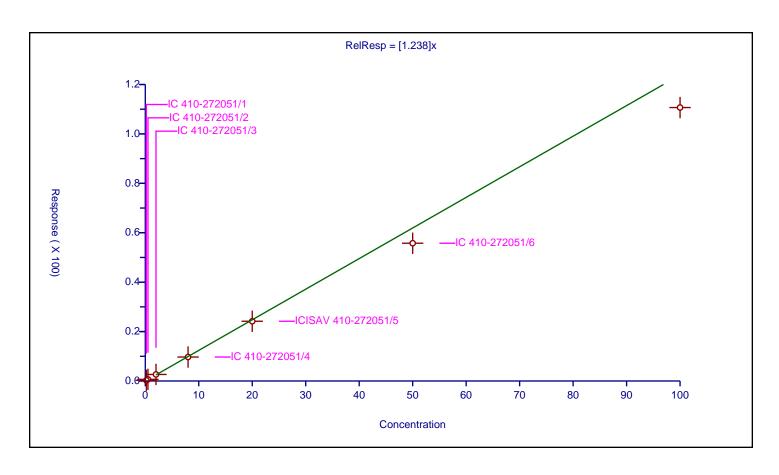


C	urve Coefficients
Intercept:	0
Slope:	0.8878

Error Coefficients

Standard Error:2580000Relative Standard Error:9.7Correlation Coefficient:0.994Coefficient of Determination (Adjusted):0.988

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.210243	10.0	837509.0	1.051213	Υ
2	IC 410-272051/2	0.5	0.428063	10.0	815440.0	0.856127	Υ
3	IC 410-272051/3	2.0	1.923496	10.0	717038.0	0.961748	Υ
4	IC 410-272051/4	8.0	6.765415	10.0	747252.0	0.845677	Υ
5	ICISAV 410-272051/5	20.0	17.012932	10.0	740780.0	0.850647	Υ
6	IC 410-272051/6	50.0	41.228376	10.0	752750.0	0.824568	Υ
7	IC 410-272051/7	100.0	82.436114	10.0	648385.0	0.824361	Υ

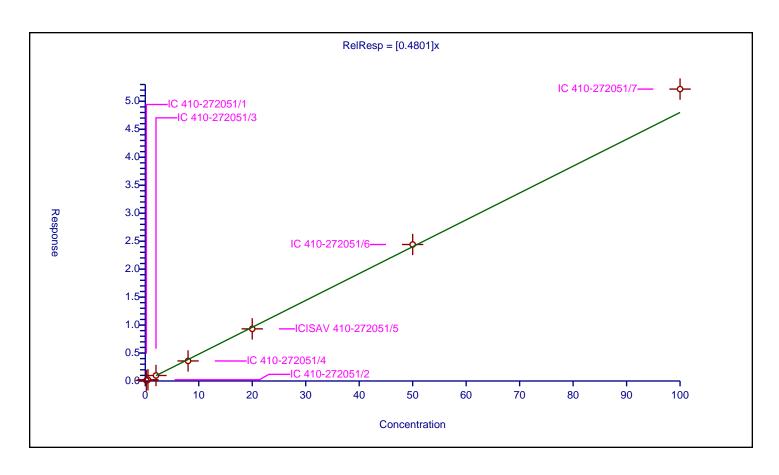


Curve Coefficients	
Intercept:	0
Slope:	1.238

Error Coefficients

Standard Error:3490000Relative Standard Error:8.6Correlation Coefficient:0.993Coefficient of Determination (Adjusted):0.990

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.274791	10.0	837509.0	1.373955	Υ
2	IC 410-272051/2	0.5	0.663396	10.0	815440.0	1.326793	Υ
3	IC 410-272051/3	2.0	2.649037	10.0	717038.0	1.324518	Υ
4	IC 410-272051/4	8.0	9.702751	10.0	747252.0	1.212844	Υ
5	ICISAV 410-272051/5	20.0	24.179959	10.0	740780.0	1.208998	Υ
6	IC 410-272051/6	50.0	55.760877	10.0	752750.0	1.115218	Υ
7	IC 410-272051/7	100.0	110.675232	10.0	648385.0	1.106752	Υ



Curve Coefficients	
Intercept:	0
Slope:	0.4801

Error Coefficients

Standard Error:1600000Relative Standard Error:5.2Correlation Coefficient:0.998Coefficient of Determination (Adjusted):0.997

ID	Level	Concentration	Rel. Resp.	IS Amount	IS Response	RRF	Used
1	IC 410-272051/1	0.2	0.097706	10.0	837509.0	0.488532	Υ
2	IC 410-272051/2	0.5	0.228306	10.0	815440.0	0.456612	Υ
3	IC 410-272051/3	2.0	0.983058	10.0	717038.0	0.491529	Υ
4	IC 410-272051/4	8.0	3.583958	10.0	747252.0	0.447995	Υ
5	ICISAV 410-272051/5	20.0	9.318354	10.0	740780.0	0.465918	Υ
6	IC 410-272051/6	50.0	24.397622	10.0	752750.0	0.487952	Υ
7	IC 410-272051/7	100.0	52.182422	10.0	648385.0	0.521824	Υ

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: <u>ICV 410-271695/9</u> Calibration Date: <u>07/01/2022 14:37</u>

Instrument ID: 30733 Calib Start Date: 07/01/2022 13:08

GC Column: Gemini C18 50mm ID: 3.00(mm) Calib End Date: 07/01/2022 14:15

Lab File ID: 22JUL01XMCAL-09.d Conc. Units: ng/mL

231271777	GHDHD	7111 555	DDE	MIN DDE	07.7.0	ap Tur	0.5	
ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	% D	MAX %D
MTP	AveID	0.0671	0.0630		1.88	2.00	-6.2	30.0
PPF Acid	AveID	0.4070	0.3994		1.96	2.00	-1.9	30.0
PFMOAA	AveID	0.2004	0.1990		1.99	2.00	-0.7	30.0
Perfluorobutanoic acid	AveID	0.9493	0.999		2.10	2.00	5.2	30.0
R-EVE	AveID	0.1597	0.1519		1.90	2.00	-4.9	30.0
R-PSDA	AveID	0.0304	0.0282		1.86	2.00	-7.0	30.0
Hydrolyzed PSDA	AveID	0.2005	0.1899		1.90	2.00	-5.2	30.0
PMPA	AveID	0.4660	0.4821		2.07	2.00	3.5	30.0
Perfluoropropanesulfonic acid	AveID	0.4460	0.4615		1.90	1.83	3.5	30.0
NVHOS	AveID	0.2819	0.2854		2.03	2.00	1.3	30.0
PFECA F	AveID	1.034	1.025		1.98	2.00	-0.9	30.0
PFO2HxA	AveID	0.3315	0.3466		2.09	2.00	4.6	30.0
3:3 FTCA	AveID	0.0668	0.0763		2.28	2.00	14.2	30.0
Perfluoropentanoic acid	AveID	0.9776	1.007		2.06	2.00	3.0	30.0
Perfluorobutanesulfonic acid	AveID	1.043	1.063		1.80	1.77	2.0	30.0
PEPA	AveID	0.1977	0.2065		2.09	2.00	4.5	30.0
PFECA A	AveID	0.5804	0.5753		1.98	2.00	-0.9	30.0
Perfluoro (2-ethoxyethane) sulfonic acid	AveID	2.513	2.654		1.88	1.78	5.6	30.0
PFECA B	AveID	0.7432	0.7339		1.97	2.00	-1.3	30.0
4:2 Fluorotelomer sulfonic acid	AveID	2.504	2.791		2.08	1.87	11.5	30.0
Perfluorohexanoic acid	AveID	0.8992	0.8475		1.89	2.00	-5.7	30.0
Perfluoropentanesulfonic acid	AveID	0.9815	1.000		1.91	1.88	1.9	30.0
PF030A	AveID	0.4036	0.4055		2.01	2.00	0.5	30.0
HFPODA	AveID	0.8779	0.9389		2.14	2.00	7.0	30.0
Hydro-EVE Acid	AveID	2.160	1.992		1.84	2.00	-7.8	30.0
R-PSDCA	AveID	2.090 1.079	2.035 0.9360		1.95	2.00	-2.6	30.0
Perfluoroheptanoic acid	AveID	1.079			1.73	1.82	-13.3 -1.3	30.0
Perfluorohexanesulfonic acid	AveID		1.092		1.80	2.00		
Hydro-PS Acid DONA	AveID	1.534	1.491		1.94	1.89	-2.8 -7.5	30.0
PFECA G						2.00		
5:3 FTCA	AveID	2.271 0.2177	2.516 0.2023		2.22	2.00	10.8	30.0
6:2 FTUCA	AveID		1.295				-7.1	30.0
6:2 FTCA	AveID	1.147	0.9857		2.26	2.00	12.9	
PFO4DA	AveID AveID	1.072 0.7025	0.9857		2.16	2.00	-8.1 8.1	30.0
PS Acid	AveID	0.7025	0.7592		1.98	2.00	-0.8	30.0
EVE Acid		1.783			2.10	2.00		30.0
Perfluoro-4-ethylcyclohexane sulfonic acid	AveID AveID	1.783	1.875 1.016		1.72	1.84	5.2 -6.7	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: <u>ICV 410-271695/9</u> Calibration Date: <u>07/01/2022 14:37</u>

Instrument ID: 30733 Calib Start Date: 07/01/2022 13:08

GC Column: Gemini C18 50mm ID: 3.00 (mm) Calib End Date: 07/01/2022 14:15

Lab File ID: 22JUL01XMCAL-09.d Conc. Units: ng/mL

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	%D	MAX
	TYPE				AMOUNT	AMOUNT		%D
6:2 Fluorotelomer sulfonic acid	AveID	2.421	2.721		2.13	1.90	12.4	30.0
Perfluoroheptanesulfonic acid	AveID	1.020	0.996		1.86	1.90	-2.3	30.0
Perfluorooctanoic acid	AveID	1.017	1.015		2.00	2.00	-0.2	30.0
TAF	AveID	0.8021	0.7704		1.92	2.00	-4.0	30.0
Perfluorooctanesulfonic acid	AveID	1.100	1.151		1.94	1.85	4.7	30.0
Perfluorononanoic acid	AveID	0.998	1.018		2.04	2.00	1.9	30.0
7:3 FTCA	AveID	2.302	2.261		1.96	2.00	-1.8	30.0
8:2 FTUCA	AveID	1.052	1.236		2.35	2.00	17.4	30.0
8:2 FTCA	AveID	1.002	1.017		2.03	2.00	1.5	30.0
9Cl-PF3ONS	AveID	1.096	1.184		2.01	1.86	7.9	30.0
Perfluorononanesulfonic acid	AveID	1.148	1.180		1.97	1.92	2.8	30.0
8:2 Fluorotelomer sulfonic acid	AveID	3.416	3.008		1.69	1.92	-11.9	30.0
Perfluorodecanoic acid	AveID	1.037	0.9854		1.90	2.00	-4.9	30.0
Perfluorooctanesulfonamide	AveID	1.041	1.237		2.38	2.00	18.8	30.0
NMeFOSAA	AveID	0.8496	1.062		2.50	2.00	25.0	30.0
Perfluorodecanesulfonic acid	AveID	1.063	1.041		1.89	1.93	-2.1	30.0
Perfluoroundecanoic acid	AveID	0.9419	0.9867		2.10	2.00	4.8	30.0
NEtFOSAA	AveID	0.8366	0.8085		1.93	2.00	-3.4	30.0
10:2 FTUCA	AveID	0.9204	0.8974		1.95	2.00	-2.5	30.0
10:2 FTCA	AveID	1.109	0.9700		1.75	2.00	-12.5	30.0
11Cl-PF3OUdS	AveID	0.8357	0.8746		1.95	1.86	4.7	30.0
Perfluorododecanoic acid	AveID	1.018	1.048		2.06	2.00	3.0	30.0
10:2 FTS	AveID	2.222	2.191		1.90	1.93	-1.4	30.0
NMeFOSE	AveID	1.113	1.195		2.15	2.00	7.4	30.0
NMeFOSA	AveID	1.004	1.035		2.06	2.00	3.0	30.0
Perfluorododecanesulfonic acid	AveID	0.9210	0.9516		2.00	1.94	3.3	30.0
NETFOSE	AveID	1.090	1.132		2.08	2.00	3.9	30.0
Perfluorotridecanoic acid	AveID	0.7488	0.8297		2.22	2.00	10.8	30.0
NEtFOSA	AveID	1.230	1.262		2.05	2.00	2.6	30.0
Perfluorotetradecanoic acid	AveID	0.9078	0.8861		1.95	2.00	-2.4	30.0
Perfluorohexadecanoic acid	AveID	1.223	1.227		2.01	2.00	0.3	30.0
Perfluorooctadecanoic acid	AveID	0.4910	0.4570		1.86	2.00	-6.9	30.0
13C4 PFBA	Ave	1.123	1.104		9.83	10.0	-1.7	30.0
13C5 PFPeA	Ave	1.001	0.9694		9.69	10.0	-3.1	30.0
13C3 PFBS	Ave	1.811	1.739		8.93	9.30	-4.0	30.0
M2-4:2 FTS	Ave	0.0838	0.0730		8.13	9.34	-13.0	30.0
13C5 PFHxA	Ave	1.163	1.067		9.17	10.0	-8.3	30.0
13C3 HFPO-DA	Ave	0.3556	0.3099		8.71	10.0	-12.9	30.0
13C3 PFHxS	Ave	1.532	1.408		8.69	9.46	-8.1	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: <u>ICV 410-271695/9</u> Calibration Date: <u>07/01/2022 14:37</u>

Instrument ID: 30733 Calib Start Date: 07/01/2022 13:08

GC Column: Gemini C18 50mm ID: 3.00(mm) Calib End Date: 07/01/2022 14:15

Lab File ID: 22JUL01XMCAL-09.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
13C4 PFHpA	Ave	1.126	1.164		10.3	10.0	3.4	30.0
13C2-2H-Perfluoro-2-octenoic acid	Ave	1.174	1.066		9.08	10.0	-9.2	30.0
13C2-2-Perfluorohexylethanoi c acid	Ave	0.1232	0.1258		10.2	10.0	2.2	30.0
M2-6:2 FTS	Ave	0.0571	0.0495		8.23	9.50	-13.3	30.0
13C8 PFOA	Ave	1.005	0.9725		9.68	10.0	-3.2	30.0
13C8 PFOS	Ave	1.020	0.9878		9.26	9.56	-3.1	30.0
13C9 PFNA	Ave	0.7025	0.7250		10.3	10.0	3.2	30.0
13C2-2H-Perfluoro-2-decenoic acid	Ave	1.096	0.9690		8.84	10.0	-11.6	30.0
13C2-2-Perfluorooctylethanoi c acid	Ave	0.1132	0.1045		9.23	10.0	-7.7	30.0
13C6 PFDA	Ave	1.031	0.9901		9.60	10.0	-4.0	30.0
M2-8:2 FTS	Ave	0.0507	0.0520		9.82	9.58	2.5	30.0
13C8 FOSA	Ave	2.325	2.015		8.67	10.0	-13.3	30.0
d3-NMeFOSAA	Ave	0.4181	0.3522		8.42	10.0	-15.8	30.0
13C7 PFUnA	Ave	0.7482	0.7111		9.50	10.0	-5.0	30.0
d5-NEtFOSAA	Ave	0.3553	0.3502		9.86	10.0	-1.4	30.0
13C2-2H-Perfluoro-2-dodeceno ic acid	Ave	0.9922	0.9862		9.94	10.0	-0.6	30.0
13C2-2-Perfluorodecylethanoi c acid	Ave	0.0855	0.0849		9.93	10.0	-0.7	30.0
13C2-PFDoDA	Ave	0.4824	0.4419		9.16	10.0	-8.4	30.0
d7-N-MeFOSE-M	Ave	0.2666	0.2311		8.67	10.0	-13.3	30.0
d3-NMePFOSA	Ave	0.3156	0.2849		9.03	10.0	-9.7	30.0
d9-N-EtFOSE-M	Ave	0.2950	0.2673		9.06	10.0	-9.4	30.0
d5-NEtPFOSA	Ave	0.2850	0.2600		9.12	10.0	-8.8	30.0
13C2 PFTeDA	Ave	0.3901	0.3936		10.1	10.0	0.9	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: CCV 410-271895/1 Calibration Date: 07/02/2022 15:49

Instrument ID: 30733 Calib Start Date: 07/01/2022 13:08

GC Column: Gemini C18 50mm ID: $3.00 \, (mm)$ Calib End Date: 07/01/2022 14:15

Lab File ID: 22JUL02-01.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
MTP	AveID	0.0671	0.0693		2.07	2.00	3.3	30.0
PPF Acid	AveID	0.4070	0.4544		2.23	2.00	11.7	30.0
PFMOAA	AveID	0.2004	0.2114		2.11	2.00	5.5	30.0
Perfluorobutanoic acid	AveID	0.9493	0.9834		2.07	2.00	3.6	30.0
R-EVE	AveID	0.1597	0.1523		1.91	2.00	-4.6	30.0
R-PSDA	AveID	0.0304	0.0274		1.81	2.00	-9.7	30.0
Hydrolyzed PSDA	AveID	0.2005	0.1919		1.91	2.00	-4.3	30.0
PMPA	AveID	0.4660	0.4465		1.92	2.00	-4.2	30.0
Perfluoropropanesulfonic acid	AveID	0.4460	0.4243		1.74	1.83	-4.9	30.0
NVHOS	AveID	0.2819	0.2940		2.09	2.00	4.3	30.0
PFECA F	AveID	1.034	1.054		2.04	2.00	1.9	30.0
PFO2HxA	AveID	0.3315	0.3191		1.93	2.00	-3.7	30.0
3:3 FTCA	AveID	0.0668	0.0776		2.32	2.00	16.2	30.0
Perfluoropentanoic acid	AveID	0.9776	1.039		2.12	2.00	6.2	30.0
Perfluorobutanesulfonic acid	AveID	1.043	1.074		1.82	1.77	3.0	30.0
PEPA	AveID	0.1977	0.1891		1.91	2.00	-4.3	30.0
PFECA A	AveID	0.5804	0.6605		2.28	2.00	13.8	30.0
Perfluoro (2-ethoxyethane) sulfonic acid	AveID	2.513	2.615		1.85	1.78	4.1	30.0
PFECA B	AveID	0.7432	0.8297		2.23	2.00	11.6	30.0
4:2 Fluorotelomer sulfonic acid	AveID	2.504	2.610		1.95	1.87	4.2	30.0
Perfluorohexanoic acid	AveID	0.8992	0.997		2.22	2.00	10.9	30.0
Perfluoropentanesulfonic acid	AveID	0.9815	1.014		1.94	1.88	3.3	30.0
PF030A	AveID	0.4036	0.3964		1.96	2.00	-1.8	30.0
HFPODA	AveID	0.8779	0.8389		1.91	2.00	-4.4	30.0
Hydro-EVE Acid	AveID	2.160	2.143		1.98	2.00	-0.8	30.0
R-PSDCA	AveID	2.090	2.241		2.15	2.00	7.3	30.0
Perfluoroheptanoic acid	AveID	1.079	1.049		1.94	1.82	-2.8 -8.1	30.0
Perfluorohexanesulfonic acid	AveID	1.106			1.68	2.00	6.9	30.0
Hydro-PS Acid DONA	AveID	1.658	1.640		2.14	1.89	-1.9	30.0
PFECA G	AveID		1.626		1.85		8.9	30.0
5:3 FTCA	AveID	2.271 0.2177	2.474 0.2370		2.18	2.00	8.9	30.0
	AveID	1.147	1.217			2.00		
6:2 FTCA	AveID	1.147	1.217		2.12	2.00	6.1	30.0
PFO4DA	AveID	0.7025	0.7339		2.14	2.00	6.8	30.0
	AveID						4.5	
PS Acid	AveID	0.5388	0.5547		2.06	2.00	3.0	30.0
EVE Acid Perfluoro-4-ethylcyclohexane sulfonic acid	AveID AveID	1.783	1.795 1.025		2.01	2.00	0.7 -5.8	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: CCV 410-271895/1 Calibration Date: 07/02/2022 15:49

Instrument ID: 30733 Calib Start Date: 07/01/2022 13:08

GC Column: Gemini C18 50mm ID: 3.00(mm) Calib End Date: 07/01/2022 14:15

Lab File ID: 22JUL02-01.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
6:2 Fluorotelomer sulfonic acid	AveID	2.421	3.002		2.35	1.90	24.0	30.0
Perfluoroheptanesulfonic acid	AveID	1.020	0.9667		1.80	1.90	-5.2	30.0
Perfluorooctanoic acid	AveID	1.017	1.113		2.19	2.00	9.4	30.0
TAF	AveID	0.8021	0.7616		1.90	2.00	-5.0	30.0
Perfluorooctanesulfonic acid	AveID	1.100	1.219		2.05	1.85	10.9	30.0
Perfluorononanoic acid	AveID	0.998	1.116		2.24	2.00	11.8	30.0
7:3 FTCA	AveID	2.302	2.277		1.98	2.00	-1.1	30.0
8:2 FTUCA	AveID	1.052	1.102		2.09	2.00	4.7	30.0
8:2 FTCA	AveID	1.002	1.139		2.27	2.00	13.6	30.0
9Cl-PF3ONS	AveID	1.096	1.214		2.06	1.86	10.7	30.0
Perfluorononanesulfonic acid	AveID	1.148	1.155		1.93	1.92	0.6	30.0
8:2 Fluorotelomer sulfonic acid	AveID	3.416	3.534		1.98	1.92	3.5	30.0
Perfluorodecanoic acid	AveID	1.037	1.206		2.33	2.00	16.4	30.0
Perfluorooctanesulfonamide	AveID	1.041	1.183		2.27	2.00	13.6	30.0
NMeFOSAA	AveID	0.8496	1.030		2.42	2.00	21.2	30.0
Perfluorodecanesulfonic acid	AveID	1.063	1.157		2.10	1.93	8.9	30.0
Perfluoroundecanoic acid	AveID	0.9419	1.018		2.16	2.00	8.1	30.0
NEtFOSAA	AveID	0.8366	0.8591		2.05	2.00	2.7	30.0
10:2 FTUCA	AveID	0.9204	1.005		2.18	2.00	9.2	30.0
10:2 FTCA	AveID	1.109	0.9468		1.71	2.00	-14.6	30.0
11Cl-PF3OUdS	AveID	0.8357	0.9069		2.02	1.86	8.5	30.0
Perfluorododecanoic acid	AveID	1.018	1.157		2.27	2.00	13.7	30.0
10:2 FTS	AveID	2.222	3.213		2.79	1.93	44.6*	30.0
NMeFOSE	AveID	1.113	1.121		2.01	2.00	0.7	30.0
NMeFOSA	AveID	1.004	0.9448		1.88	2.00	-5.9	30.0
Perfluorododecanesulfonic acid	AveID	0.9210	1.047		2.20	1.94	13.6	30.0
NETFOSE	AveID	1.090	1.075		1.97	2.00	-1.3	30.0
Perfluorotridecanoic acid	AveID	0.7488	0.7927		2.12	2.00	5.9	30.0
NEtFOSA	AveID	1.230	1.204		1.96	2.00	-2.1	30.0
Perfluorotetradecanoic acid	AveID	0.9078	0.9664		2.13	2.00	6.4	30.0
Perfluorohexadecanoic acid	AveID	1.223	1.271		2.08	2.00	3.9	30.0
Perfluorooctadecanoic acid	AveID	0.4910	0.4806		1.96	2.00	-2.1	30.0
13C4 PFBA	Ave	1.123	1.141		10.2	10.0	1.6	30.0
13C5 PFPeA	Ave	1.001	0.9600		9.59	10.0	-4.1	30.0
13C3 PFBS	Ave	1.811	1.722		8.85	9.30	-4.9	30.0
M2-4:2 FTS	Ave	0.0838	0.0737		8.21	9.34	-12.1	30.0
13C5 PFHxA	Ave	1.163	1.185		10.2	10.0	1.9	30.0
13C3 HFPO-DA	Ave	0.3556	0.3514		9.88	10.0	-1.2	30.0
13C3 PFHxS	Ave	1.532	1.646		10.2	9.46	7.5	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: CCV 410-271895/1 Calibration Date: 07/02/2022 15:49

Instrument ID: 30733 Calib Start Date: 07/01/2022 13:08

GC Column: Gemini C18 50mm ID: 3.00 (mm) Calib End Date: 07/01/2022 14:15

Lab File ID: 22JUL02-01.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
13C4 PFHpA	Ave	1.126	1.212		10.8	10.0	7.7	30.0
13C2-2H-Perfluoro-2-octenoic acid	Ave	1.174	1.179		10.0	10.0	0.4	30.0
13C2-2-Perfluorohexylethanoi c acid	Ave	0.1232	0.1237		10.0	10.0	0.4	30.0
M2-6:2 FTS	Ave	0.0571	0.0453		7.53	9.50	-20.7	30.0
13C8 PFOA	Ave	1.005	1.002		9.97	10.0	-0.3	30.0
13C8 PFOS	Ave	1.020	1.029		9.65	9.56	0.9	30.0
13C9 PFNA	Ave	0.7025	0.7420		10.6	10.0	5.6	30.0
13C2-2H-Perfluoro-2-decenoic acid	Ave	1.096	1.031		9.41	10.0	-5.9	30.0
13C2-2-Perfluorooctylethanoi c acid	Ave	0.1132	0.1010		8.92	10.0	-10.8	30.0
13C6 PFDA	Ave	1.031	0.9390		9.11	10.0	-8.9	30.0
M2-8:2 FTS	Ave	0.0507	0.0384		7.25	9.58	-24.3	30.0
13C8 FOSA	Ave	2.325	2.070		8.90	10.0	-11.0	30.0
d3-NMeFOSAA	Ave	0.4181	0.3609		8.63	10.0	-13.7	30.0
13C7 PFUnA	Ave	0.7482	0.7161		9.57	10.0	-4.3	30.0
d5-NEtFOSAA	Ave	0.3553	0.3325		9.36	10.0	-6.4	30.0
13C2-2H-Perfluoro-2-dodeceno ic acid	Ave	0.9922	0.9750		9.83	10.0	-1.7	30.0
13C2-2-Perfluorodecylethanoi c acid	Ave	0.0855	0.0888		10.4	10.0	3.8	30.0
13C2-PFDoDA	Ave	0.4824	0.4553		9.44	10.0	-5.6	30.0
d7-N-MeFOSE-M	Ave	0.2666	0.2709		10.2	10.0	1.6	30.0
d3-NMePFOSA	Ave	0.3156	0.3015		9.55	10.0	-4.5	30.0
d9-N-EtFOSE-M	Ave	0.2950	0.2894		9.81	10.0	-1.9	30.0
d5-NEtPFOSA	Ave	0.2850	0.2637		9.25	10.0	-7.5	30.0
13C2 PFTeDA	Ave	0.3901	0.3781		9.69	10.0	-3.1	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: <u>CCV 410-271895/14</u> Calibration Date: <u>07/02/2022 18:15</u>

Instrument ID: 30733 Calib Start Date: 07/01/2022 13:08

GC Column: Gemini C18 50mm ID: 3.00 (mm) Calib End Date: 07/01/2022 14:15

Lab File ID: 22JUL02-14.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
MTP	AveID	0.0671	0.0653		7.78	8.00	-2.7	30.0
PPF Acid	AveID	0.4070	0.4012		7.89	8.00	-1.4	30.0
PFMOAA	AveID	0.2004	0.1951		7.79	8.00	-2.6	30.0
Perfluorobutanoic acid	AveID	0.9493	0.9459		7.97	8.00	-0.4	30.0
R-EVE	AveID	0.1597	0.1558		7.80	8.00	-2.5	30.0
R-PSDA	AveID	0.0304	0.0265		6.97	8.00	-12.8	30.0
Hydrolyzed PSDA	AveID	0.2005	0.1923		7.67	8.00	-4.1	30.0
PMPA	AveID	0.4660	0.4582		7.87	8.00	-1.7	30.0
Perfluoropropanesulfonic acid	AveID	0.4460	0.4573		7.51	7.33	2.5	30.0
NVHOS	AveID	0.2819	0.2578		7.32	8.00	-8.5	30.0
PFECA F	AveID	1.034	1.028		7.95	8.00	-0.6	30.0
PFO2HxA	AveID	0.3315	0.3389		8.18	8.00	2.2	30.0
3:3 FTCA	AveID	0.0668	0.0731		8.76	8.00	9.4	30.0
Perfluoropentanoic acid	AveID	0.9776	1.047		8.57	8.00	7.1	30.0
Perfluorobutanesulfonic acid	AveID	1.043	0.9197		6.25	7.08	-11.8	30.0
PEPA	AveID	0.1977	0.2022		8.18	8.00	2.3	30.0
PFECA A	AveID	0.5804	0.5428		7.48	8.00	-6.5	30.0
Perfluoro (2-ethoxyethane) sulfonic acid	AveID	2.513	2.404		6.81	7.12	-4.3	30.0
PFECA B	AveID	0.7432	0.7112		7.66	8.00	-4.3	30.0
4:2 Fluorotelomer sulfonic acid	AveID	2.504	2.394		7.15	7.47	-4.4	30.0
Perfluorohexanoic acid	AveID	0.8992	0.8607		7.66	8.00	-4.3	30.0
Perfluoropentanesulfonic acid	AveID	0.9815	0.9203		7.04	7.50	-6.2	30.0
PFO3OA	AveID	0.4036	0.4311		8.55	8.00	6.8	30.0
HFPODA	AveID	0.8779	0.7895		7.19	8.00	-10.1	30.0
Hydro-EVE Acid	AveID	2.160	2.022		7.49	8.00	-6.4	30.0
R-PSDCA	AveID	2.090	1.879		7.19	8.00	-10.1	30.0
Perfluoroheptanoic acid	AveID	1.079	1.051		7.79	8.00	-2.6	30.0
Perfluorohexanesulfonic acid	AveID	1.106	1.116		7.36	7.30	0.9	30.0
Hydro-PS Acid	AveID	1.534	1.434		7.48	8.00	-6.6	30.0
DONA	AveID	1.658	1.552		7.08	7.56	-6.4	30.0
PFECA G	AveID	2.271	2.613		9.20	8.00	15.1	30.0
5:3 FTCA	AveID	0.2177	0.2274		8.36	8.00	4.5	30.0
6:2 FTUCA	AveID	1.147	1.131		7.89	8.00	-1.4	30.0
6:2 FTCA	AveID	1.072	0.997		7.44	8.00	-7.0	30.0
PFO4DA	AveID	0.7025	0.7188		8.19	8.00	2.3	30.0
PS Acid	AveID	0.5388	0.5193		7.71	8.00	-3.6	30.0
EVE Acid	AveID	1.783	1.728		7.75	8.00	-3.1	30.0
Perfluoro-4-ethylcyclohexane sulfonic acid	AveID	1.089	1.032		6.99	7.38	-5.2	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: <u>CCV</u> 410-271895/14 Calibration Date: <u>07/02/2022</u> 18:15

Instrument ID: 30733 Calib Start Date: 07/01/2022 13:08

GC Column: Gemini C18 50mm ID: 3.00 (mm) Calib End Date: 07/01/2022 14:15

Lab File ID: 22JUL02-14.d Conc. Units: ng/mL

ANALYTE	CURVE	AVE RRF	RRF	MIN RRF	CALC	SPIKE	%D	MAX
	TYPE				AMOUNT	AMOUNT		%D
6:2 Fluorotelomer sulfonic acid	AveID	2.421	2.428		7.61	7.58	0.3	30.0
Perfluoroheptanesulfonic acid	AveID	1.020	1.069		7.98	7.62	4.8	30.0
Perfluorooctanoic acid	AveID	1.017	0.9171		7.21	8.00	-9.8	30.0
TAF	AveID	0.8021	0.7622		7.60	8.00	-5.0	30.0
Perfluorooctanesulfonic acid	AveID	1.100	1.062		7.15	7.40	-3.5	30.0
Perfluorononanoic acid	AveID	0.998	0.9309		7.46	8.00	-6.8	30.0
7:3 FTCA	AveID	2.302	2.170		7.54	8.00	-5.8	30.0
8:2 FTUCA	AveID	1.052	0.9824		7.47	8.00	-6.6	30.0
8:2 FTCA	AveID	1.002	0.9782		7.81	8.00	-2.4	30.0
9C1-PF3ONS	AveID	1.096	1.088		7.38	7.44	-0.8	30.0
Perfluorononanesulfonic acid	AveID	1.148	1.114		7.45	7.68	-2.9	30.0
8:2 Fluorotelomer sulfonic acid	AveID	3.416	2.958		6.64	7.66	-13.4	30.0
Perfluorodecanoic acid	AveID	1.037	1.059		8.17	8.00	2.2	30.0
Perfluorooctanesulfonamide	AveID	1.041	1.082		8.31	8.00	3.9	30.0
NMeFOSAA	AveID	0.8496	0.8321		7.84	8.00	-2.1	30.0
Perfluorodecanesulfonic acid	AveID	1.063	1.042		7.56	7.71	-1.9	30.0
Perfluoroundecanoic acid	AveID	0.9419	0.9111		7.74	8.00	-3.3	30.0
NETFOSAA	AveID	0.8366	0.7243		6.93	8.00	-13.4	30.0
10:2 FTUCA	AveID	0.9204	0.8730		7.59	8.00	-5.1	30.0
10:2 FTCA	AveID	1.109	0.9560		6.90	8.00	-13.8	30.0
11Cl-PF3OUdS	AveID	0.8357	0.8543		7.61	7.44	2.2	30.0
Perfluorododecanoic acid	AveID	1.018	0.9713		7.63	8.00	-4.6	30.0
10:2 FTS	AveID	2.222	2.656		9.22	7.71	19.5	30.0
NMeFOSE	AveID	1.113	1.032		7.42	8.00	-7.3	30.0
NMeFOSA	AveID	1.004	0.9147		7.28	8.00	-8.9	30.0
Perfluorododecanesulfonic acid	AveID	0.9210	0.8182		6.88	7.74	-11.2	30.0
NETFOSE	AveID	1.090	1.051		7.72	8.00	-3.5	30.0
Perfluorotridecanoic acid	AveID	0.7488	0.7051		7.53	8.00	-5.8	30.0
NEtFOSA	AveID	1.230	1.104		7.18	8.00	-10.2	30.0
Perfluorotetradecanoic acid	AveID	0.9078	0.8431		7.43	8.00	-7.1	30.0
Perfluorohexadecanoic acid	AveID	1.223	1.188		7.77	8.00	-2.9	30.0
Perfluorooctadecanoic acid	AveID	0.4910	0.4575		7.45	8.00	-6.8	30.0
13C4 PFBA	Ave	1.123	1.096		9.76	10.0	-2.4	30.0
13C5 PFPeA	Ave	1.001	0.9018		9.01	10.0	-9.9	30.0
13C3 PFBS	Ave	1.811	1.877		9.64	9.30	3.7	30.0
M2-4:2 FTS	Ave	0.0838	0.0885		9.85	9.34	5.5	30.0
13C5 PFHxA	Ave	1.163	1.066		9.17	10.0	-8.3	30.0
13C3 HFPO-DA	Ave	0.3556	0.3349		9.42	10.0	-5.8	30.0
13C3 PFHxS	Ave	1.532	1.334		8.24	9.46	-12.9	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: CCV 410-271895/14 Calibration Date: 07/02/2022 18:15

Instrument ID: 30733 Calib Start Date: 07/01/2022 13:08

GC Column: Gemini C18 50mm ID: 3.00(mm) Calib End Date: 07/01/2022 14:15

Lab File ID: 22JUL02-14.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
13C4 PFHpA	Ave	1.126	1.051		9.33	10.0	-6.7	30.0
13C2-2H-Perfluoro-2-octenoic acid	Ave	1.174	1.131		9.63	10.0	-3.7	30.0
13C2-2-Perfluorohexylethanoi c acid	Ave	0.1232	0.1201		9.75	10.0	-2.5	30.0
M2-6:2 FTS	Ave	0.0571	0.0509		8.47	9.50	-10.9	30.0
13C8 PFOA	Ave	1.005	1.034		10.3	10.0	2.9	30.0
13C8 PFOS	Ave	1.020	1.026		9.62	9.56	0.7	30.0
13C9 PFNA	Ave	0.7025	0.7523		10.7	10.0	7.1	30.0
13C2-2H-Perfluoro-2-decenoic acid	Ave	1.096	1.012		9.24	10.0	-7.6	30.0
13C2-2-Perfluorooctylethanoi c acid	Ave	0.1132	0.1012		8.93	10.0	-10.7	30.0
13C6 PFDA	Ave	1.031	0.9522		9.24	10.0	-7.6	30.0
M2-8:2 FTS	Ave	0.0507	0.0419		7.91	9.58	-17.4	30.0
13C8 FOSA	Ave	2.325	2.173		9.35	10.0	-6.5	30.0
d3-NMeFOSAA	Ave	0.4181	0.3847		9.20	10.0	-8.0	30.0
13C7 PFUnA	Ave	0.7482	0.7171		9.59	10.0	-4.1	30.0
d5-NEtFOSAA	Ave	0.3553	0.3444		9.69	10.0	-3.1	30.0
13C2-2H-Perfluoro-2-dodeceno ic acid	Ave	0.9922	1.005		10.1	10.0	1.3	30.0
13C2-2-Perfluorodecylethanoi c acid	Ave	0.0855	0.0815		9.52	10.0	-4.8	30.0
13C2-PFDoDA	Ave	0.4824	0.4819		9.99	10.0	-0.1	30.0
d7-N-MeFOSE-M	Ave	0.2666	0.2738		10.3	10.0	2.7	30.0
d3-NMePFOSA	Ave	0.3156	0.3170		10.0	10.0	0.4	30.0
d9-N-EtFOSE-M	Ave	0.2950	0.2913		9.88	10.0	-1.2	30.0
d5-NEtPFOSA	Ave	0.2850	0.2777		9.75	10.0	-2.5	30.0
13C2 PFTeDA	Ave	0.3901	0.4274		11.0	10.0	9.6	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: <u>ICV 410-272051/9</u> Calibration Date: <u>07/04/2022</u> 17:44

Instrument ID: 30733 Calib Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: 3.00 (mm) Calib End Date: 07/04/2022 17:22

Lab File ID: 22JUL04XMCAL-09.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
MTP	AveID	0.0692	0.0608		1.76	2.00	-12.2	30.0
PPF Acid	AveID	0.4383	0.3852		1.76	2.00	-12.1	30.0
PFMOAA	AveID	0.2082	0.1805		1.73	2.00	-13.3	30.0
Perfluorobutanoic acid	AveID	0.9481	0.9126		1.93	2.00	-3.7	30.0
R-EVE	AveID	0.1603	0.1478		1.84	2.00	-7.8	30.0
R-PSDA	AveID	0.0269	0.0252		1.87	2.00	-6.5	30.0
Hydrolyzed PSDA	AveID	0.1690	0.1562		1.85	2.00	-7.6	30.0
PMPA	AveID	0.4680	0.4125		1.76	2.00	-11.9	30.0
Perfluoropropanesulfonic	AveID	0.4520	0.4433		1.80	1.83	-1.9	30.0
acid								
NVHOS	AveID	0.2690	0.2656		1.98	2.00	-1.2	30.0
PFECA F	AveID	1.032	0.9866		1.91	2.00	-4.4	30.0
PFO2HxA	AveID	0.3213	0.2772		1.73	2.00	-13.7	30.0
3:3 FTCA	AveID	0.0714	0.0747		2.09	2.00	4.7	30.0
Perfluoropentanoic acid	AveID	1.067	1.000		1.87	2.00	-6.3	30.0
Perfluorobutanesulfonic acid	AveID	1.033	1.061		1.82	1.77	2.7	30.0
PEPA	AveID	0.2057	0.1912		1.86	2.00	-7.1	30.0
PFECA A	AveID	0.5653	0.5595		1.98	2.00	-1.0	30.0
Perfluoro (2-ethoxyethane) sulfonic acid	AveID	2.441	2.753		2.01	1.78	12.8	30.0
PFECA B	AveID	0.7147	0.7044		1.97	2.00	-1.4	30.0
4:2 Fluorotelomer sulfonic acid	AveID	2.496	2.668		2.00	1.87	6.9	30.0
Perfluorohexanoic acid	AveID	0.8889	0.7877		1.77	2.00	-11.4	30.0
Perfluoropentanesulfonic acid	AveID	0.9353	1.006		2.02	1.88	7.5	30.0
PF030A	AveID	0.4214	0.3556		1.69	2.00	-15.6	30.0
HFPODA	AveID	0.8142	0.8599		2.11	2.00	5.6	30.0
Hydro-EVE Acid	AveID	2.145	2.138		1.99	2.00	-0.3	30.0
R-PSDCA	AveID	2.057	2.071		2.01	2.00	0.7	30.0
Perfluoroheptanoic acid	AveID	1.059	1.056		1.99	2.00	-0.3	30.0
Perfluorohexanesulfonic acid	AveID	1.099	1.119		1.86	1.82	1.8	30.0
Hydro-PS Acid	AveID	1.505	1.504		2.00	2.00	-0.0	30.0
DONA	AveID	1.640	1.647		1.90	1.89	0.4	30.0
PFECA G	AveID	2.440	2.451		2.01	2.00	0.5	30.0
5:3 FTCA	AveID	0.2130	0.2142		2.01	2.00	0.5	30.0
6:2 FTUCA	AveID	1.152	1.234		2.14	2.00	7.2	30.0
6:2 FTCA	AveID	1.055	0.8674		1.64	2.00	-17.8	30.0
PFO4DA	AveID	0.7258	0.6589		1.82	2.00	-9.2	30.0
PS Acid	AveID	0.5318	0.5284		1.99	2.00	-0.7	30.0
EVE Acid	AveID	1.822	1.772		1.94	2.00	-2.8	30.0
Perfluoro-4-ethylcyclohexane sulfonic acid	AveID	1.093	1.019		1.72	1.84	-6.8	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: ICV 410-272051/9 Calibration Date: 07/04/2022 17:44

Instrument ID: 30733 Calib Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: 3.00(mm) Calib End Date: 07/04/2022 17:22

Lab File ID: 22JUL04XMCAL-09.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
6:2 Fluorotelomer sulfonic acid	AveID	2.458	2.493		1.92	1.90	1.4	30.0
Perfluoroheptanesulfonic acid	AveID	1.011	1.085		2.04	1.90	7.3	30.0
Perfluorooctanoic acid	AveID	1.054	0.995		1.89	2.00	-5.6	30.0
TAF	AveID	0.7933	0.7900		1.99	2.00	-0.4	30.0
Perfluorooctanesulfonic acid	AveID	1.090	1.230		2.09	1.85	12.9	30.0
Perfluorononanoic acid	AveID	1.007	1.186		2.36	2.00	17.8	30.0
7:3 FTCA	AveID	2.147	2.435		2.27	2.00	13.4	30.0
8:2 FTUCA	AveID	1.087	1.266		2.33	2.00	16.5	30.0
8:2 FTCA	AveID	1.055	1.104		2.09	2.00	4.6	30.0
9Cl-PF3ONS	AveID	1.093	1.101		1.87	1.86	0.7	30.0
Perfluorononanesulfonic acid	AveID	1.106	1.170		2.03	1.92	5.8	30.0
8:2 Fluorotelomer sulfonic acid	AveID	3.111	2.813		1.73	1.92	-9.6	30.0
Perfluorodecanoic acid	AveID	1.038	1.081		2.08	2.00	4.2	30.0
Perfluorooctanesulfonamide	AveID	1.065	1.174		2.20	2.00	10.2	30.0
NMeFOSAA	AveID	0.9104	0.9510		2.09	2.00	4.5	30.0
Perfluorodecanesulfonic acid	AveID	1.080	1.155		2.06	1.93	7.0	30.0
Perfluoroundecanoic acid	AveID	0.9590	1.068		2.23	2.00	11.3	30.0
NETFOSAA	AveID	0.7819	0.8248		2.11	2.00	5.5	30.0
10:2 FTUCA	AveID	0.8970	0.9315		2.08	2.00	3.8	30.0
10:2 FTCA	AveID	1.040	0.9583		1.84	2.00	-7.8	30.0
11Cl-PF3OUdS	AveID	0.8677	0.9082		1.95	1.86	4.7	30.0
Perfluorododecanoic acid	AveID	1.047	1.093		2.09	2.00	4.4	30.0
10:2 FTS	AveID	2.532	2.490		1.90	1.93	-1.7	30.0
NMeFOSE	AveID	1.067	1.224		2.30	2.00	14.8	30.0
NMeFOSA	AveID	1.034	1.087		2.10	2.00	5.2	30.0
Perfluorododecanesulfonic acid	AveID	0.9431	1.002		2.06	1.94	6.3	30.0
NEtFOSE	AveID	1.094	1.098		2.01	2.00	0.4	30.0
Perfluorotridecanoic acid	AveID	0.7409	0.8133		2.20	2.00	9.8	30.0
NEtFOSA	AveID	1.223	1.197		1.96	2.00	-2.1	30.0
Perfluorotetradecanoic acid	AveID	0.8878	0.9453		2.13	2.00	6.5	30.0
Perfluorohexadecanoic acid	AveID	1.238	1.286		2.08	2.00	3.8	30.0
Perfluorooctadecanoic acid	AveID	0.4801	0.5301		2.21	2.00	10.4	30.0
13C4 PFBA	Ave	1.118	1.137		10.2	10.0	1.7	30.0
13C5 PFPeA	Ave	0.9786	0.9912		10.1	10.0	1.3	30.0
13C3 PFBS	Ave	1.942	1.905		9.13	9.30	-1.9	30.0
M2-4:2 FTS	Ave	0.0758	0.0708		8.72	9.34	-6.6	30.0
13C5 PFHxA	Ave	1.204	1.222		10.2	10.0	1.5	30.0
13C3 HFPO-DA	Ave	0.3593	0.3157		8.79	10.0	-12.1	30.0
13C4 PFHpA	Ave	1.144	1.223		10.7	10.0	6.9	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: <u>ICV 410-272051/9</u> Calibration Date: <u>07/04/2022</u> 17:44

Instrument ID: 30733 Calib Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: 3.00(mm) Calib End Date: 07/04/2022 17:22

Lab File ID: 22JUL04XMCAL-09.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
13C3 PFHxS	Ave	1.555	1.548		9.42	9.46	-0.4	30.0
13C2-2H-Perfluoro-2-octenoic acid	Ave	1.188	1.069		9.00	10.0	-10.0	30.0
13C2-2-Perfluorohexylethanoi c acid	Ave	0.1246	0.1274		10.2	10.0	2.2	30.0
M2-6:2 FTS	Ave	0.0487	0.0485		9.47	9.50	-0.3	30.0
13C8 PFOA	Ave	1.004	1.005		10.0	10.0	0.2	30.0
13C8 PFOS	Ave	1.018	0.9825		9.23	9.56	-3.5	30.0
13C9 PFNA	Ave	0.6823	0.6822		10.0	10.0	-0.0	30.0
13C2-2H-Perfluoro-2-decenoic acid	Ave	1.028	0.9799		9.53	10.0	-4.7	30.0
13C2-2-Perfluorooctylethanoi c acid	Ave	0.0948	0.0995		10.5	10.0	4.9	30.0
13C6 PFDA	Ave	0.9799	1.063		10.8	10.0	8.5	30.0
M2-8:2 FTS	Ave	0.0384	0.0415		10.4	9.58	8.1	30.0
13C8 FOSA	Ave	2.201	2.250		10.2	10.0	2.2	30.0
d3-NMeFOSAA	Ave	0.3793	0.3696		9.74	10.0	-2.6	30.0
13C7 PFUnA	Ave	0.7151	0.7203		10.1	10.0	0.7	30.0
d5-NEtFOSAA	Ave	0.3211	0.3569		11.1	10.0	11.1	30.0
13C2-2H-Perfluoro-2-dodeceno ic acid	Ave	0.9515	1.015		10.7	10.0	6.6	30.0
13C2-2-Perfluorodecylethanoi c acid	Ave	0.0813	0.0906		11.1	10.0	11.5	30.0
13C2-PFDoDA	Ave	0.4595	0.4894		10.7	10.0	6.5	30.0
d7-N-MeFOSE-M	Ave	0.2750	0.2674		9.72	10.0	-2.8	30.0
d3-NMePFOSA	Ave	0.3181	0.3130		9.84	10.0	-1.6	30.0
d9-N-EtFOSE-M	Ave	0.2936	0.2898		9.87	10.0	-1.3	30.0
d5-NEtPFOSA	Ave	0.2822	0.2976		10.5	10.0	5.5	30.0
13C2 PFTeDA	Ave	0.4013	0.4205		10.5	10.0	4.8	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: CCV 410-272691/4 Calibration Date: 07/06/2022 11:56

Instrument ID: 30733 Calib Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: 3.00 (mm) Calib End Date: 07/04/2022 17:22

Lab File ID: 22JUL06-04.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
MTP	AveID	0.0692	0.0672		1.94	2.00	-2.8	30.0
PPF Acid	AveID	0.4383	0.4577		2.09	2.00	4.4	30.0
PFMOAA	AveID	0.2082	0.2115		2.03	2.00	1.6	30.0
Perfluorobutanoic acid	AveID	0.9481	1.019		2.15	2.00	7.4	30.0
R-EVE	AveID	0.1603	0.1631		2.04	2.00	1.8	30.0
R-PSDA	AveID	0.0269	0.0302		2.24	2.00	11.9	30.0
Hydrolyzed PSDA	AveID	0.1690	0.1814		2.15	2.00	7.3	30.0
PMPA	AveID	0.4680	0.5010		2.14	2.00	7.0	30.0
Perfluoropropanesulfonic acid	AveID	0.4520	0.4718		1.91	1.83	4.4	30.0
NVHOS	AveID	0.2690	0.2873		2.14	2.00	6.8	30.0
PFECA F	AveID	1.032	1.128		2.18	2.00	9.2	30.0
PFO2HxA	AveID	0.3213	0.3304		2.06	2.00	2.9	30.0
3:3 FTCA	AveID	0.0714	0.0793		2.22	2.00	11.1	30.0
Perfluoropentanoic acid	AveID	1.067	1.022		1.92	2.00	-4.2	30.0
Perfluorobutanesulfonic acid	AveID	1.033	1.128		1.93	1.77	9.2	30.0
PEPA	AveID	0.2057	0.2183		2.12	2.00	6.1	30.0
PFECA A	AveID	0.5653	0.5755		2.04	2.00	1.8	30.0
Perfluoro (2-ethoxyethane) sulfonic acid	AveID	2.441	2.814		2.05	1.78	15.3	30.0
PFECA B	AveID	0.7147	0.8115		2.27	2.00	13.5	30.0
4:2 Fluorotelomer sulfonic acid	AveID	2.496	2.753		2.06	1.87	10.3	30.0
Perfluorohexanoic acid	AveID	0.8889	0.9509		2.14	2.00	7.0	30.0
Perfluoropentanesulfonic acid	AveID	0.9353	1.092		2.19	1.88	16.7	30.0
PF030A	AveID	0.4214	0.5049		2.40	2.00	19.8	30.0
HFPODA	AveID	0.8142	0.8943		2.20	2.00	9.8	30.0
Hydro-PS Acid	AveID	1.505	1.503		2.00	2.00	-0.1	30.0
Hydro-EVE Acid	AveID	2.145	2.136		1.99	2.00	-0.4	30.0
R-PSDCA	AveID	2.057	2.263		2.20	2.00	10.1	30.0
Perfluoroheptanoic acid	AveID	1.059	0.9930		1.88	2.00	-6.2	30.0
Perfluorohexanesulfonic acid	AveID	1.099	1.160		1.92	1.82	5.5	30.0
DONA	AveID	1.640	1.560		1.80	1.89	-4.9	30.0
PFECA G	AveID	2.440	2.799		2.29	2.00	14.7	30.0
5:3 FTCA	AveID	0.2130	0.1976		1.86	2.00	-7.2	30.0
6:2 FTUCA	AveID	1.152	1.190		2.07	2.00	3.3	30.0
6:2 FTCA	AveID	1.055	1.145		2.17	2.00	8.5	30.0
PFO4DA	AveID	0.7258	0.7962		2.19	2.00	9.7	30.0
PS Acid	AveID	0.5318	0.6405		2.41	2.00	20.4	30.0
EVE Acid	AveID	1.822	1.936		2.12	2.00	6.2	30.0
Perfluoro-4-ethylcyclohexane sulfonic acid	AveID	1.093	1.077		1.82	1.84	-1.5	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: CCV 410-272691/4 Calibration Date: 07/06/2022 11:56

Instrument ID: 30733 Calib Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: 3.00(mm) Calib End Date: 07/04/2022 17:22

Lab File ID: 22JUL06-04.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
6:2 Fluorotelomer sulfonic acid	AveID	2.458	2.584		1.99	1.90	5.1	30.0
Perfluoroheptanesulfonic acid	AveID	1.011	1.009		1.90	1.90	-0.1	30.0
Perfluorooctanoic acid	AveID	1.054	0.9940		1.89	2.00	-5.7	30.0
TAF	AveID	0.7933	0.7779		1.96	2.00	-1.9	30.0
Perfluorooctanesulfonic acid	AveID	1.090	1.097		1.86	1.85	0.7	30.0
Perfluorononanoic acid	AveID	1.007	1.149		2.28	2.00	14.1	30.0
7:3 FTCA	AveID	2.147	2.762		2.57	2.00	28.7	30.0
8:2 FTUCA	AveID	1.087	1.098		2.02	2.00	1.1	30.0
8:2 FTCA	AveID	1.055	1.209		2.29	2.00	14.6	30.0
9Cl-PF3ONS	AveID	1.093	1.099		1.87	1.86	0.6	30.0
Perfluorononanesulfonic acid	AveID	1.106	1.077		1.87	1.92	-2.6	30.0
8:2 Fluorotelomer sulfonic acid	AveID	3.111	3.262		2.01	1.92	4.8	30.0
Perfluorodecanoic acid	AveID	1.038	1.024		1.97	2.00	-1.3	30.0
Perfluorooctanesulfonamide	AveID	1.065	1.178		2.21	2.00	10.5	30.0
NMeFOSAA	AveID	0.9104	0.9065		1.99	2.00	-0.4	30.0
Perfluorodecanesulfonic acid	AveID	1.080	1.073		1.92	1.93	-0.6	30.0
Perfluoroundecanoic acid	AveID	0.9590	1.042		2.17	2.00	8.6	30.0
NETFOSAA	AveID	0.7819	0.9098		2.33	2.00	16.4	30.0
10:2 FTUCA	AveID	0.8970	0.9810		2.19	2.00	9.4	30.0
11Cl-PF3OUdS	AveID	0.8677	0.8681		1.86	1.86	0.0	30.0
10:2 FTCA	AveID	1.040	0.998		1.92	2.00	-4.0	30.0
Perfluorododecanoic acid	AveID	1.047	1.027		1.96	2.00	-1.9	30.0
10:2 FTS	AveID	2.532	2.428		1.85	1.93	-4.1	30.0
NMeFOSE	AveID	1.067	1.109		2.08	2.00	4.0	30.0
NMeFOSA	AveID	1.034	1.026		1.99	2.00	-0.7	30.0
Perfluorododecanesulfonic acid	AveID	0.9431	1.019		2.09	1.94	8.0	30.0
NETFOSE	AveID	1.094	1.145		2.09	2.00	4.6	30.0
Perfluorotridecanoic acid	AveID	0.7409	0.8359		2.26	2.00	12.8	30.0
NETFOSA	AveID	1.223	1.260		2.06	2.00	3.1	30.0
Perfluorotetradecanoic acid	AveID	0.8878	0.9373		2.11	2.00	5.6	30.0
Perfluorohexadecanoic acid	AveID	1.238	1.487		2.40	2.00	20.1	30.0
Perfluorooctadecanoic acid	AveID	0.4801	0.5506		2.29	2.00	14.7	30.0
13C4 PFBA	Ave	1.118	1.076		9.62	10.0	-3.8	30.0
13C5 PFPeA	Ave	0.9786	0.9909		10.1	10.0	1.3	30.0
13C3 PFBS	Ave	1.942	1.721		8.24	9.30	-11.4	30.0
M2-4:2 FTS	Ave	0.0758	0.0989		12.2	9.34	30.5*	30.0
13C5 PFHxA	Ave	1.204	1.156		9.60	10.0	-4.0	30.0
13C3 HFPO-DA	Ave	0.3593	0.3758		10.5	10.0	4.6	30.0
13C3 PFHxS	Ave	1.555	1.591		9.68	9.46	2.3	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: CCV 410-272691/4 Calibration Date: 07/06/2022 11:56

Instrument ID: 30733 Calib Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: 3.00 (mm) Calib End Date: 07/04/2022 17:22

Lab File ID: 22JUL06-04.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
13C4 PFHpA	Ave	1.144	1.278		11.2	10.0	11.8	30.0
13C2-2H-Perfluoro-2-octenoic acid	Ave	1.188	1.297		10.9	10.0	9.1	30.0
13C2-2-Perfluorohexylethanoi c acid	Ave	0.1246	0.1353		10.9	10.0	8.6	30.0
M2-6:2 FTS	Ave	0.0487	0.0579		11.3	9.50	18.8	30.0
13C8 PFOA	Ave	1.004	1.101		11.0	10.0	9.7	30.0
13C8 PFOS	Ave	1.018	1.064		9.99	9.56	4.5	30.0
13C9 PFNA	Ave	0.6823	0.7094		10.4	10.0	4.0	30.0
13C2-2H-Perfluoro-2-decenoic acid	Ave	1.028	1.055		10.3	10.0	2.6	30.0
13C2-2-Perfluorooctylethanoi c acid	Ave	0.0948	0.0939		9.91	10.0	-0.9	30.0
13C6 PFDA	Ave	0.9799	1.019		10.4	10.0	4.0	30.0
M2-8:2 FTS	Ave	0.0384	0.0449		11.2	9.58	16.8	30.0
13C8 FOSA	Ave	2.201	2.155		9.79	10.0	-2.1	30.0
d3-NMeFOSAA	Ave	0.3793	0.3873		10.2	10.0	2.1	30.0
13C7 PFUnA	Ave	0.7151	0.7363		10.3	10.0	3.0	30.0
d5-NEtFOSAA	Ave	0.3211	0.3506		10.9	10.0	9.2	30.0
13C2-2H-Perfluoro-2-dodeceno ic acid	Ave	0.9515	1.052		11.1	10.0	10.5	30.0
13C2-2-Perfluorodecylethanoi c acid	Ave	0.0813	0.0789		9.71	10.0	-2.9	30.0
13C2-PFDoDA	Ave	0.4595	0.4459		9.70	10.0	-3.0	30.0
d7-N-MeFOSE-M	Ave	0.2750	0.2651		9.64	10.0	-3.6	30.0
d3-NMePFOSA	Ave	0.3181	0.3015		9.48	10.0	-5.2	30.0
d9-N-EtFOSE-M	Ave	0.2936	0.2755		9.38	10.0	-6.2	30.0
d5-NEtPFOSA	Ave	0.2822	0.2663		9.44	10.0	-5.6	30.0
13C2 PFTeDA	Ave	0.4013	0.3822		9.52	10.0	-4.8	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: CCV 410-272691/11 Calibration Date: 07/06/2022 13:15

Instrument ID: 30733 Calib Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: $3.00 \, (mm)$ Calib End Date: 07/04/2022 17:22

Lab File ID: 22JUL06-11.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
MTP	AveID	0.0692	0.0709		8.20	8.00	2.5	30.0
PPF Acid	AveID	0.4383	0.4671		8.53	8.00	6.6	30.0
PFMOAA	AveID	0.2082	0.2237		8.60	8.00	7.4	30.0
Perfluorobutanoic acid	AveID	0.9481	0.9589		8.09	8.00	1.1	30.0
R-EVE	AveID	0.1603	0.1601		7.99	8.00	-0.1	30.0
R-PSDA	AveID	0.0269	0.0277		8.23	8.00	2.9	30.0
Hydrolyzed PSDA	AveID	0.1690	0.1843		8.73	8.00	9.1	30.0
PMPA	AveID	0.4680	0.4936		8.44	8.00	5.5	30.0
Perfluoropropanesulfonic acid	AveID	0.4520	0.4639		7.52	7.33	2.6	30.0
NVHOS	AveID	0.2690	0.2744		8.16	8.00	2.0	30.0
PFECA F	AveID	1.032	1.065		8.25	8.00	3.2	30.0
PFO2HxA	AveID	0.3213	0.3229		8.04	8.00	0.5	30.0
3:3 FTCA	AveID	0.0714	0.0700		7.85	8.00	-1.9	30.0
Perfluoropentanoic acid	AveID	1.067	0.9761		7.32	8.00	-8.5	30.0
Perfluorobutanesulfonic acid	AveID	1.033	1.061		7.27	7.08	2.7	30.0
PEPA	AveID	0.2057	0.2237		8.70	8.00	8.7	30.0
PFECA A	AveID	0.5653	0.6093		8.62	8.00	7.8	30.0
Perfluoro (2-ethoxyethane) sulfonic acid	AveID	2.441	2.633		7.68	7.12	7.9	30.0
PFECA B	AveID	0.7147	0.7682		8.60	8.00	7.5	30.0
4:2 Fluorotelomer sulfonic acid	AveID	2.496	2.615		7.83	7.47	4.8	30.0
Perfluorohexanoic acid	AveID	0.8889	0.8823		7.94	8.00	-0.7	30.0
Perfluoropentanesulfonic acid	AveID	0.9353	0.9706		7.79	7.50	3.8	30.0
PFO3OA	AveID	0.4214	0.4269		8.11	8.00	1.3	30.0
HFPODA	AveID	0.8142	0.8755		8.60	8.00	7.5	30.0
Hydro-PS Acid	AveID	1.505	1.569		8.34	8.00	4.3	30.0
Hydro-EVE Acid	AveID	2.145	2.199		8.20	8.00	2.5	30.0
R-PSDCA	AveID	2.057	2.241		8.72	8.00	9.0	30.0
Perfluoroheptanoic acid	AveID	1.059	1.072		8.10	8.00	1.3	30.0
Perfluorohexanesulfonic acid	AveID	1.099	1.079		7.16	7.30	-1.8	30.0
DONA	AveID	1.640	1.680		7.75	7.56	2.5	30.0
PFECA G	AveID	2.440	2.484		8.14	8.00	1.8	30.0
5:3 FTCA	AveID	0.2130	0.2038		7.65	8.00	-4.3	30.0
6:2 FTUCA	AveID	1.152	1.144		7.94	8.00	-0.7	30.0
6:2 FTCA	AveID	1.055	1.009		7.65	8.00	-4.4	30.0
PFO4DA	AveID	0.7258	0.7331		8.08	8.00	1.0	30.0
PS Acid	AveID	0.5318	0.5545		8.34	8.00	4.3	30.0
EVE Acid	AveID	1.822	1.922		8.44	8.00	5.5	30.0
Perfluoro-4-ethylcyclohexane sulfonic acid	AveID	1.093	0.9499	<u> </u>	6.41	7.38	-13.1	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: CCV 410-272691/11 Calibration Date: 07/06/2022 13:15

Instrument ID: 30733 Calib Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: 3.00(mm) Calib End Date: 07/04/2022 17:22

Lab File ID: 22JUL06-11.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
6:2 Fluorotelomer sulfonic acid	AveID	2.458	2.321		7.16	7.58	-5.6	30.0
Perfluoroheptanesulfonic acid	AveID	1.011	0.9384		7.07	7.62	-7.2	30.0
Perfluorooctanoic acid	AveID	1.054	0.9687		7.35	8.00	-8.1	30.0
TAF	AveID	0.7933	0.7806		7.87	8.00	-1.6	30.0
Perfluorooctanesulfonic acid	AveID	1.090	1.025		6.96	7.40	-5.9	30.0
Perfluorononanoic acid	AveID	1.007	0.9255		7.36	8.00	-8.1	30.0
7:3 FTCA	AveID	2.147	2.356		8.78	8.00	9.8	30.0
8:2 FTUCA	AveID	1.087	1.102		8.11	8.00	1.4	30.0
8:2 FTCA	AveID	1.055	1.025		7.77	8.00	-2.9	30.0
9C1-PF3ONS	AveID	1.093	1.034		7.04	7.44	-5.3	30.0
Perfluorononanesulfonic acid	AveID	1.106	1.070		7.43	7.68	-3.3	30.0
8:2 Fluorotelomer sulfonic acid	AveID	3.111	2.825		6.96	7.66	-9.2	30.0
Perfluorodecanoic acid	AveID	1.038	1.019		7.86	8.00	-1.8	30.0
Perfluorooctanesulfonamide	AveID	1.065	1.019		7.65	8.00	-4.4	30.0
NMeFOSAA	AveID	0.9104	0.8600		7.56	8.00	-5.5	30.0
Perfluorodecanesulfonic acid	AveID	1.080	1.055		7.54	7.71	-2.3	30.0
Perfluoroundecanoic acid	AveID	0.9590	0.9426		7.86	8.00	-1.7	30.0
NEtFOSAA	AveID	0.7819	0.6979		7.14	8.00	-10.7	30.0
10:2 FTUCA	AveID	0.8970	0.7520		6.71	8.00	-16.2	30.0
10:2 FTCA	AveID	1.040	0.9405		7.24	8.00	-9.5	30.0
11Cl-PF3OUdS	AveID	0.8677	0.7615		6.53	7.44	-12.2	30.0
Perfluorododecanoic acid	AveID	1.047	1.022		7.81	8.00	-2.4	30.0
10:2 FTS	AveID	2.532	2.129		6.49	7.71	-15.9	30.0
NMeFOSE	AveID	1.067	1.131		8.48	8.00	6.1	30.0
NMeFOSA	AveID	1.034	0.9435		7.30	8.00	-8.7	30.0
Perfluorododecanesulfonic acid	AveID	0.9431	0.9104		7.47	7.74	-3.5	30.0
NETFOSE	AveID	1.094	1.087		7.95	8.00	-0.6	30.0
Perfluorotridecanoic acid	AveID	0.7409	0.7831		8.46	8.00	5.7	30.0
NETFOSA	AveID	1.223	1.109		7.26	8.00	-9.3	30.0
Perfluorotetradecanoic acid	AveID	0.8878	0.8412		7.58	8.00	-5.2	30.0
Perfluorohexadecanoic acid	AveID	1.238	1.248		8.06	8.00	0.8	30.0
Perfluorooctadecanoic acid	AveID	0.4801	0.4782		7.97	8.00	-0.4	30.0
13C4 PFBA	Ave	1.118	1.104		9.87	10.0	-1.3	30.0
13C5 PFPeA	Ave	0.9786	1.005		10.3	10.0	2.7	30.0
13C3 PFBS	Ave	1.942	1.812		8.68	9.30	-6.7	30.0
M2-4:2 FTS	Ave	0.0758	0.1013		12.5	9.34	33.6*	30.0
13C5 PFHxA	Ave	1.204	1.082		8.99	10.0	-10.1	30.0
13C3 HFPO-DA	Ave	0.3593	0.3442		9.58	10.0	-4.2	30.0
13C3 PFHxS	Ave	1.555	1.522		9.26	9.46	-2.1	30.0

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Lab Sample ID: <u>CCV 410-272691/11</u> Calibration Date: <u>07/06/2022 13:15</u>

Instrument ID: 30733 Calib Start Date: 07/04/2022 16:15

GC Column: Gemini C18 50mm ID: 3.00(mm) Calib End Date: 07/04/2022 17:22

Lab File ID: 22JUL06-11.d Conc. Units: ng/mL

ANALYTE	CURVE TYPE	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	%D	MAX %D
13C4 PFHpA	Ave	1.144	1.098		9.60	10.0	-4.0	30.0
13C2-2H-Perfluoro-2-octenoic acid	Ave	1.188	1.222		10.3	10.0	2.8	30.0
13C2-2-Perfluorohexylethanoi c acid	Ave	0.1246	0.1197		9.61	10.0	-3.9	30.0
M2-6:2 FTS	Ave	0.0487	0.0608		11.9	9.50	24.9	30.0
13C8 PFOA	Ave	1.004	0.9632		9.60	10.0	-4.0	30.0
13C8 PFOS	Ave	1.018	0.9774		9.18	9.56	-4.0	30.0
13C9 PFNA	Ave	0.6823	0.6980		10.2	10.0	2.3	30.0
13C2-2H-Perfluoro-2-decenoic acid	Ave	1.028	0.9606		9.35	10.0	-6.5	30.0
13C2-2-Perfluorooctylethanoi c acid	Ave	0.0948	0.0848		8.94	10.0	-10.6	30.0
13C6 PFDA	Ave	0.9799	0.9442		9.64	10.0	-3.6	30.0
M2-8:2 FTS	Ave	0.0384	0.0453		11.3	9.58	17.9	30.0
13C8 FOSA	Ave	2.201	2.229		10.1	10.0	1.3	30.0
d3-NMeFOSAA	Ave	0.3793	0.3681		9.70	10.0	-3.0	30.0
13C7 PFUnA	Ave	0.7151	0.6955		9.73	10.0	-2.7	30.0
d5-NEtFOSAA	Ave	0.3211	0.3611		11.2	10.0	12.5	30.0
13C2-2H-Perfluoro-2-dodeceno ic acid	Ave	0.9515	1.079		11.3	10.0	13.4	30.0
13C2-2-Perfluorodecylethanoi c acid	Ave	0.0813	0.0758		9.33	10.0	-6.7	30.0
13C2-PFDoDA	Ave	0.4595	0.4269		9.29	10.0	-7.1	30.0
d7-N-MeFOSE-M	Ave	0.2750	0.2378		8.65	10.0	-13.5	30.0
d3-NMePFOSA	Ave	0.3181	0.3060		9.62	10.0	-3.8	30.0
d9-N-EtFOSE-M	Ave	0.2936	0.2761		9.40	10.0	-6.0	30.0
d5-NEtPFOSA	Ave	0.2822	0.2817		9.98	10.0	-0.2	30.0
13C2 PFTeDA	Ave	0.4013	0.3842		9.57	10.0	-4.3	30.0

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1 Environment Testing, LLC SDG No.: Lab Sample ID: MB 410-269643/1-A Client Sample ID: Matrix: Water Lab File ID: 22JUL02-02.d _____ Date Collected: __ Analysis Method: 537 IDA Date Extracted: 06/27/2022 09:03 Extraction Method: 537 IDA Date Analyzed: 07/02/2022 16:00 Sample wt/vol: 250(mL) Dilution Factor: 1 Con. Extract Vol.: 1(mL) GC Column: Gemini C18 50mm ID: 3 (mm) Injection Volume: 4(uL) % Moisture: _____ % Solids: _____ GPC Cleanup:(Y/N) N____ Cleanup Factor:

Analysis Batch No.: 271895 Units: ng/L

			I		
CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	0.50	U	2.0	0.50
375-85-9	Perfluoroheptanoic acid	0.50	U	2.0	0.50
335-67-1	Perfluorooctanoic acid	0.50	U	2.0	0.50
375-95-1	Perfluorononanoic acid	0.50	U	2.0	0.50
335-76-2	Perfluorodecanoic acid	0.50	U	2.0	0.50
72629-94-8	Perfluorotridecanoic acid	0.50	U	2.0	0.50
376-06-7	Perfluorotetradecanoic acid	0.50	U	2.0	0.50
375-73-5	Perfluorobutanesulfonic acid	0.50	U	2.0	0.50
355-46-4	Perfluorohexanesulfonic acid	0.50	U	2.0	0.50
1763-23-1	Perfluorooctanesulfonic acid	0.50	U	2.0	0.50
2991-50-6	NETFOSAA	0.50	U	3.0	0.50
2355-31-9	NMeFOSAA	0.60	U	2.0	0.60
307-55-1	Perfluorododecanoic acid	0.50	U	2.0	0.50
13252-13-6	HFPODA	1.0	U	3.0	1.0
756426-58-1	9C1-PF3ONS	0.50	U	2.0	0.50
763051-92-9	11Cl-PF3OUdS	0.50	U	2.0	0.50
919005-14-4	DONA	0.50	U	2.0	0.50
2058-94-8	Perfluoroundecanoic acid	0.50	U	2.0	0.50

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1 Environment Testing, LLC SDG No.: Lab Sample ID: MB 410-269643/1-A Client Sample ID: Matrix: Water Lab File ID: 22JUL02-02.d _____ Date Collected: __ Analysis Method: 537 IDA Date Extracted: 06/27/2022 09:03 Extraction Method: 537 IDA Date Analyzed: 07/02/2022 16:00 Sample wt/vol: 250(mL) Dilution Factor: 1 Con. Extract Vol.: 1(mL) GC Column: Gemini C18 50mm ID: 3 (mm) Injection Volume: 4(uL) % Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N____ Cleanup Factor: Analysis Batch No.: 271895 Units: ng/L

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02577	13C5 PFHxA	91		24-179
STL01892	13C4 PFHpA	96		31-182
STL01052	13C8 PFOA	89		48-162
STL02578	13C9 PFNA	92		51-167
STL02579	13C6 PFDA	86		49-163
STL02703	13C2-PFDoDA	80		17-176
STL02116	13C2 PFTeDA	76		10-179
STL02337	13C3 PFBS	91		16-200
STL02581	13C3 PFHxS	88		28-188
STL01054	13C8 PFOS	96		51-159
STL02118	d3-NMeFOSAA	81		31-174
STL02117	d5-NEtFOSAA	78		29-195
STL02255	13C3 HFPO-DA	81		17-185
STL02580	13C7 PFUnA	86		34-174

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1 Environment Testing, LLC SDG No.: Lab Sample ID: <u>ICB 410-271695/8</u> Client Sample ID: Matrix: Water Lab File ID: 22JUL01XMCAL-08.d Analysis Method: 537 IDA Date Collected: ____ Extraction Method: _____ Date Extracted: Sample wt/vol: 0(mL) Date Analyzed: 07/01/2022 14:26 Dilution Factor: 1 Con. Extract Vol.: Injection Volume: $\underline{4 \, (uL)}$ GC Column: $\underline{Gemini \, C18 \, 50mm}$ ID: $\underline{3 \, (mm)}$ % Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N____ Cleanup Factor: Analysis Batch No.: 271695 Units: ng/mL

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	0.13	U	0.50	0.13
375-85-9	Perfluoroheptanoic acid	0.13	U	0.50	0.13
335-67-1	Perfluorooctanoic acid	0.13	U	0.50	0.13
375-95-1	Perfluorononanoic acid	0.13	U	0.50	0.13
335-76-2	Perfluorodecanoic acid	0.13	U	0.50	0.13
72629-94-8	Perfluorotridecanoic acid	0.13	U	0.50	0.13
376-06-7	Perfluorotetradecanoic acid	0.13	U	0.50	0.13
375-73-5	Perfluorobutanesulfonic acid	0.13	U	0.50	0.13
355-46-4	Perfluorohexanesulfonic acid	0.13	U	0.50	0.13
1763-23-1	Perfluorooctanesulfonic acid	0.13	U	0.50	0.13
2991-50-6	NETFOSAA	0.13	U	1.3	0.13
2355-31-9	NMeFOSAA	0.15	U	0.50	0.15
307-55-1	Perfluorododecanoic acid	0.13	U	0.50	0.13
13252-13-6	HFPODA	0.13	U	0.75	0.13
756426-58-1	9C1-PF3ONS	0.13	U	0.50	0.13
763051-92-9	11Cl-PF3OUdS	0.13	U	0.50	0.13
919005-14-4	DONA	0.13	U	0.50	0.13
2058-94-8	Perfluoroundecanoic acid	0.13	U	0.50	0.13

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1 Environment Testing, LLC SDG No.: Lab Sample ID: <u>ICB 410-271695/8</u> Client Sample ID: Matrix: Water Lab File ID: 22JUL01XMCAL-08.d Analysis Method: 537 IDA Date Collected: ____ Extraction Method: _____ Date Extracted: Sample wt/vol: 0 (mL) Date Analyzed: 07/01/2022 14:26 Con. Extract Vol.: Dilution Factor: 1 Injection Volume: $\underline{4 \, (uL)}$ GC Column: $\underline{Gemini \, C18 \, 50mm}$ ID: $\underline{3 \, (mm)}$ % Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N____ Cleanup Factor: Analysis Batch No.: 271695 Units: ng/mL

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02577	13C5 PFHxA	94		24-179
STL01892	13C4 PFHpA	99		31-182
STL01052	13C8 PFOA	94		48-162
STL02578	13C9 PFNA	100		51-167
STL02579	13C6 PFDA	94		49-163
STL02703	13C2-PFDoDA	97		17-176
STL02116	13C2 PFTeDA	85		10-179
STL02337	13C3 PFBS	101		16-200
STL02581	13C3 PFHxS	99		28-188
STL01054	13C8 PFOS	99		51-159
STL02118	d3-NMeFOSAA	94		31-174
STL02117	d5-NEtFOSAA	89		29-195
STL02255	13C3 HFPO-DA	91		17-185
STL02580	13C7 PFUnA	96		34-174

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1 Environment Testing, LLC SDG No.: Lab Sample ID: <u>ICB 410-272051/8</u> Client Sample ID: Matrix: Water Lab File ID: 22JUL04XMCAL-08.d Analysis Method: 537 IDA Date Collected: Extraction Method: _____ Date Extracted: Sample wt/vol: 0(mL) Date Analyzed: 07/04/2022 17:33 Dilution Factor: 1 Con. Extract Vol.: Injection Volume: $\underline{4 \, (uL)}$ GC Column: $\underline{Gemini \, C18 \, 50mm}$ ID: $\underline{3 \, (mm)}$ % Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N____ Cleanup Factor: Analysis Batch No.: 272051 Units: ng/mL

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	0.13	Ū	0.50	0.13
375-85-9	Perfluoroheptanoic acid	0.13	U	0.50	0.13
335-67-1	Perfluorooctanoic acid	0.13	U	0.50	0.13
375-95-1	Perfluorononanoic acid	0.13	U	0.50	0.13
335-76-2	Perfluorodecanoic acid	0.13	U	0.50	0.13
72629-94-8	Perfluorotridecanoic acid	0.13	U	0.50	0.13
376-06-7	Perfluorotetradecanoic acid	0.141	J	0.50	0.13
375-73-5	Perfluorobutanesulfonic acid	0.13	U	0.50	0.13
355-46-4	Perfluorohexanesulfonic acid	0.13	U	0.50	0.13
1763-23-1	Perfluorooctanesulfonic acid	0.13	U	0.50	0.13
2991-50-6	NETFOSAA	0.13	U	1.3	0.13
2355-31-9	NMeFOSAA	0.15	U	0.50	0.15
307-55-1	Perfluorododecanoic acid	0.13	U	0.50	0.13
13252-13-6	HFPODA	0.13	U	0.75	0.13
756426-58-1	9C1-PF3ONS	0.13	U	0.50	0.13
763051-92-9	11Cl-PF3OUdS	0.13	U	0.50	0.13
919005-14-4	DONA	0.13	U	0.50	0.13
2058-94-8	Perfluoroundecanoic acid	0.13	U	0.50	0.13

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1 Environment Testing, LLC SDG No.: Lab Sample ID: <u>ICB 410-272051/8</u> Client Sample ID: Matrix: Water Lab File ID: 22JUL04XMCAL-08.d Analysis Method: 537 IDA Date Collected: ____ Extraction Method: _____ Date Extracted: Sample wt/vol: 0 (mL) Date Analyzed: 07/04/2022 17:33 Con. Extract Vol.: Dilution Factor: 1 Injection Volume: $\underline{4 \, (uL)}$ GC Column: $\underline{Gemini \, C18 \, 50mm}$ ID: $\underline{3 \, (mm)}$ % Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N____ Cleanup Factor: Analysis Batch No.: 272051 Units: ng/mL

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02577	13C5 PFHxA	88		24-179
STL01892	13C4 PFHpA	94		31-182
STL01052	13C8 PFOA	98		48-162
STL02578	13C9 PFNA	98		51-167
STL02579	13C6 PFDA	92		49-163
STL02703	13C2-PFDoDA	98		17-176
STL02116	13C2 PFTeDA	96		10-179
STL02337	13C3 PFBS	92		16-200
STL02581	13C3 PFHxS	103		28-188
STL01054	13C8 PFOS	92		51-159
STL02118	d3-NMeFOSAA	104		31-174
STL02117	d5-NEtFOSAA	98		29-195
STL02255	13C3 HFPO-DA	86		17-185
STL02580	13C7 PFUnA	100		34-174

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1 Environment Testing, LLC SDG No.: Lab Sample ID: LCS 410-269643/2-A Client Sample ID: Matrix: Water Lab File ID: 22JUL02-03.d _____ Date Collected: __ Analysis Method: 537 IDA Date Extracted: 06/27/2022 09:03 Extraction Method: 537 IDA Date Analyzed: 07/02/2022 16:13 Sample wt/vol: 250(mL) Dilution Factor: 1 Con. Extract Vol.: 1(mL) GC Column: Gemini C18 50mm ID: 3 (mm) Injection Volume: 4(uL) % Moisture: _____ % Solids: _____ GPC Cleanup:(Y/N) N____ Cleanup Factor:

Analysis Batch No.: 271895 Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	RL	MDL
307-24-4	Perfluorohexanoic acid	23.1		2.0	0.50
375-85-9	Perfluoroheptanoic acid	22.3		2.0	0.50
335-67-1	Perfluorooctanoic acid	24.2		2.0	0.50
375-95-1	Perfluorononanoic acid	25.3		2.0	0.50
335-76-2	Perfluorodecanoic acid	24.5		2.0	0.50
72629-94-8	Perfluorotridecanoic acid	21.0		2.0	0.50
376-06-7	Perfluorotetradecanoic acid	22.8		2.0	0.50
375-73-5	Perfluorobutanesulfonic acid	21.7		2.0	0.50
355-46-4	Perfluorohexanesulfonic acid	18.8		2.0	0.50
1763-23-1	Perfluorooctanesulfonic acid	23.4		2.0	0.50
2991-50-6	NETFOSAA	23.5		3.0	0.50
2355-31-9	NMeFOSAA	24.9		2.0	0.60
307-55-1	Perfluorododecanoic acid	23.6		2.0	0.50
13252-13-6	HFPODA	21.2		3.0	1.0
756426-58-1	9Cl-PF3ONS	22.4		2.0	0.50
763051-92-9	11Cl-PF3OUdS	22.5		2.0	0.50
919005-14-4	DONA	22.3		2.0	0.50
2058-94-8	Perfluoroundecanoic acid	23.4		2.0	0.50

Lab Name: Eurofins Lancaster Laboratories Job No.: 240-168405-1 Environment Testing, LLC SDG No.: Lab Sample ID: LCS 410-269643/2-A Client Sample ID: Matrix: Water Lab File ID: 22JUL02-03.d _____ Date Collected: __ Analysis Method: 537 IDA Date Extracted: 06/27/2022 09:03 Extraction Method: 537 IDA Date Analyzed: 07/02/2022 16:13 Sample wt/vol: 250(mL) Dilution Factor: 1 Con. Extract Vol.: 1(mL) GC Column: Gemini C18 50mm ID: 3 (mm) Injection Volume: 4(uL) % Moisture: _____ % Solids: ____ GPC Cleanup:(Y/N) N____ Cleanup Factor: Analysis Batch No.: 271895 Units: ng/L

CAS NO.	ISOTOPE DILUTION	%REC	Q	LIMITS
STL02577	13C5 PFHxA	96		24-179
STL01892	13C4 PFHpA	100		31-182
STL01052	13C8 PFOA	96		48-162
STL02578	13C9 PFNA	92		51-167
STL02579	13C6 PFDA	97		49-163
STL02703	13C2-PFDoDA	94		17-176
STL02116	13C2 PFTeDA	95		10-179
STL02337	13C3 PFBS	92		16-200
STL02581	13C3 PFHxS	96		28-188
STL01054	13C8 PFOS	90		51-159
STL02118	d3-NMeFOSAA	91		31-174
STL02117	d5-NEtFOSAA	84		29-195
STL02255	13C3 HFPO-DA	93		17-185
STL02580	13C7 PFUnA	98		34-174

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Start Date: 07/01/2022 13:08

Analysis Batch Number: 271695 End Date: 07/01/2022 14:48

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID		
IC 410-271695/1		07/01/2022 13:08	1	22JUL01XMCAL-01	Gemini C18 50mm 3(mm)		
IC 410-271695/2		07/01/2022 13:19	1	22JUL01XMCAL-02	Gemini C18 50mm 3 (mm)		
IC 410-271695/3		07/01/2022 13:31	1	22JUL01XMCAL-03	Gemini C18 50mm 3(mm)		
IC 410-271695/4		07/01/2022 13:42	1	22JUL01XMCAL-04	Gemini C18 50mm 3(mm)		
ICISAV 410-271695/5		07/01/2022 13:53	1	22JUL01XMCAL-05	Gemini C18 50mm 3(mm)		
IC 410-271695/6		07/01/2022 14:04	1	22JUL01XMCAL-06	Gemini C18 50mm 3(mm)		
IC 410-271695/7		07/01/2022 14:15	1	22JUL01XMCAL-07	Gemini C18 50mm 3(mm)		
ICB 410-271695/8		07/01/2022 14:26	1	22JUL01XMCAL-08	Gemini C18 50mm 3(mm)		
ICV 410-271695/9		07/01/2022 14:37	1	22JUL01XMCAL-09	Gemini C18 50mm 3(mm)		
WDM 410-271695/10		07/01/2022 14:48	1	22JUL01XMCAL-10 .d	Gemini C18 50mm 3(mm)		

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Start Date: 07/02/2022 15:49

Analysis Batch Number: 271895 End Date: 07/03/2022 19:49

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
CCV 410-271895/1		07/02/2022 15:49	1	22JUL02-01.d	Gemini C18 50mm 3(mm)
MB 410-269643/1-A		07/02/2022 16:00	1	22JUL02-02.d	Gemini C18 50mm 3 (mm)
LCS 410-269643/2-A		07/02/2022 16:13	1	22JUL02-03.d	Gemini C18 50mm 3(mm)
240-168405-1	MSA-WC-MTW-061522	07/02/2022 16:24	1	22JUL02-04.d	Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 16:35	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 16:46	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 16:57	100		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 17:08	100		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 17:20	100		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 17:31	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 17:42	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 17:53	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 18:04	1		Gemini C18 50mm 3(mm)
CCV 410-271895/14		07/02/2022 18:15	1	22JUL02-14.d	Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 18:26	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 18:37	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 18:48	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 18:59	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 19:11	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 19:22	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 19:33	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 19:44	1		Gemini C18 50mm 3(mm)
CCV 410-271895/24		07/02/2022 20:06	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 20:17	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 20:28	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 20:39	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 20:51	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 21:02	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 21:13	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 21:24	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 21:35	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 21:46	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 21:57	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 22:08	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 22:19	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/02/2022 22:30	1		Gemini C18 50mm 3(mm)
CCV 410-271895/39		07/02/2022 22:53	1		Gemini C18 50mm 3(mm)
CCVL 410-271895/40		07/02/2022 23:04	1		Gemini C18 50mm 3(mm)
CCV 410-271895/51		07/03/2022 01:06	1		Gemini C18 50mm 3(mm)
CCV 410-271895/64		07/03/2022 03:31	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 03:53	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 04:04	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 04:15	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 04:27	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 04:38	1		Gemini C18 50mm 3(mm)

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Start Date: 07/02/2022 15:49

Analysis Batch Number: 271895 End Date: 07/03/2022 19:49

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
ZZZZZ		07/03/2022 04:49	1		Gemini C18 50mm 3 (mm)
ZZZZZ		07/03/2022 05:00	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 05:11	1		Gemini C18 50mm 3(mm)
CCV 410-271895/75		07/03/2022 05:33	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 05:44	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 06:06	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 06:17	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 06:29	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 06:40	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 06:51	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 07:02	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 07:13	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 07:24	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 07:35	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 07:46	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 07:57	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 08:08	1		Gemini C18 50mm 3(mm)
CCV 410-271895/90		07/03/2022 08:19	1		Gemini C18 50mm 3(mm)
CCV 410-271895/100		07/03/2022 10:11	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 11:17	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 11:28	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 11:39	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 11:51	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 12:02	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 12:13	1		Gemini C18 50mm 3(mm)
CCV 410-271895/114		07/03/2022 12:46	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 13:19	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 13:31	1		Gemini C18 50mm 3(mm)
CCV 410-271895/126		07/03/2022 15:01	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 15:45	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 15:56	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 16:07	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 16:18	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 16:29	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 16:40	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 16:52	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 17:03	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 17:14	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 17:25	1		Gemini C18 50mm 3(mm)
CCV 410-271895/140		07/03/2022 17:36	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 17:47	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/03/2022 17:58	1		Gemini C18 50mm 3(mm)
CCV 410-271895/152		07/03/2022 19:49	1		Gemini C18 50mm 3(mm)

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Start Date: 07/04/2022 16:15

Analysis Batch Number: 272051 End Date: 07/04/2022 17:55

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION	LAB FILE ID	COLUMN ID		
			FACTOR				
IC 410-272051/1		07/04/2022 16:15	1	22JUL04XMCAL-01	Gemini C18 50mm 3 (mm)		
IC 410-272051/2		07/04/2022 16:26	1	22JUL04XMCAL-02	Gemini C18 50mm 3(mm)		
IC 410-272051/3		07/04/2022 16:38	1	22JUL04XMCAL-03	Gemini C18 50mm 3(mm)		
IC 410-272051/4		07/04/2022 16:49	1	22JUL04XMCAL-04	Gemini C18 50mm 3(mm)		
ICISAV 410-272051/5		07/04/2022 17:00	1	22JUL04XMCAL-05	Gemini C18 50mm 3(mm)		
IC 410-272051/6		07/04/2022 17:11	1	22JUL04XMCAL-06	Gemini C18 50mm 3(mm)		
IC 410-272051/7		07/04/2022 17:22	1	22JUL04XMCAL-07	Gemini C18 50mm 3(mm)		
ICB 410-272051/8		07/04/2022 17:33	1	22JUL04XMCAL-08	Gemini C18 50mm 3(mm)		
ICV 410-272051/9		07/04/2022 17:44	1	22JUL04XMCAL-09	Gemini C18 50mm 3(mm)		
WDM 410-272051/10		07/04/2022 17:55	1	22JUL04XMCAL-10	Gemini C18 50mm 3(mm)		

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Start Date: 07/06/2022 11:56

Analysis Batch Number: 272691 End Date: 07/07/2022 01:41

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
CCV 410-272691/4		07/06/2022 11:56	1	22JUL06-04.d	Gemini C18 50mm 3 (mm)
240-168405-1 RA	MSA-WC-MTW-061522 RA	07/06/2022 12:07	1	22JUL06-05.d	Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 12:30	10		Gemini C18 50mm 3(mm)
CCV 410-272691/11		07/06/2022 13:15	1	22JUL06-11.d	Gemini C18 50mm 3(mm)
CCV 410-272691/85		07/06/2022 18:03	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 18:14	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 18:25	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 18:36	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 18:47	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 18:58	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 19:09	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 19:20	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 19:31	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 19:43	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 19:54	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 20:05	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 20:16	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 20:28	1		Gemini C18 50mm 3(mm)
CCV 410-272691/86		07/06/2022 20:40	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 20:51	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 21:03	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 21:14	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 21:26	1		Gemini C18 50mm 3(mm)
CCV 410-272691/87		07/06/2022 21:37	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 21:48	1		Gemini C18 50mm 3(mm)
ZZZZZ		07/06/2022 21:59	1		Gemini C18 50mm 3(mm)
		07/06/2022 22:10	1		Gemini C18 50mm 3(mm)
		07/06/2022 22:21	1		Gemini C18 50mm 3(mm)
		07/06/2022 22:32	1		Gemini C18 50mm 3(mm)
		07/06/2022 22:43	1		Gemini C18 50mm 3(mm)
		07/06/2022 22:54	1		Gemini C18 50mm 3(mm)
		07/06/2022 23:05	1		Gemini C18 50mm 3(mm)
		07/06/2022 23:17	10		Gemini C18 50mm 3(mm)
		07/06/2022 23:28	1		Gemini C18 50mm 3(mm)
		07/06/2022 23:39	1		Gemini C18 50mm 3(mm)
		07/06/2022 23:50	10		Gemini C18 50mm 3(mm)
CCV 410-272691/110		07/07/2022 00:01	1		Gemini C18 50mm 3(mm)
		07/07/2022 00:12	100		Gemini C18 50mm 3(mm)
		07/07/2022 00:23	1		Gemini C18 50mm 3(mm)
		07/07/2022 00:34	10		Gemini C18 50mm 3(mm)
		07/07/2022 00:45	100		Gemini C18 50mm 3(mm)
		07/07/2022 00:56	1		Gemini C18 50mm 3(mm)
		07/07/2022 01:08	10		Gemini C18 50mm 3(mm)
		07/07/2022 01:19	100		Gemini C18 50mm 3(mm)
		07/07/2022 01:30	10		Gemini C18 50mm 3(mm)

Lab Name: Eurofins Lancaster Laboratories Envi Job No.: 240-168405-1

SDG No.:

Instrument ID: 30733 Start Date: 07/06/2022 11:56

Analysis Batch Number: 272691 End Date: 07/07/2022 01:41

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
CCV 410-272691/111		07/07/2022 01:41	1		Gemini C18 50mm 3(mm)

Lab Name: Eurofins Lancaster Laboratorie Job No.: 240-168405-1

SDG No.:

Batch Number: 269643 Batch Start Date: 06/27/22 09:03 Batch Analyst: Costello, Miranda

Batch Method: 537 IDA Batch End Date:

Lab Sample ID Client Sample ID Method Chain Basis GrossWeight TareWeight InitialAmount FinalAmount PFC_MS_MODWX PFC_SS_MODX

Lab Sample ID	Client Sample ID	Method Chain	Basis	GrossWeight	TareWeight	InitialAmount	FinalAmount	PFC_MS_MODWX 00138	PFC_SS_MODX 00273
MB 410-269643/1		537 IDA, 537 IDA		300 g	50 g	250 mL	1 mL		25 uL
LCS 410-269643/2		537 IDA, 537 IDA		300 g	50 g	250 mL	1 mL	40 uL	25 uL
240-168405-A-1	MSA-WC-MTW-06152 2	537 IDA, 537 IDA	Т	318.07 g	28.34 g	289.7 mL	1 mL		25 uL

Lab Sample ID	Client Sample ID	Method	Chain	Basis	AnalysisComment			
MB 410-269643/1		537 IDA	A, 537					
LCS 410-269643/2		537 IDA IDA	A, 537					
240-168405-A-1	MSA-WC-MTW-06152	537 IDA	A, 537		particulate present, sample centrifuged, Vacuum Was Applied			

Batch	Notes
Manifold ID	7, 1
SPE Cartridge Lot ID	6673424-01
Balance ID	B629764122
Pipette/Syringe/Dispenser ID	P10-5/ PFAS 6, 7
Methanol ID	ED663-15
H2O ID	House 372-A
Solvent Name	.3% NH4OH in MeOH, 1:1 ACN:MeOH
Solvent Lot #	1984306262233A, 2011506272233A
Analyst ID - Reagent Drop	SH19843
Analyst ID - IS Reagent Drop Witness	MC45477
Collection Tube Witness	PC44221
Centrifuge Tube ID	20211026-058
QC Bottle Lot ID	0304101H

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

537 IDA Page 1 of 2

Lab Name: Eurofins Lan	ncaster Laboratorie Job No	o.: <u>240-168405-</u>	-1				
SDG No.:							
Batch Number: 269643	Batch	Start Date: 06	6/27/22	09:03	Batch Analyst:	Costello,	Miranda
Batch Method: 537 IDA	Batch	End Date:					

Basis	Basis Description
Т	Total/NA

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

537 IDA Page 2 of 2

Lab Name: Eur	ofins Lancaste	r Laborator	ie J	ob No.: $240-1$	68405-1				
SDG No.:									
Batch Number: 271695			Ва	atch Start Da	te: <u>07/01/22</u>	13:08	Batch Analyst	: Fellenbaum,	Adam
Batch Method:	537 IDA		Ва	atch End Date	:				
Lab Sample ID	Client Sample ID	Method Chain	Basis	PFC_ICV_MOD	PFC_IS_MOD 00323	PFC_LB_MOD 00030	PFC_SS_MODX 00239	PFC_STD_XMOD1 00016	PFC_STD_XMOD2
IC 410-271695/1		537 IDA						200 uL	
IC 410-271695/2		537 IDA							200 uL
IC 410-271695/3		537 IDA							
IC 410-271695/4		537 IDA							
ICISAV 410-271695/5		537 IDA							
IC 410-271695/6		537 IDA							
IC 410-271695/7		537 IDA							
ICB 410-271695/8		537 IDA			50 uL		25 uL		
ICV 410-271695/9		537 IDA		200 uL					
WDM 410-271695/10		537 IDA				200 uL			
Lab Sample ID	Client Sample ID	Method Chain	Basis	PFC_STD_XMOD3	PFC_STD_XMOD4	PFC_STD_XMOD5	PFC_STD_XMOD6	PFC_STD_XMOD7	
IC 410-271695/1		537 IDA							
IC 410-271695/2		537 IDA							
IC 410-271695/3		537 IDA		200 uL					
IC 410-271695/4		537 IDA			200 uL				
ICISAV 410-271695/5		537 IDA				200 uL			
IC 410-271695/6		537 IDA					200 uL		
IC 410-271695/7		537 IDA						200 uL	
ICB 410-271695/8		537 IDA							
ICV 410-271695/9		537 IDA							
WDM 410-271695/10		537 IDA							
		Ва	tch Not	es					
Mobil Phase ID			273	2106272233A, 273	2106272233B				

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

537 IDA Page 1 of 2

Lab Name: Eurofins Lancaster Laboratorie	Job No.: 240-168405-1	
SDG No.:		
Batch Number: 271695	Batch Start Date: 07/01/22 13:08	Batch Analyst: Fellenbaum, Adam
Batch Method: 537 IDA	Batch End Date:	

	Basis	Basis Description
f		

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

537 IDA Page 2 of 2

Lab Name: Eur	ofins Lancaste	r Laborator	ie J	ob No.: 240-16	8405-1				
SDG No.:									
Batch Number:	272051		В	atch Start Dat	e: <u>07/04/22</u>	16:15	Batch Analyst	: Kruelle, Ha	nnah K
Batch Method:	537 IDA		В	atch End Date:					
Lab Sample ID	Client Sample ID	Method Chain	Basis	PFC_ICV_MOD 00044	PFC_IS_MOD 00323	PFC_LB_MOD 00030	PFC_SS_MODX 00279	PFC_STD_XMOD1	PFC_STD_XMOD2
IC 410-272051/1		537 IDA						200 uL	
IC 410-272051/2		537 IDA							200 uL
IC 410-272051/3		537 IDA							
IC 410-272051/4		537 IDA							
ICISAV 410-272051/5		537 IDA							
IC 410-272051/6		537 IDA							
IC 410-272051/7		537 IDA							
ICB 410-272051/8		537 IDA			50 uL		25 uL		
ICV 410-272051/9		537 IDA		200 uL					
WDM 410-272051/10		537 IDA				200 uL			
Tab Ganala TD	01'	And the desired	I Baara I	DEG CED WOODS	DEG GED VMODA	DEC CED VIVORE	DEG GED WORK	DEC CED WASDE	T
Lab Sample ID	Client Sample ID	Method Chain	Basis	PFC_STD_XMOD3 00018	PFC_STD_XMOD4 00018	PFC_STD_XMOD5 00017	PFC_STD_XMOD6 00018	PFC_STD_XMOD7 00018	
IC 410-272051/1		537 IDA							
IC 410-272051/2		537 IDA							
IC 410-272051/3		537 IDA		200 uL					
IC 410-272051/4		537 IDA			200 uL				
ICISAV 410-272051/5		537 IDA				200 uL			
IC 410-272051/6		537 IDA					200 uL		
IC 410-272051/7		537 IDA						200 uL	
ICB 410-272051/8		537 IDA							
ICV 410-272051/9		537 IDA							
WDM 410-272051/10		537 IDA							
		Ba	tch Not	es					
Mobil Phase ID			273	32106272233A; 2732	:106272233B				

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

537 IDA Page 1 of 2

g Job No.: 240-168405-1	
Batch Start Date: 07/04/22 16:15	Batch Analyst: Kruelle, Hannah K
Batch End Date:	
	

Basis	Basis Description

The pound sign (#) in the amount added field denotes that the reagent was used undiluted. All calculations are performed using the stated concentration for this reagent.

537 IDA Page 2 of 2

Subcontract Data

Shipping and Receiving Documents

Chain of Custody Record

					_	la.	-					Т.	ate: 6	44.5.40	000	-			COC No	71 MIOI 163, 110	
Client Contact	Project Manage		ilis			-		act: Jos				_								200.	
Tetra Tech	Tel/Fax: 410-27					1.ab	Con	tact: Ro	xanne	Cisne	ros	C	rrier:	Fedex	1 4			-	l of 1	COCS	
20251 Century Blvd, Suite 200	A	nalysis Tu	rnaround T	ime				1			1 1				11		1.1	ı	Job No.		1
Germantown, MD 20874		C) or Wor			_										1						
(301) 528-3021 Phone		if different from	n Below: STA	NDARD		Н															
(301) 528-3000 FAX		2 1	vecks			Ш.							11	1				ľ	SDG No.		
Project Name: MSA Annual GW (waste characterization)		Lv	veek			A	133				11		11								
Site: Martin State Airport		2	days				9					1	1		\perp			L			
Project: 112IC09567 (PO 1189300)		1	day												1				Sampler: J Mullis		
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filtered Sa	PFAS Method 537												Sample Specific No	les:	
MSA-WC-MTW-061522	6/15/2022	1100	WC	Aq	2	П	х						\prod								
						П	\Box					\top	ТТ								_ 4
						П		\top										П			f 344
/						Ħ												П			5 of
///				6/1		\forall	\dagger	++	_		++		$\dagger \dagger$	\top				\Box			e 341
				415/	-	${\dagger\dagger}$	肀	*	\forall	\vdash		_	$\dagger \dagger$	\top			\top	H			Page
			<u> </u>			⇈	\top	++	+		+	\forall		+				Н			
						H	+		+	\vdash	+	+		+	\forall	\forall					-1
				-		╫	+	++	+	-	+	+	++	+	+	\rightarrow	+				\neg
						╂╂	-+	+	+	\vdash		-		-	+	+	+	Н	$\overline{}$	-	
	<u> </u>		<u> </u>			Ц	\dashv	\dashv	4	<u> </u>	\bot	\bot	\dashv		Ш	\perp	Ш				
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaC	H; 6= Other						I						\perp		Ш						
Possible Hazard Identification Non-Hazard Flammable Skin Irritani	Poison B	□nkn	own					ple Dis _i Return			e may	be a:	s esse sposal	d if s By La	ampi ab	es ar	e retal 3 _{Arch}	ined hive	longer than 1 mo	nth) Ionths	
Special Instructions/QC Requirements & Comments:																					
Relinquished by:	Company	Ted 4	٧	Date/Time	2			egyby:	_					Cempa					Date/Time:	15:56	
Relinquished by:	Company:	5/16	1),	Dare/Tim	J		Recei	ved by:)d/				ľ	Compa E	iny: Z	یج			Collo 22	13:4	5
Relinquished by	Company ELLE		6.21	Date/im	14		Recei	oj os	20	~				Compa	any:	- 			Date Time	164	0

Lancaster New Holland Pike, PA

an of Custody Record

																	TestAmerica I	aborat	ories, I	nc.
Client Contact	Project Manage	r: Josh Mu	llis			Site	Cont	act: Jos	sh Mu	llis		Da	te: 6/	15/2022	2		COC No:			
Tetra Tech	Tel/Fax: 410-27	9-2700				Lab	Con	tact: Ro	oxann	e Cisne	ros	Car	rier: F	edex			1	of 1 COC	S	
20251 Century Blvd, Suite 200	A	nalysis Tu	rnaround T	ime													Job No.			
Germantown, MD 20874	Calendar (C) or Wor	k Days (W)																	- 1
(301) 528-3021 Phone	TAT	if different from	m Below: STA	NDARD																
(301) 528-3000 FAX		2 1	veeks														SDG No.			
Project Name: MSA Annual GW (waste characterization)		1.	veek				53													
Site: Martin State Airport		2	days				9			1										
Project: 112IC09567 (PO 1189300)		1	day				Method 537										Sampler: J Mul	lis		
Sample Identification	Sample Date	Sample Time	Sample Type	Matrix	# of Cont.	Filtered S.	PFAS										Sample Specific	e Notes:		
MSA-WC-MTW-061522	6/15/2022	1100	WC	Aq	2	Ti														
IVISA- W C-IVI I W-001322	0/13/2022	110-	WC	Aq		╫	X	+++	+	+-+	+-	-		++	+	++				$\overline{}$
						+	-	+	-	+-+		-	-	++						
A						$\bot\!\!\!\!\bot$	_	+	_	\vdash				++	\perp					
//-																				
///	~ /			6/1		H														
//				17:3/	7	П		*	\downarrow											
//				-		Н		++	+		+		-	++						\neg
						╫	-	+-+	+	-	++			$\forall $		++				
						\sqcup		$\perp \perp$	\perp	\vdash					*					
Preservation Used: 1= Ice, 2= HCl; 3= H2SO4; 4=HNO3; 5=NaC	H; 6= Other						1	11											1	
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B	□nkn	own					le Dis _i Returr			e may b	Disp	essed osal E	if sam v Lab		retaine Archiv	ed longer than 1 re For	month) Month		
Special Instructions/QC Requirements & Comments:																				
Λ																				
Relinquished by:	Company:	Ted I	٤ .	Date/Time	2			ved by:					C	mpany;	<u> </u>		Date/Time:	(5.90	5
Relinquished by:	Company:	5/16	1),	Dark/Tim	: -		Recei	ved by:) ell	_			C	ompany:	LE		Date/Time:	2 /	3:4	15
Relinquished by:	Company:		6.21	Date/im	1/4	1	Recei	(dby	U	~			C	ompany:	ET		Date Time	2 1	64	O

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 240-168405-1

Login Number: 168405 List Source: Eurofins Canton

List Number: 1

Creator: Cisneros, Roxanne

Question Answer Comment

Radioactivity wasn't checked or is </= background as measured by a survey

meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested

MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Job Number: 240-168405-1

Login Number: 168405 List Source: Eurofins Lancaster Laboratories Environment Testing, LLC
List Number: 2 List Creation: 06/17/22 09:36 AM

Creator: Foreman, Leah M

Question	Answer	Comment
The cooler's custody seal is intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable (=6C, not frozen).</td <td>True</td> <td></td>	True	
Cooler Temperature is recorded.	True	
WV: Container Temperature is acceptable (=6C, not frozen).</td <td>N/A</td> <td></td>	N/A	
WV: Container Temperature is recorded.	N/A	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the containers received and the COC.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses.	True	
Is the Field Sampler's name present on COC?	True	
Sample custody seals are intact.	N/A	
VOA sample vials do not have headspace >6mm in diameter (none, if from WV)?	True	

APPENDIX D-ANALYTICAL DATA TABLES

October 2022 Appendices

LOCATION SAMPLE ID SAMPLE DATE	MSA-DMW-02A MSA-DMW-2A-051822 20220518	MSA-DMW-02B MSA-DMW-2B-051822 20220518	MSA-DMW-03I MSA-DMW-3I-052322 20220523	MSA-DMW-03S MSA-DMW-3S-051922 20220519	MSA-DMW-04D MSA-DMW-4D-051922 20220519
VOLATILES (UG/L)					
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE	43 U 48 U	0.43 U 0.48 U	8.6 U 9.6 U	0.86 U 0.96 U	0.43 U 0.48 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	60 U	0.6 U 	12 U 	1.2 U 	0.6 U
1,1,2-TRICHLOROTRIFLUOROETHANE	41 U	0.41 U	8.2 U	0.82 U	0.41 U
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	47 U 49 U	0.47 U 0.49 U	9.4 U 9.8 U	0.94 U 2.3	0.47 U 0.49 U
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE	36 U 54 U	0.36 U 0.54 U	7.2 U 11 U	0.72 U 1.1 UJ	0.36 U 0.54 UJ
1,2,3-TRICHLOROPROPANE	52 U	0.52 U	10 U	1 U	0.52 U
1,2,3-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE	31 U 77 U	0.31 U 0.77 U	6.2 U 15 U	1.2 J 1.5 UJ	0.31 UJ 0.77 UJ
1,2,4-TRIMETHYLBENZENE 1.2-DIBROMO-3-CHLOROPROPANE	52 U 91 U	0.52 U 0.91 U	10 U 18 U	1 U 1.8 U	0.52 U 0.91 U
1,2-DIBROMOETHANE	41 U	0.41 U	8.2 U	0.82 U	0.41 U
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	48 U 21 U	0.48 U 0.21 U	9.6 U 5.8 J	3.5 5.1	0.48 U 0.21 U
1,2-DICHLOROPROPANE	47 U	0.47 U	9.4 U 9 U	0.94 U	0.47 U
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	45 U 21 U	0.45 U 0.21 U	4.2 U	0.9 U 0.42 U	0.45 U 0.21 U
1,4-DICHLOROBENZENE 2,2-DICHLOROPROPANE	41 U 78 U	0.41 U 0.78 U	8.2 U 16 U	0.82 U 1.6 U	0.41 U 0.78 U
2-BUTANONE	120 UJ	1.2 UJ	23 U	2.3 U	1.2 U
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE	150 UR 57 U	1.5 UR 0.57 U	31 UR 11 U	3.1 UR 1.1 U	1.5 UR 0.57 U
2-HEXANONE 4-CHLOROTOLUENE	110 U 43 U	1.1 U 0.43 U	22 U 8.6 U	2.2 U 0.86 U	1.1 U 0.43 U
4-ISOPROPYLTOLUENE	56 U	0.43 U	11 U	1.1 U	0.43 U
4-METHYL-2-PENTANONE ACETONE	99 U 540 U	0.99 U 5.4 U	20 U 110 U	2 U 11 U	0.99 U 5.4 U
ACROLEIN					
ACRYLONITRILE BENZENE	 42 U	 0.42 U	 8.4 U	7.7	 0.42 U
BROMOBENZENE	50 U	0.5 U	10 U	1 U	0.5 U
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	54 U 17 U	0.54 U 0.17 U	11 U 3.4 U	1.1 U 0.34 U	0.54 U 0.17 U
BROMOFORM BROMOMETHANE	76 U 42 UJ	0.76 U 0.42 UJ	15 U 8.4 UJ	1.5 UJ 0.84 U	0.76 UJ 0.42 U
CARBON DISULFIDE	59 U	0.59 U	12 U	1.2 U	0.59 U
CARBON TETRACHLORIDE CHLOROBENZENE	26 U 38 U	0.26 U 0.38 U	5.2 U 7.6 U	0.52 U 0.9 J	0.26 U 0.38 U
CHLORODIBROMOMETHANE CHLORODIFLUOROMETHANE	39 U 100 UJ	0.39 U 1 UJ	7.8 U 20 UJ	0.78 U 2 UJ	0.39 U 1 UJ
CHLORODIFLOOROME I HANE CHLOROETHANE	83 U	0.83 U	20 UJ 17 UJ	1.7 U	0.83 U
CHLOROFORM CHLOROMETHANE	47 U 63 U	0.47 U 0.63 UJ	9.4 U 13 UJ	0.94 U 1.3 U	0.47 U 0.63 U
CIS-1,2-DICHLOROETHENE	830	4.3	440	980 J	33
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	61 U 40 U	0.61 U 0.4 U	12 U 8 U	1.2 U 0.8 U	0.61 U 0.4 U
DICHLORODIFLUOROMETHANE	35 UJ	0.35 U	7 U	0.7 UJ	0.35 UJ
DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER	17 U 40 U	0.17 U 0.4 U	3.4 U 8 U	1.1 J 0.8 U	0.17 U 0.4 U
ETHYLBENZENE HEXACHLOROBUTADIENE	42 U 83 U	0.42 U 0.83 U	8.4 U 17 U	5.5 1.7 UJ	0.42 U 0.83 UJ
ISOPROPYLBENZENE	49 U	0.49 U	9.8 U	0.98 U	0.49 U
M+P-XYLENES METHYL TERT-BUTYL ETHER	42 U 47 U	0.42 U 0.47 U	8.4 U 9.4 U	3.7 J 0.94 U	0.42 U 0.47 U
METHYLENE CHLORIDE	260 U	2.6 U	52 U	5.2 U	2.6 U
NAPHTHALENE N-BUTYLBENZENE	80 UJ	0.8 U 0.6 U	16 UJ 12 U	3.6 1.2 UJ	0.8 U 0.6 UJ
N-PROPYLBENZENE O-XYLENE	57 U 42 U	0.57 U 0.42 U	11 U 8.4 U	1.1 U 4.7	0.57 U 0.42 U
SEC-BUTYLBENZENE	53 U	0.53 U	11 U	1.1 U	0.53 U
STYRENE TERT-AMYL METHYL ETHER	45 U 43 U	0.45 U 0.43 U	9 U 8.6 U	0.9 U 0.86 U	0.45 U 0.43 U
TERT-BUTYLBENZENE TERTIARY-BUTYL ALCOHOL	48 U 720 U	0.48 U 7.2 UJ	9.6 U 140 UJ	0.96 U 19 J	0.48 U 7.2 U
TETRACHLOROETHENE	44 U	0.44 U	8.8 U	0.88 U	0.44 U
TOLUENE TOTAL XYLENES	44 U 42 U	0.44 U 0.42 U	8.8 U 8.4 U	34 8.4	0.44 U 0.42 U
TRANS-1,2-DICHLOROETHENE	51 U	0.51 U	10 U	220 J	0.51 U
TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE	67 U 2400	0.67 U 1.6	13 U 560	1.3 U 5.4	0.67 U 48
TRICHLOROFLUOROMETHANE VINYL ACETATE	45 U 61 UJ	0.45 U 0.61 UJ	9 UJ 12 U	0.9 U 1.2 U	0.45 U 0.61 U
VINYL CHLORIDE	290	0.45 UJ	240	3600 J	2.3
SEMIVOLATILES (UG/L) 1,4-DIOXANE	48 J	0.37 UJ	25 J	170 J	0.37 UJ
METALS (UG/L) ANTIMONY	0.57 U		0.57 U	0.57 U	0.57 U
ARSENIC	0.75 U		0.75 U	13	0.75 U
BERYLLIUM CADMIUM	3 360		4.3 800	0.62 U 0.2 U	3 2
CHROMIUM	2.8 J		3.7 J	4.7 J	2.5 U
COPPER LEAD	33 2.1		8.2 1.8	1.7 U 1.1	31 0.45 U
MERCURY NICKEL	0.13 J 140		0.13 U 85	0.19 J 2.7	3.2 41
SELENIUM	1.5 J		1.4 J	0.89 U	1.5 J
SILVER THALLIUM	0.053 U 0.43 J		0.053 U 0.58 U	0.053 U 0.2 U	0.053 U 0.43 J
ZINC	420		250	15 U	79
METALS FILTERED (UG/L) ANTIMONY	0.57 U		0.57 U	0.57 U	0.57 U
ARSENIC BERYLLIUM	0.75 U 2.9		0.75 U 4.2	14 0.62 U	0.75 U 3
CADMIUM	350		810	0.2 U	1.9
CHROMIUM COPPER	2.5 U 33		3.8 J 8.9	2.5 U 1.7 U	2.5 U 31
LEAD	1.9		1.7	0.45 U	0.5 J
MERCURY NICKEL	0.13 U 140		0.13 U 91	0.14 J 1.5 U	2.7 42
SELENIUM SILVER	1.4 J 0.053 U		1.4 J 0.053 U	0.89 U 0.053 U	1.8 J 0.053 U
THALLIUM	0.31 J		0.55 U	0.2 U	0.63 J
ZINC MISCELLANEOUS (UG/L)	420		270	15 U	80
HEXAVALENT CHROMIUM					
PETROLEUM HYDROCARBONS (UG/L) TPH (C06-C10)				830	
				1000	
TPH (C10-C28) RADIONUCLIDES (PCI/L)				1800	

LOCATION SAMPLE ID SAMPLE DATE VOLATILES (UG/L)	MSA-DMW-04I MSA-DMW-4I-051922 20220519	MSA-DMW-05S MSA-DMW-5S-051922 20220519	MSA-DMW-06D MSA-DMW-6D-060622 20220606	MSA-DMW-06I MSA-DMW-6I-060622 20220606	MSA-DMW-06S MSA-DMW-6S-060622 20220606	MSA-DMW-07D MSA-DMW-7D-052022 20220520	MSA-DMW-07I MSA-DMW-7I-052022 20220520	MSA-DMW-07S MSA-DMW-7S-052022 20220520
1,1,1,2-TETRACHLOROETHANE	0.43 U	0.43 U	0.43 UJ				0.43 U	86 U
1,1,1-TRICHLOROETHANE	5.4	0.48 U	0.48 UJ				0.48 U	96 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	0.6 U 	0.6 U 	0.6 UJ 				0.6 U 	120 U
1,1,2-TRICHLOROTRIFLUOROETHANE	1.3	0.59 J	0.41 UJ				0.41 U	82 U
1,1-DICHLOROETHANE	6.1	0.73 J	0.47 UJ				0.47 U	94 U
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	17 0.36 U	16 0.36 U	0.49 UJ 0.36 UJ				0.49 U 0.36 U	98 U 72 U
1,2,3-TRICHLOROBENZENE	0.54 UJ	0.54 UJ	0.54 UJ				0.54 U	110 U
1,2,3-TRICHLOROPROPANE	0.52 U	0.52 U	0.52 UJ				0.52 U	100 U
1,2,3-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE	6.6 J 0.77 UJ	1 J 0.77 UJ	0.31 UJ 0.77 UJ				0.31 UJ 0.77 U	62 UJ 150 U
1,2,4-TRIMETHYLBENZENE	0.52 U	2.3	0.52 UJ				0.52 UJ	100 UJ
1,2-DIBROMO-3-CHLOROPROPANE	0.91 U	0.91 U	0.91 UJ				0.91 UJ	180 UJ
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	0.41 U 0.48 U	0.41 U 0.48 U	0.41 UJ 0.48 UJ				0.41 U 0.48 U	82 U 96 U
1,2-DICHLOROETHANE	14	7.7	0.48 UJ				0.48 U	42 U
1,2-DICHLOROPROPANE	0.47 U	0.47 U	0.47 UJ				0.47 U	94 U
1,3-DICHLOROBENZENE	0.45 U	0.45 U	0.45 UJ				0.45 U	90 U
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	0.21 U 0.41 U	0.21 U 0.41 U	0.21 UJ 0.41 UJ				0.21 U 0.41 U	42 U 82 U
2,2-DICHLOROPROPANE	0.78 U	0.78 U	0.78 UJ				0.78 U	160 U
2-BUTANONE	1.2 U	1.2 U	1.2 UJ				1.2 U	230 U
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE	1.5 UR 0.57 U	1.5 UR 0.57 U	1.5 UJ 0.57 UJ				1.5 UR 0.57 U	310 UR 110 U
2-HEXANONE	1.1 U	1.1 U	1.1 UJ				1.1 U	220 U
4-CHLOROTOLUENE	0.43 U	0.43 U	0.43 UJ				0.43 U	86 U
4-ISOPROPYLTOLUENE	0.56 U	0.56 U	0.56 UJ				0.56 UJ	110 UJ
4-METHYL-2-PENTANONE ACETONE	0.99 U 5.4 U	0.99 U 5.4 U	0.99 UJ 5.4 UJ				0.99 U 5.4 U	200 U 1100 U
ACROLEIN			 					
ACRYLONITRILE								
BENZENE BROMOBENZENE	2.4 0.5 U	2.2 0.5 U	0.42 UJ 0.5 UJ				0.42 U 0.5 U	84 U 100 U
BROMOCHLOROMETHANE	0.5 U 0.54 U	0.5 U 0.54 U	0.5 UJ 0.54 UJ				0.5 U 0.54 U	100 U 110 U
BROMODICHLOROMETHANE	0.17 U	0.17 U	0.17 UJ				0.17 U	34 U
BROMOFORM	0.76 UJ	0.76 UJ	0.76 UJ				0.76 UJ	150 UJ
BROMOMETHANE CARBON DISULFIDE	0.42 U 0.59 U	0.42 U 0.59 U	0.42 UJ 0.59 UJ				0.42 UJ 0.59 U	84 UJ 120 U
CARBON DISULFIDE CARBON TETRACHLORIDE	0.26 U	0.39 U	0.39 UJ			-	0.39 U 0.26 U	52 U
CHLOROBENZENE	0.77 J	0.38 U	0.38 UJ				0.7 J	76 U
CHLORODIBROMOMETHANE CHLORODIFLUOROMETHANE	0.39 U	0.39 U	0.39 UJ				0.39 U	78 U
CHLORODIFLUOROMETHANE CHLOROETHANE	1 UJ 0.83 U	1 UJ 0.83 U	1 UJ 0.83 UJ				1 UJ 0.83 UJ	200 UJ 170 UJ
CHLOROFORM	1	0.47 J	0.47 UJ				0.47 U	94 U
CHLOROMETHANE	0.63 U	0.63 U	0.63 UJ				0.63 U	130 U
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE	2000 J 0.61 U	2700 J 0.61 U	0.46 UJ 0.61 UJ				57 0.61 U	8400 120 U
DIBROMOMETHANE	0.4 U	0.4 U	0.4 UJ				0.4 U	80 U
DICHLORODIFLUOROMETHANE	0.35 UJ	0.35 UJ	0.35 UJ				0.35 U	70 U
DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER	0.17 U 0.4 U	0.17 U 0.4 U	0.17 UJ 0.4 UJ				0.17 U 0.4 U	34 U 80 U
ETHYLBENZENE	0.42 U	1.4	0.42 UJ				0.42 U	80 U
HEXACHLOROBUTADIENE	0.83 UJ	0.83 UJ	0.83 UJ				0.83 UJ	170 UJ
ISOPROPYLBENZENE M+P-XYLENES	0.54 J 0.42 U	0.49 U 2.7	0.49 UJ 0.42 UJ				0.49 U 0.42 U	98 U 84 U
METHYL TERT-BUTYL ETHER	0.42 U	0.47 U	0.42 UJ				0.42 U	94 U
METHYLENE CHLORIDE	3.1 J	2.6 U	2.6 UJ				2.6 U	520 U
NAPHTHALENE NAPHTHALENE	1.3	0.8 U	0.8 UJ				0.8 UJ	160 J
N-BUTYLBENZENE N-PROPYLBENZENE	0.6 UJ 0.57 U	0.6 UJ 0.57 U	0.6 UJ 0.57 UJ				0.6 UJ 0.57 U	120 UJ 110 U
O-XYLENE	2.1	2	0.42 UJ				0.42 U	84 U
SEC-BUTYLBENZENE	0.56 J	0.58 J	0.53 UJ				0.53 U	110 U
STYRENE TERT-AMYL METHYL ETHER	0.45 U 0.43 U	0.45 U 0.43 U	0.45 UJ 0.43 UJ				0.45 U 0.43 U	90 U 86 U
TERT-BUTYLBENZENE	0.43 U	0.48 U	0.48 UJ				0.48 U	96 U
TERTIARY-BUTYL ALCOHOL	7.2 U	7.2 U	7.2 UJ				7.2 UJ	1400 UJ
TETRACHLOROETHENE TOLUENE	6.5 0.44 U	4.2 4.1	0.44 UJ 0.44 UJ				0.44 U 0.44 U	88 U 88 U
TOTAL XYLENES	2.1	4.7	0.44 UJ				0.44 U	84 U
TRANS-1,2-DICHLOROETHENE	20	5.2	0.51 UJ				1.3	100 U
TRANS-1,3-DICHLOROPROPENE	0.67 U	0.67 U	0.67 UJ				0.67 U	130 U
TRICHLOROETHENE TRICHLOROFLUOROMETHANE	4500 J 0.45 U	3000 J 0.45 U	0.44 UJ 0.45 UJ				44 0.45 UJ	1400 90 UJ
VINYL ACETATE	0.61 U	0.61 U	0.61 UJ				0.61 U	120 U
VINYL CHLORIDE	92 J	990 J	0.45 UJ				23	2100
SEMIVOLATILES (UG/L) 1.4-DIOXANE	19 J	6.8 J	0.39 U				1.1 J	18 J
METALS (UG/L)								
ANTIMONY	0.57 U							
ARSENIC BERYLLIUM	0.75 U 2.9	3.9 J 0.64 J	0.75 U 1.2	0.75 U 8.4	5.4 0.62 U	0.75 U 1.9	0.75 U 1.7	0.75 U 0.62 U
CADMIUM	11	0.64 J	1.1	3.6	0.62 U	1.9	2.7	0.62 U
CHROMIUM	2.5 U	3.3 J	2.5 U					
COPPER LEAD	68 3.2	2.3 0.45 U	11 0.45 U	60 1.4	1.7 U 0.45 U	17 3.2	34 2.3	3.5 0.45 U
MERCURY	0.22	0.45 U	0.45 0	0.21	0.45 U	1.9	0.13 U	0.45 U
NICKEL	52	6.8	49	59	1.5 U	85	37	6.5
SELENIUM SILVER	1 J 0.053 U	0.89 U 0.053 U	2.7 J 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U	0.91 J 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U
SILVER THALLIUM	0.053 U 0.24 J	0.053 U 0.64 J	0.053 U 0.2 U					
ZINC	170	18 J	100	230	15 U	150	150	15 U
METALS FILTERED (UG/L)		··				··		
ANTIMONY ARSENIC	0.57 U 0.75 U	0.57 U 3.8 J	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 5	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U
BERYLLIUM	2.9	0.62 U	1.3	7.8	0.62 U	1.8	1.7	0.75 U
CADMIUM	11	0.2 U	1	3	0.2 U	1.9	2	0.2 U
CHROMIUM	2.5 U	2.7 J	2.5 U					
COPPER LEAD	66 3.2	1.7 U 0.45 U	10 0.45 U	55 1.2	1.7 U 0.45 U	17 2.6	1.7 U 0.95 J	3.1 0.45 U
MERCURY	0.13 U	0.13 J	0.13 U	0.13 U	0.13 U	0.31	0.13 U	0.13 U
NICKEL	51	6.3	48	55	1.5 U	87	39	6.7
SELENIUM SILVER	0.96 J 0.053 U	0.89 U 0.053 U	2.5 J 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U	1.1 J 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U
THALLIUM	0.053 U 0.22 J	0.053 U 0.22 J	0.053 U 0.2 U					
ZINC	170	18 J	100	220	15 U	150	150	15 U
MISCELLANEOUS (UG/L)					0.005 HB			
HEXAVALENT CHROMIUM PETROLEUM HYDROCARBONS (UG/L)					0.005 UR			
TPH (C06-C10)		2400			49 U			4700
TPH (C10-C28)		410 J			890			400 J
RADIONUCLIDES (PCI/L) RADIUM-228			8.6	17.7	1.69 J			
TOTAL ALPHA RADIUM			2.93	6.39	1.09 J			

LOCATION SAMPLE ID SAMPLE DATE	MSA-DMW-09D MSA-DMW-09D-051722 20220517	MSA-DMW-09I MSA-DMW-09I-051722 20220517	MSA-DMW-09S MSA-DMW-09S-051722 20220517	MSA-DMW-11I MSA-DMW-11I-060922 20220608	MSA-DMW-11S MSA-DMW-11S-060922 20220609	MSA-MW-04 MSA-MW-04-051322 20220513	MSA-MW-06 MSA-MW-06-060622 20220606
VOLATILES (UG/L) 1,1,1,2-TETRACHLOROETHANE	43 U	17 U	17 U	4.3 U	43 U	0.43 U	0.43 U
1,1,1-TRICHLOROETHANE	48 U	19 U	19 U	4.8 U	48 U	0.48 U	0.48 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	60 U 	24 U 	24 U 	6 U 	60 U 	0.6 U 	0.6 U
1,1,2-TRICHLOROTRIFLUOROETHANE 1,1-DICHLOROETHANE	41 U 47 U	16 U 19 U	16 U 19 U	4.1 U 4.7 U	41 U 47 U	0.41 U 0.47 U	0.41 U 0.47 U
1,1-DICHLOROETHENE	49 U	20 U	20 U	4.9 U	140	0.49 U	0.49 U
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE	36 U 54 U	14 U 22 U	14 U 22 U	3.6 U 5.4 U	36 U 54 U	0.36 U 0.54 U	0.36 U 0.54 U
1,2,3-TRICHLOROPROPANE	52 U	21 U	21 U	5.2 U	52 U	0.52 U	0.52 U
1,2,3-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE	31 U 77 U	12 U 31 U	15 J 31 U	3.1 U 7.7 U	31 U 77 U	0.31 U 0.77 U	0.31 U 0.77 U
1,2,4-TRIMETHYLBENZENE	52 U	21 U	31 J	5.2 U	52 U	0.52 U	0.52 U
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	91 U 41 U	36 U 16 U	36 U 16 U	9.1 U 4.1 U	91 U 41 U	0.91 U 0.41 U	0.91 U 0.41 U
1,2-DICHLOROBENZENE	48 U	19 U	19 U	4.8 U	48 U	0.48 U	0.48 U
1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE	24 J 47 U	46 19 U	8.4 U 19 U	2.1 U 4.7 U	21 U 47 U	0.98 J 0.47 U	0.21 U 0.47 U
1,3-DICHLOROBENZENE 1.3-DICHLOROPROPANE	45 U	18 U	18 U	4.5 U	45 U	0.45 U	0.45 U
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	21 U 41 U	8.4 U 16 U	8.4 U 16 U	2.1 U 4.1 U	21 U 41 U	0.21 U 0.41 U	0.21 U 0.41 U
2,2-DICHLOROPROPANE 2-BUTANONE	78 U 120 U	31 U 46 U	31 U 46 U	7.8 U 12 U	78 U 120 U	0.78 U 1.2 U	0.78 UJ 1.2 U
2-CHLOROETHYL VINYL ETHER	150 UR	61 UR	61 UR	12 UR	150 UR	1.5 UR	1.5 UR
2-CHLOROTOLUENE	57 U 110 U	23 U 44 U	23 U 44 U	5.7 U	57 U	0.57 U	0.57 U
2-HEXANONE 4-CHLOROTOLUENE	43 U	17 U	17 U	11 U 4.3 U	110 U 43 U	1.1 U 0.43 U	1.1 U 0.43 U
4-ISOPROPYLTOLUENE	56 U	22 U	22 U	5.6 U	56 U	0.56 U	0.56 U
4-METHYL-2-PENTANONE ACETONE	99 U 540 U	40 U 220 U	40 U 220 U	9.9 U 54 U	99 U 540 U	0.99 U 5.4 U	0.99 U 5.4 U
ACROLEIN							
ACRYLONITRILE BENZENE	 42 U	 21 J	97	 4.2 U	 42 U	 0.42 U	0.42 U
BROMOBENZENE	50 U	20 U	20 U	5 U	50 U	0.5 U	0.5 U
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	54 U 17 U	22 U 6.8 U	22 U 6.8 U	5.4 U 1.7 U	54 U 17 U	0.54 U 0.17 U	0.54 U 0.17 U
BROMOFORM	76 U	30 U	30 U	7.6 U	76 U	0.76 U	0.76 U
BROMOMETHANE CARBON DISULFIDE	42 UJ 59 U	17 UJ 24 U	17 UJ 24 U	4.2 U 5.9 U	42 U 59 U	0.42 U 0.59 U	0.42 UJ 0.59 U
CARBON TETRACHLORIDE	26 U	15 J	10 U	2.6 U	26 U	0.26 U	0.26 U
CHLOROBENZENE CHLORODIBROMOMETHANE	38 U 39 U	15 U 16 U	210 16 U	3.8 U 3.9 U	38 U 39 U	6.8 0.39 U	0.38 U 0.39 U
CHLORODIFLUOROMETHANE	100 UJ	40 UJ	40 UJ	10 UJ	100 UJ	1 UJ	1 UJ
CHLOROETHANE CHLOROFORM	83 U 140	33 U 120	33 U 19 U	8.3 U 4.7 U	83 U 47 U	0.83 U 0.47 U	0.83 UJ 0.47 U
CHLOROMETHANE	63 U	25 U	25 U	6.3 U	63 U	0.63 U	0.63 U
CIS-1,2-DICHLOROETHENE CIS-1.3-DICHLOROPROPENE	680 61 U	1400 24 U	18 U 24 U	340 6.1 U	7200 61 U	0.72 J 0.61 U	0.54 J 0.61 U
DIBROMOMETHANE	40 U	16 U	16 U	4 U	40 U	0.4 U	0.4 U
DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER	35 UJ 17 U	14 UJ 6.8 U	14 UJ 6.8 U	3.5 U 1.7 U	35 U 17 U	0.35 U 0.17 U	0.35 U 0.17 U
ETHYL TERT-BUTYL ETHER	40 U	16 U	16 U	1.7 U	40 U	0.17 U	0.17 U
ETHYLBENZENE HEXACHLOROBUTADIENE	42 U 83 U	17 U 33 U	240 33 U	4.2 U 8.3 U	42 U 83 U	0.42 U 0.83 U	0.42 U 0.83 U
ISOPROPYLBENZENE	49 U	20 U	20 U	4.9 U	49 U	0.49 U	0.83 U
M+P-XYLENES METHYL TERT-BUTYL ETHER	42 U 47 U	17 U 19 U	2200 19 U	4.2 U 4.7 U	42 U 47 U	0.42 U 0.47 U	0.42 U 0.47 U
METHYLENE CHLORIDE	260 U	100 U	100 U	26 U	260 U	2.6 U	2.6 U
NAPHTHALENE N-BUTYLBENZENE	80 U 60 U	32 U 24 U	32 U 24 U	8 U 6 U	80 U 60 U	0.8 U 0.6 U	0.8 U 0.6 U
N-PROPYLBENZENE N-PROPYLBENZENE	57 U	23 U	23 U	5.7 U	57 U	0.57 U	0.57 U
O-XYLENE SEC-BUTYLBENZENE	42 U 53 U	17 U 21 U	240 21 U	4.2 U 5.3 U	42 U 53 U	0.42 U 0.53 U	0.42 U 0.53 U
STYRENE	45 U	18 U	18 U	4.5 U	45 U	0.45 U	0.45 U
TERT-AMYL METHYL ETHER	43 U	17 U	17 U	4.3 U	43 U	0.43 U	0.43 U
TERT-BUTYLBENZENE TERTIARY-BUTYL ALCOHOL	48 U 720 U	19 U 290 U	19 U 290 U	4.8 U 72 U	48 U 720 U	0.48 U 7.2 UJ	0.48 U 7.2 UJ
TETRACHLOROETHENE	44 U	18 U	18 U	4.4 U	44 U	0.44 U	0.44 U
TOLUENE TOTAL XYLENES	54 J 42 U	18 U 17 U	180 2400	4.4 U 4.2 U	120 42 U	0.44 U 0.42 U	0.44 U 0.42 U
TRANS-1,2-DICHLOROETHENE	51 U	20 U	20 U	5.1 U	51 U	0.51 U	0.51 U
TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE	67 U 4000	27 U 1800	27 U 18 U	6.7 U 61	67 U 1400	0.67 U 0.44 U	0.67 U 0.44 U
TRICHLOROFLUOROMETHANE	45 U	18 U	18 U	4.5 U	45 U	0.45 U	0.45 UJ
VINYL ACETATE VINYL CHLORIDE	61 UJ 78 J	24 UJ 550	24 UJ 18 U	6.1 U 110	61 U 6800	0.61 UJ 1	0.61 U 0.45 U
SEMIVOLATILES (UG/L)	30.1	400 !		0.27 !!!	0.2	221	
1,4-DIOXANE METALS (UG/L)	36 J	100 J	5.8 J	0.37 UJ	8.3	2.2 J	0.36 U
ANTIMONY	0.57 U	0.57 U	0.57 U				
ARSENIC BERYLLIUM	6.2 0.68 J	0.75 U 3.2	1.1 J 0.62 U	3.8 J 0.62 U	5 0.62 U	0.75 U 0.62 U	1.7 J 0.62 J
CADMIUM	0.21 J	6.6	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
CHROMIUM COPPER	2.5 U 13	2.5 U 17	2.5 U 1.7 U	2.5 U 4.8	2.5 U 1.7 U	2.5 U 1.7 U	2.5 U 1.7 U
LEAD	5	4	0.45 U	0.71 J	0.45 U	0.82 J	0.45 U
MERCURY NICKEL	0.13 U 54	0.13 U 110	0.13 U 1.5 U	0.49 1.5 J	0.13 U 2.9	0.13 U 1.5 U	0.13 U 5.5
SELENIUM	0.89 U	1.9 J	0.89 U	0.89 U	0.89 U	0.89 U	0.89 U
SILVER THALLIUM	0.053 U 0.2 U	0.053 U 0.2 U	0.053 U 0.2 U	0.053 U 0.58 J	0.053 U 0.2 U	0.053 U 0.2 U	0.053 U 0.2 U
ZINC	170	360	15 U	17 J	15 U	30	24
METALS FILTERED (UG/L) ANTIMONY	0.57 U	0.57 U	0.57 U				
ARSENIC	6.3	1.2 J	0.9 J	3.9 J	4.1 J	0.75 U	1.5 J
BERYLLIUM CADMIUM	0.62 U 0.2 U	3 6	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U	0.62 U 0.2 U
CHROMIUM	2.5 U	2.5 U	2.5 U				
COPPER LEAD	1.7 U 0.45 U	22 7.5	1.7 U 0.45 U	2.3 0.45 U	1.7 U 0.45 U	1.7 U 0.45 U	1.7 U 0.45 U
MERCURY	0.45 U 0.13 U	7.5 0.13 U	0.45 U 0.13 U	0.45 U 0.17 J	0.13 U	0.45 U 0.13 U	0.13 U
NICKEL	58	100	1.5 U	1.6 J	2.2	1.5 U	5.5
SELENIUM SILVER	0.89 U 0.053 U	2 J 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U
THALLIUM	0.2 U	0.2 U	0.42 J				
ZINC MISCELLANEOUS (UG/L)	160	330	15 U	16 J	15 U	15 U	19 J
HEXAVALENT CHROMIUM							
PETROLEUM HYDROCARBONS (UG/L) TPH (C06-C10)			5200		4200	49 U	49 U
TPH (C10-C28)			920		1100	310 J	380 J
RADIONUCLIDES (PCI/L) RADIUM-228							
TOTAL ALPHA RADIUM							

LOCATION SAMPLE ID SAMPLE DATE	MSA-MW-14D MSA-MW-14D-052622 20220526	MSA-MW-14I MSA-MW-14I-052622 20220526	MSA-MW-15D MSA-MW-15D-052622 20220526	MSA-MW-16D MSA-MW-16D-052522 20220525	MSA-MW-16I MSA-MW-16I-052522 20220525	MSA-MW-16S MSA-MW-16S-052522 20220525	MSA-MW-17I MSA-MW-17I-061022 20220609
VOLATILES (UG/L) 1,1,1,2-TETRACHLOROETHANE	0.43 U	22 U	0.43 U	0.43 U	17 U	0.86 U	17 U
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	0.48 U 0.6 U	24 U 30 U	0.48 U 0.6 U	0.48 U 0.6 UJ	19 U 24 UJ	0.96 U 1.2 UJ	19 U 24 U
1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROTRIFLUOROETHANE	 0.41 U	 21 U	 0.41 U	 0.41 U	 16 U	 0.82 U	 16 U
1,1-DICHLOROETHANE	0.47 U	24 U	0.47 U	0.47 U	19 U	0.94 U	19 U
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	0.49 U 0.36 U	25 U 18 U	0.49 U 0.36 U	0.49 U 0.36 U	20 U 14 U	0.98 U 0.72 U	20 U 14 U
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	0.54 UJ 0.52 U	27 UJ 26 U	0.54 UJ 0.52 U	0.54 U	22 U	1.1 U	22 UJ
1,2,3-TRIMETHYLBENZENE	0.52 U 0.31 U	26 U	0.52 U 0.31 U	0.52 U 0.31 U	21 U 12 U	1 U 0.62 U	21 U 12 U
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	0.77 UJ 0.52 U	39 UJ 26 U	0.77 UJ 0.52 U	0.77 U 0.52 U	31 U 21 U	1.5 U 1 U	31 U 21 U
1,2-DIBROMO-3-CHLOROPROPANE	0.91 UJ	46 UJ	0.91 UJ	0.91 UJ	36 UJ	1.8 UJ	36 U
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	0.41 U 0.48 U	21 U 24 U	0.41 U 0.48 U	0.41 U 0.48 U	16 U 19 U	0.82 U 2.1	16 U 19 U
1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE	0.21 U 0.47 U	11 U 24 U	0.21 U 0.47 U	0.21 U 0.47 U	8.4 U 19 U	0.42 U 0.94 U	8.4 U 19 U
1,3-DICHLOROBENZENE	0.45 U	23 U	0.45 U	0.45 U	18 U	0.9 U	18 U
1,3-DICHLOROPROPANE 1.4-DICHLOROBENZENE	0.21 U 0.41 U	11 U 21 U	0.21 U 0.41 U	0.21 U 0.41 U	8.4 U 16 U	0.42 U 0.82 U	8.4 U 16 U
2,2-DICHLOROPROPANE	0.78 U	39 U	0.78 U	0.78 UJ	31 UJ	1.6 UJ	31 U
2-BUTANONE 2-CHLOROETHYL VINYL ETHER	1.2 U 1.5 UR	58 U 77 UR	1.2 U 1.5 UR	1.2 UJ 1.5 UR	46 UJ 61 UR	2.3 UJ 3.1 UR	46 U 61 UR
2-CHLOROTOLUENE 2-HEXANONE	0.57 U 1.1 U	29 U 56 U	0.57 U 1.1 U	0.57 U 1.1 UJ	23 UJ 44 UJ	1.1 U 2.2 UJ	23 U 44 U
4-CHLOROTOLUENE	0.43 U	22 U	0.43 U	0.43 U	17 UJ	0.86 U	17 U
4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE	0.56 U 0.99 U	28 U 50 U	0.56 U 0.99 U	0.56 U 0.99 UJ	22 U 40 UJ	1.1 U 2 UJ	22 U 40 U
ACETONE	5.4 U	270 U	5.4 U	5.4 UJ	220 UJ	11 UJ	220 U
ACROLEIN ACRYLONITRILE							
BENZENE BROMOBENZENE	0.42 U 0.5 U	26 J 25 U	0.42 U 0.5 U	0.42 U 0.5 U	17 U 20 U	6.6 1 U	17 U 20 U
BROMOCHLOROMETHANE	0.54 U	27 U	0.54 U	0.54 U	22 U	1.1 U	22 U
BROMODICHLOROMETHANE BROMOFORM	0.17 U 0.76 UJ	8.5 U 38 UJ	0.17 U 0.76 UJ	0.17 U 0.76 U	6.8 U 30 U	0.34 U 1.5 U	6.8 U 30 UJ
BROMOMETHANE	0.42 UJ	21 UJ	0.42 UJ	0.42 U	17 U	0.84 U	17 UJ
CARBON DISULFIDE CARBON TETRACHLORIDE	0.59 U 0.26 U	30 U 13 U	0.59 U 0.26 U	0.59 U 0.26 U	24 U 10 U	1.2 U 0.52 U	24 U 10 U
CHLOROBENZENE CHLORODIBROMOMETHANE	0.38 U 0.39 U	19 U 20 U	0.38 U 0.39 U	0.38 U 0.39 U	15 U 16 U	0.76 U 0.78 U	15 U 16 UJ
CHLORODIFLUOROMETHANE	1 UJ	50 UJ	1 UJ	1 UJ	40 UJ	0.78 U 2 UJ	40 UJ
CHLOROETHANE CHLOROFORM	0.83 U 0.47 U	42 U 24 U	0.83 U 0.47 U	0.83 UJ 0.47 U	33 UJ 19 U	1.7 UJ 0.94 U	33 U 19 U
CHLOROMETHANE	0.63 U	32 U	0.63 U	0.63 UJ	25 UJ	1.3 UJ	25 U
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE	0.46 U 0.61 U	75 31 U	0.94 J 0.61 U	0.46 U 0.61 UJ	480 24 UJ	22 1.2 UJ	270 24 U
DIBROMOMETHANE	0.4 U	20 U	0.4 U	0.4 U	16 U	0.8 U	16 U
DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER	0.35 U 0.17 U	18 U 8.5 U	0.35 U 0.17 U	0.35 U 0.17 U	14 U 6.8 U	0.7 U 2.8 J	14 U 6.8 U
ETHYL TERT-BUTYL ETHER ETHYLBENZENE	0.4 U 0.42 U	20 U 21 U	0.4 U 0.42 U	0.4 U 0.42 U	16 U 17 U	0.8 U 0.84 U	16 U 17 U
HEXACHLOROBUTADIENE	0.42 U 0.83 UJ	42 UJ	0.42 U 0.83 UJ	0.42 U	33 U	1.7 U	33 U
ISOPROPYLBENZENE M+P-XYLENES	0.49 U 0.42 U	25 U 21 U	0.49 U 0.42 U	0.49 U 0.42 U	20 U 17 U	0.98 U 0.84 U	20 UJ 17 U
METHYL TERT-BUTYL ETHER	0.47 U	24 U	0.47 U	0.47 U	19 U	0.94 U	19 U
METHYLENE CHLORIDE NAPHTHALENE	2.6 U 0.8 U	130 U 40 U	2.6 U 0.8 U	2.6 U 0.8 U	100 U 32 U	5.2 U 1.6 U	100 U 32 U
N-BUTYLBENZENE N-PROPYLBENZENE	0.6 U 0.57 U	30 U 29 U	0.6 U 0.57 U	0.6 UJ 0.57 U	24 UJ 23 U	1.2 UJ 1.1 U	24 UJ 23 U
O-XYLENE	0.42 U	21 U	0.42 U	0.42 U	17 U	0.84 U	17 U
SEC-BUTYLBENZENE STYRENE	0.53 U 0.45 U	27 U 23 U	0.53 U 0.45 U	0.53 U 0.45 U	21 U 18 U	1.1 U 0.9 U	21 U 18 U
TERT-AMYL METHYL ETHER	0.43 U	22 U	0.43 U	0.43 U	17 U	0.86 U	17 U
TERT-BUTYLBENZENE TERTIARY-BUTYL ALCOHOL	0.48 U 7.2 U	24 U 360 U	0.48 U 7.2 U	0.48 U 7.2 UJ	19 U 290 UJ	0.96 U 14 UJ	19 U 290 U
TETRACHLOROETHENE TOLUENE	0.44 U 0.44 U	22 U 22 U	0.44 U 0.44 U	0.44 U 0.44 U	18 U 18 U	0.88 U 0.88 U	18 U 18 U
TOTAL XYLENES	0.44 U	22 U 21 U	0.44 U	0.42 U	18 U	0.88 U 0.84 U	18 U
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	0.51 U 0.67 U	26 U 34 U	0.51 U 0.67 U	0.51 U 0.67 UJ	20 U 27 UJ	1 U 1.3 UJ	20 U 27 U
TRICHLOROETHENE	0.44 U	22 U	0.44 U	0.44 U	2500 J	0.88 U	1600
TRICHLOROFLUOROMETHANE VINYL ACETATE	0.45 U 0.61 U	23 U 31 U	0.45 U 0.61 U	0.45 U 0.61 UJ	18 U 24 UJ	0.9 U 1.2 UJ	18 U 24 UJ
VINYL CHLORIDE SEMIVOLATILES (UG/L)	0.45 U	1400	0.45 U	0.45 U	33 J	83	18 U
1,4-DIOXANE	0.37 U	15	0.37 U	0.37 U	0.37 U	130 J-	0.39 U
METALS (UG/L) ANTIMONY		0.57 U					
ARSENIC BERYLLIUM		19 0.62 U	0.75 U 0.62 U	0.75 U 0.62 U	6.5 0.62 U	0.78 J 0.62 U	2.5 J 0.62 U
CADMIUM		0.2 U	0.2 U	0.2 U	0.31 J	0.2 U	0.2 U
CHROMIUM COPPER		2.5 U 1.7 U	2.5 U 3.4	2.5 U 4.7	2.5 U 3.2	2.9 J 1.7 U	2.5 U 1.7 U
LEAD		0.45 U					
MERCURY NICKEL		0.13 U 1.5 U	0.13 U 9.4	0.13 U 11	0.13 U 53	0.13 U 28	0.13 U 35
SELENIUM SILVER		0.89 U 0.053 U					
THALLIUM		0.2 U					
ZINC METALS FILTERED (UG/L)		15 U	15 J	19 J	87	23	72
ANTIMONY		0.57 U					
ARSENIC BERYLLIUM		19 0.62 U	0.75 U 0.62 U	0.75 U 0.62 U	4 J 0.62 U	0.75 U 0.62 U	1.6 J 0.62 U
CADMIUM CHROMIUM		0.2 U 2.5 U	0.2 U 2.5 U	0.2 U 2.5 U	0.29 J 2.5 U	0.2 U 2.7 J	0.2 U 2.5 U
COPPER		1.7 U	3.3	5.3	1.8 J	1.7 U	1.7 U
LEAD MERCURY		0.45 U 0.13 U					
NICKEL		1.5 U	9.7	11	50	25	30
SELENIUM SILVER		0.89 U 0.053 U					
THALLIUM		0.2 U					
ZINC MISCELLANEOUS (UG/L)		15 U	15 U	17 J	81	15 U	65
HEXAVALENT CHROMIUM	0.065 J		0.44	0.3			
PETROLEUM HYDROCARBONS (UG/L) TPH (C06-C10)						54 J	
TPH (C10-C28) RADIONUCLIDES (PCI/L)						230 J	
RADIUM-228				0.906		0.667	
TOTAL ALPHA RADIUM				0.443 U		0.67	

LOCATION SAMPLE ID SAMPLE DATE	MSA-MW-17S MSA-MW-17S-061022 20220610	MSA-MW-18I MSA-MW-18I-051822 20220518	MSA-MW-18S MSA-MW-18S-051822 20220518	MSA-MW-19D MSA-MW-19D-060722 20220607	MSA-MW-20D MSA-MW-20D-051322 20220513	MSA-MW-20I MSA-MW-20I-051322 20220513	MSA-MW-20S MSA-MW-20S-051322 20220513
VOLATILES (UG/L) 1,1,1,2-TETRACHLOROETHANE	0.43 U						
1,1,1-TRICHLOROETHANE	0.48 U						
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	0.6 U 	0.6 U 	0.6 U 	0.6 U 	0.6 U 	0.6 U 	0.6 U
1,1,2-TRICHLOROTRIFLUOROETHANE 1,1-DICHLOROETHANE	0.41 U 0.47 U						
1,1-DICHLORGETHANE 1,1-DICHLORGETHENE	0.47 U	0.47 U	0.49 U	0.47 U	0.47 U	0.47 U	0.47 U
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE	0.36 U 0.54 UJ	0.36 U 0.54 U					
1,2,3-TRICHLOROPROPANE	0.52 U						
1,2,3-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE	0.31 U 0.77 U						
1,2,4-TRIMETHYLBENZENE	0.52 U						
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	0.91 U 0.41 U						
1,2-DICHLOROBENZENE	0.48 U						
1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE	0.21 U 0.47 U	0.27 J 0.47 U					
1,3-DICHLOROBENZENE	0.45 U						
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	0.21 U 0.41 U						
2,2-DICHLOROPROPANE	0.78 U	0.78 U	0.78 U	0.78 UJ	0.78 U	0.78 U	0.78 U
2-BUTANONE 2-CHLOROETHYL VINYL ETHER	1.2 U 1.5 UR	1.2 UJ 1.5 UR	1.2 UJ 1.5 UR	1.2 U 1.5 UR	1.2 U 1.5 UR	1.2 U 1.5 UR	1.2 U 1.5 UR
2-CHLOROTOLUENE	0.57 U						
2-HEXANONE 4-CHLOROTOLUENE	1.1 U 0.43 U						
4-ISOPROPYLTOLUENE	0.56 U						
4-METHYL-2-PENTANONE ACETONE	0.99 U 5.4 U						
ACROLEIN							
ACRYLONITRILE BENZENE	 0.42 U						
BROMOBENZENE	0.5 U						
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	0.54 U 0.17 U						
BROMODICHLOROMETHANE BROMOFORM	0.17 U 0.76 UJ	0.17 U 0.76 U					
BROMOMETHANE	0.42 UJ	0.42 UJ	0.42 UJ	0.42 UJ	0.42 U	0.42 U	0.42 U
CARBON DISULFIDE CARBON TETRACHLORIDE	0.59 U 0.26 U						
CHLOROBENZENE	0.38 U	0.42 J	0.38 U	0.38 U	0.38 U	0.38 U	2.9
CHLORODIBROMOMETHANE CHLORODIFLUOROMETHANE	0.39 UJ 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ
CHLOROETHANE	0.83 U	0.83 U	0.83 U	0.83 UJ	0.83 U	0.83 U	0.83 U
CHLOROFORM CHLOROMETHANE	0.47 U 0.63 U	0.47 U 0.63 UJ	0.47 U 0.63 UJ	0.47 U 0.63 U	0.47 U 0.63 U	0.47 U 0.63 U	0.47 U 0.63 U
CIS-1,2-DICHLOROETHENE	1	3.6	2.6	0.46 U	2.9	0.5 J	18
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	0.61 U 0.4 U						
DICHLORODIFLUOROMETHANE	0.35 U						
DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER	0.17 U 0.4 U						
ETHYLBENZENE	0.42 U						
HEXACHLOROBUTADIENE ISOPROPYLBENZENE	0.83 U 0.49 UJ	0.83 U 0.49 U					
M+P-XYLENES	0.42 U						
METHYL TERT-BUTYL ETHER METHYLENE CHLORIDE	0.47 U 2.6 U						
NAPHTHALENE	0.8 U						
N-BUTYLBENZENE N-PROPYLBENZENE	0.6 UJ 0.57 U	0.6 U 0.57 U	0.6 U 0.57 U	0.6 U 0.57 U	0.6 U 0.57 U	0.6 U 0.57 U	0.6 U 0.57 U
O-XYLENE	0.42 U						
SEC-BUTYLBENZENE	0.53 U						
STYRENE TERT-AMYL METHYL ETHER	0.45 U 0.43 U						
TERT-BUTYLBENZENE TERTIARY-BUTYL ALCOHOL	0.48 U 7.2 U	0.48 U 7.2 UJ					
TETRACHLOROETHENE	0.44 U						
TOLUENE	0.44 U						
TOTAL XYLENES TRANS-1,2-DICHLOROETHENE	0.42 U 1.6	0.42 U 0.51 U	0.42 U 0.59 J				
TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE	0.67 U 5.4	0.67 U 2.2	0.67 U 0.44 U	0.67 U	0.67 U	0.67 U	0.67 U
TRICHLOROF HENE TRICHLOROFLUOROMETHANE	0.45 U	0.45 U	0.44 U 0.45 U	24 0.45 UJ	4.8 0.45 U	0.44 U 0.45 U	2.5 0.45 U
VINYL ACETATE VINYL CHLORIDE	0.61 UJ 0.45 U	0.61 UJ 3.4	0.61 UJ 0.8 J	0.61 U 0.45 U	0.61 UJ 0.56 J	0.61 UJ 0.45 UJ	0.61 UJ 5 J
VINYL CHLORIDE SEMIVOLATILES (UG/L)	U.45 U	3.4	0.8 J	U.45 U	U.50 J	U.45 UJ	2 1
1,4-DIOXANE	0.39 U	0.37 UJ	1.2 J	0.36 U	0.37 UJ	0.37 UJ	1.3 J
METALS (UG/L) ANTIMONY	0.57 U	0.57 U		0.57 U	0.57 U	0.57 U	0.57 U
ARSENIC	3.4 J	0.87 J		0.75 U	0.75 U	1 J	0.83 J
BERYLLIUM CADMIUM	0.62 U 0.2 U	0.62 U 2.3		0.62 J 0.2 U	0.62 U 1	0.62 U 0.2 U	0.62 U 0.2 U
CHROMIUM	2.5 U	2.5 U		5.8	2.5 U	2.5 U	2.5 U
COPPER LEAD	1.7 J 0.54 J	2.7 0.71 J		1.7 U 0.45 U	3.1 0.45 U	3.3 0.52 J	4.9 0.85 J
MERCURY	0.13 U	0.13 J		0.13 U	1.7	0.13 U	0.13 U
NICKEL SELENIUM	43 0.89 U	1.7 J 0.89 U		11 0.89 U	40 0.93 J	1.5 U 0.89 U	1.5 U 0.89 U
SILVER	0.053 U	0.053 U		0.053 U	0.053 U	0.053 U	0.053 U
THALLIUM ZINC	0.2 U 23	0.2 U 15 U		0.42 J 15 U	0.2 U 69	0.2 U 15 U	0.2 U 15 U
METALS FILTERED (UG/L)							
ANTIMONY ARSENIC	0.57 U 3.1 J	0.57 U 0.75 U		0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U
BERYLLIUM	0.62 U	0.62 U		0.75 U 0.93 J	0.62 U	0.62 U	0.75 U
CADMIUM	0.2 U 2.5 U	2.1		0.2 J 5.5	0.93 J	0.2 U	0.2 U
CHROMIUM COPPER	2.5 U 1.7 U	2.5 U 1.7 U		5.5 1.7 U	2.5 U 2.6	2.5 U 2.4	2.5 U 4
LEAD	0.45 U	0.45 U		0.45 U	0.45 U	0.45 U	0.45 U
MERCURY NICKEL	0.13 U 42	0.13 J 1.8 J		0.13 U 12	0.13 U 40	0.13 U 1.5 U	0.13 U 1.5 U
SELENIUM	0.89 U	0.89 U		0.9 J	0.89 J	0.89 U	0.89 U
SILVER THALLIUM	0.053 U 0.2 U	0.053 U 0.2 U		0.053 U 0.84 J	0.053 U 0.2 U	0.053 U 0.2 U	0.053 U 0.2 U
ZINC	17 J	15 U		15 U	68	15 U	15 U
MISCELLANEOUS (UG/L) HEXAVALENT CHROMIUM							
PETROLEUM HYDROCARBONS (UG/L)							
TPH (C06-C10) TPH (C10-C28)	49 U 230 U		49 U 230 U				49 U 220 U
RADIONUCLIDES (PCI/L)	230 0		230 U			-	220 0
RADIUM-228							
TOTAL ALPHA RADIUM							

LOCATION SAMPLE ID SAMPLE DATE	MSA-MW-21D	MSA-MW-21I	MSA-MW-22D	MSA-MW-23D	MSA-MW-23S	MSA-MW-24I	MSA-MW-24S	MSA-MW-25I
	MSA-MW-21D-060322	MSA-MW-21I-060322	MSA-MW-22D-060322	MSA-MW-23D-060322	MSA-MW-23S-060322	MSA-MW-24I-060822	MSA-MW-24S-060822	MSA-MW-25I-060622
	20220603	20220603	20220603	20220603	20220603	20220608	20220608	20220606
VOLATILES (UG/L) 1,1,1,2-TETRACHLOROETHANE	0.43 U	2.2 U	0.43 U	0.43 U	0.43 U	1.1 U	0.43 U	0.43 U
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	0.48 U	2.4 U	0.48 U	0.48 U	0.48 U	1.2 U	0.48 U	0.48 U
	0.6 U	3 U	0.6 U	0.6 U	0.6 U	1.5 U	0.6 U	0.6 U
1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROTRIFLUOROETHANE								
	0.41 U	2.1 U	0.41 U	0.41 U	0.41 U	1 U	0.41 U	0.41 U
1,1-DICHLOROETHANE 1.1-DICHLOROETHENE	0.47 U	2.4 U	0.47 U	0.47 U	0.47 U	1.2 U	0.47 U	0.47 U
1,1-DICHLOROPROPENE	0.49 U	2.5 U	0.49 U	0.49 U	0.49 U	1.2 U	0.49 U	0.49 U
	0.36 U	1.8 U	0.36 U	0.36 U	0.36 U	0.9 U	0.36 U	0.36 U
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	0.54 U	2.7 U	0.54 U	0.54 U	0.54 U	1.4 U	0.54 U	0.54 U
	0.52 U	2.6 U	0.52 U	0.52 U	0.52 U	1.3 U	0.52 U	0.52 U
1,2,3-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE	0.31 U	1.6 U	0.31 U	0.31 U	0.31 U	0.78 U	0.31 U	0.31 U
	0.77 U	3.9 U	0.77 U	0.77 U	0.77 U	1.9 U	0.77 U	0.77 U
1,2,4-TRIMETHYLBENZENE 1,2-DIBROMO-3-CHLOROPROPANE	0.52 U	2.6 U	0.52 U	0.52 U	0.52 U	1.3 U	0.52 U 0.91 U	0.52 U
1,2-DIBROMOETHANE	0.91 U 0.41 U	4.6 U 2.1 U	0.91 U 0.41 U	0.91 U 0.41 U	0.91 U 0.41 U	2.3 U 1 U	0.41 U	0.91 U 0.41 U
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	0.48 U	2.4 U	0.48 U	0.48 U	0.48 U	1.2 U	0.48 U	0.48 U
	0.21 U	1.1 U	0.21 U	0.21 U	0.21 U	0.53 U	0.21 U	0.21 U
1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE	0.47 U	2.4 U	0.47 U	0.47 U	0.47 U	1.2 U	0.47 U	0.47 U
	0.45 U	2.3 U	0.45 U	0.45 U	0.45 U	1.1 U	0.45 U	0.45 U
1,3-DICHLOROPROPANE	0.21 U	1.1 U	0.21 U	0.21 U	0.21 U	0.53 U	0.21 U	0.21 U
1,4-DICHLOROBENZENE 2,2-DICHLOROPROPANE	0.41 U	2.1 U	0.41 U	0.41 U	0.41 U	1 U	0.41 U	0.41 U
	0.78 U	3.9 U	0.78 U	0.78 U	0.78 U	2 UJ	0.78 UJ	0.78 UJ
2-BUTANONE	1.2 U	5.8 U	1.2 U	1.2 U	1.2 U	2.9 U	1.2 U	1.2 U
2-CHLOROETHYL VINYL ETHER	1.5 UR	7.7 UR	1.5 UR	1.5 UR	1.5 UR	3.8 UR	1.5 UR	1.5 UR
2-CHLOROTOLUENE	0.57 U	2.9 U	0.57 U	0.57 U	0.57 U	1.4 U	0.57 U	0.57 U
2-HEXANONE	1.1 U	5.6 U	1.1 U	1.1 U	1.1 U	2.8 U	1.1 U	1.1 U
4-CHLOROTOLUENE	0.43 U	2.2 U	0.43 U	0.43 U	0.43 U	1.1 U	0.43 U	0.43 U
4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE	0.56 U	2.8 U	0.56 U	0.56 U	0.56 U	1.4 U	0.56 U	0.56 U
	0.99 U	5 U	0.99 U	0.99 U	0.99 U	2.5 U	0.99 U	0.99 U
ACETONE	5.4 U	27 U	5.4 U	5.4 U	5.4 U	14 U	5.4 U	5.4 U
ACROLEIN								
ACRYLONITRILE								
BENZENE	0.42 U	2.1 U	0.42 U	0.42 U	0.74 J	1.1 U	0.42 U	0.42 U
BROMOBENZENE	0.5 U	2.5 U	0.5 U	0.5 U	0.5 U	1.3 U	0.5 U	0.5 U
BROMOCHLOROMETHANE	0.54 U	2.7 U	0.54 U	0.54 U	0.54 U	1.4 U	0.54 U	0.54 U
BROMODICHLOROMETHANE	0.17 U	0.85 U	0.17 U	0.17 U	0.17 U	0.43 U	0.17 U	0.17 U
BROMOFORM BROMOMETHANE	0.76 U	3.8 U	0.76 U	0.76 U	0.76 U	1.9 U	0.76 U	0.76 U
CARBON DISULFIDE	0.42 UJ	2.1 UJ	0.42 UJ	0.42 UJ	0.42 UJ	1.1 UJ	0.42 UJ	0.42 UJ
	0.59 U	3 U	0.59 U	0.59 U	0.59 U	1.5 UJ	0.59 UJ	0.59 U
CARBON TETRACHLORIDE CHLOROBENZENE	0.26 U	1.3 U	0.26 U	2.5	0.26 U	65	0.26 U	0.26 U
	0.38 U	1.9 U	0.38 U	0.38 U	0.38 U	0.95 U	0.38 U	0.38 U
CHLORODIBROMOMETHANE CHLORODIFLUOROMETHANE	0.39 U	2 U	0.39 U	0.39 U	0.39 U	0.98 U	0.39 U	0.39 U
	1 UJ	5 UJ	1 UJ	1 UJ	1 UJ	2.5 UJ	1 UJ	1 UJ
CHLOROETHANE	0.83 U	4.2 U	0.83 U	0.83 U	0.83 U	2.1 UJ	0.83 UJ	0.83 UJ
CHLOROFORM	0.47 U	2.4 U	0.47 U	3.1	0.47 U	13	0.47 U	0.47 U
CHLOROMETHANE	0.63 U	3.2 U	0.63 U	0.63 U	0.63 U	1.6 U	0.63 U	0.63 U
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE	0.46 U	210	0.46 U	0.46 U	0.46 U	5.1	0.46 U	0.46 U
	0.61 U	3.1 U	0.61 U	0.61 U	0.61 U	1.5 U	0.61 U	0.61 U
DIBROMOMETHANE	0.4 U	2 U	0.4 U	0.4 U	0.4 U	1 U	0.4 U	0.4 U
DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER	0.35 U	1.8 U	0.35 U	0.35 U	0.35 U	0.88 U	0.35 U	0.35 U
	0.17 U	0.85 U	0.17 U	0.17 U	0.17 U	0.43 U	0.17 U	0.17 U
ETHYL TERT-BUTYL ETHER ETHYLBENZENE	0.4 U	2 U	0.4 U	0.4 U	0.4 U	1 U	0.4 U	0.4 U
	0.42 U	2.1 U	0.42 U	0.42 U	0.42 U	1.1 U	0.42 U	0.42 U
HEXACHLOROBUTADIENE	0.83 U	4.2 U	0.83 U	0.83 U	0.83 U	2.1 U	0.83 U	0.83 U
ISOPROPYLBENZENE M+P-XYLENES	0.49 U	2.5 U	0.49 U	0.49 U	0.49 U	1.2 U	0.49 U	0.49 U
	0.42 U	2.1 U	0.42 U	0.42 U	0.42 U	1.1 U	0.42 U	0.42 U
METHYL TERT-BUTYL ETHER METHYLENE CHLORIDE	0.47 U	2.4 U	0.47 U	0.47 U	0.47 U	1.2 U	0.47 U	0.47 U
	2.6 U	13 U	2.6 U	2.6 U	2.6 U	6.6 U	2.6 U	2.6 U
NAPHTHALENE	0.8 U	4 U	0.8 U	0.8 U	0.8 U	2 U	0.8 U	0.8 U
N-BUTYLBENZENE	0.6 U	3 U	0.6 U	0.6 U	0.6 U	1.5 U	0.6 U	0.6 U
N-PROPYLBENZENE	0.57 U	2.9 U	0.57 U	0.57 U	0.57 U	1.4 U	0.57 U	0.57 U
O-XYLENE	0.42 U	2.1 U	0.42 U	0.42 U	0.42 U	1.1 U	0.42 U	0.42 U
SEC-BUTYLBENZENE	0.53 U	2.7 U	0.53 U	0.53 U	0.53 U	1.3 U	0.53 U	0.53 U
STYRENE TERT-AMYL METHYL ETHER	0.45 U	2.3 U	0.45 U	0.45 U	0.45 U	1.1 U	0.45 U	0.45 U
	0.43 U	2.2 U	0.43 U	0.43 U	0.43 U	1.1 U	0.43 U	0.43 U
TERT-BUTYLBENZENE TERTIARY-BUTYL ALCOHOL	0.48 U	2.4 U	0.48 U	0.48 U	0.48 U	1.2 U	0.48 U	0.48 U
	7.2 U	36 U	7.2 U	7.2 U	7.2 U	18 U	7.2 U	7.2 UJ
TETRACHLOROETHENE	0.44 U	2.2 U	0.44 U	0.44 U	0.44 U	1.1 U	0.44 U	0.44 U
TOLUENE TOTAL XYLENES	0.44 U	2.2 U	0.44 U	0.44 U	0.44 U	1.1 U	0.44 U	0.44 U
	0.42 U	2.1 U	0.42 U	0.42 U	0.42 U	1.1 U	0.42 U	0.42 U
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	0.51 U	3.4 J	0.51 U	0.51 U	0.51 U	1.3 U	0.51 U	0.51 U
	0.67 U	3.4 U	0.67 U	0.67 U	0.67 U	1.7 U	0.67 U	0.67 U
TRICHLOROETHENE	1.1	3.4 J	0.44 U	1.5	0.44 U	150	0.44 U	0.44 U
TRICHLOROFLUOROMETHANE VINYL ACETATE	0.45 U	2.3 U	0.45 U	0.45 U	0.45 U	1.1 UJ	0.45 UJ	0.45 UJ
	0.61 U	3.1 U	0.61 U	0.61 U	0.61 U	1.5 U	0.61 U	0.61 U
VINYL CHLORIDE SEMIVOLATILES (UG/L)	0.45 U	54	0.45 U	0.45 U	0.93 J	1.1 U	0.45 U	0.45 U
1,4-DIOXANE METALS (UG/L)	0.37 U	2.2	0.42 U	0.42 U	0.4 U	0.37 U	0.39 U	0.39 U
ANTIMONY	0.57 U	0.57 U	0.57 U	0.57 U	0.61 J	0.57 U	3.1	0.57 U
ARSENIC	0.75 U	16	1.4 J	1 J	0.82 J	2 J	0.75 U	10
BERYLLIUM	0.62 U	0.62 UJ	8.6 J	0.62 U				
CADMIUM	0.2 U	0.2 U	0.2 U	0.2 U	0.51 J	0.2 U	4.1	0.2 U
CHROMIUM	2.5 U	2.5 U	2.7 J	5	4.4 J	2.5 U	110	7.2
COPPER	1.8 J	1.7 U	1.9 J	3.7	7.2	3 J	1300 J	4.3
LEAD	0.51 J	0.45 U	0.79 J	0.63 J	1.3	0.55 J	37	1.3
MERCURY	0.22	0.25	0.13 U	0.13 U	0.31	0.13 U	2.6	0.13 U
NICKEL	3.5	1.5 U	3.7	1.9 J	3.6	6.3 J	880 J	18
SELENIUM	0.89 U	0.89 UJ	20 J	0.89 U				
SILVER	0.053 U 0.2 U	0.053 U	0.053 U	0.053 U	0.11 J	0.053 UJ	1.5 J	0.053 U
THALLIUM	0.2 U	1.3	0.2 U					
ZINC	21	15 U	62	15 U	35	15 UJ	1900 J	15 U
METALS FILTERED (UG/L) ANTIMONY	0.57 U							
ARSENIC	0.75 U	17	1.5 J	0.75 U	0.83 J	1.3 J	0.75 U	11
BERYLLIUM	0.62 U	0.62 UJ	8.9 J	0.62 U				
CADMIUM	0.2 U	4.2	0.2 U					
CHROMIUM	2.5 U	2.5 U	2.5 U	3.5 J	3.5 J	2.5 U	24	7
COPPER	1.7 U	1.7 UJ	470 J	4.3				
LEAD	0.45 U	1.3	1.2					
MERCURY	0.16 J	0.16 J	0.2	0.13 J	0.13 U	0.13 U	0.13 U	0.13 U
NICKEL	3.6	1.5 U	3.7	1.7 J	3.4	5 J	850 J	18
SELENIUM	0.89 U	0.89 UJ	11 J	0.89 U				
SILVER	0.053 U	0.053 UJ	0.053 UJ	0.053 U				
THALLIUM	0.2 U	1.2	0.2 U					
ZINC	23	15 U	23	15 U	15 U	15 UJ	2800 J	15 U
MISCELLANEOUS (UG/L) HEXAVALENT CHROMIUM								
PETROLEUM HYDROCARBONS (UG/L)								
TPH (C06-C10) TPH (C10-C28)					49 U 240 U	 	49 U 260 J	
RADIONUCLIDES (PCI/L) RADIUM-228								
TOTAL ALPHA RADIUM								

LOCATION SAMPLE ID SAMPLE DATE	MSA-MW-25S MSA-MW-25S-060622 20220606	MSA-MW-27D MSA-MW-27D-051722 20220517	MSA-MW-29D MSA-MW-29D-061522 20220614	MSA-MW-29D MSA-MW-29D-061622 20220616	MSA-MW-30D MSA-MW-30D-061522 20220615	MSA-MW-30I MSA-MW-30I-060822 20220607	MSA-MW-31D MSA-MW-31D-061522 20220615
VOLATILES (UG/L) 1,1,1,2-TETRACHLOROETHANE	0.43 U	0.43 U	0.43 U		0.43 U	4.3 U	
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	0.48 U 0.6 U	0.48 U 0.6 U	0.48 U 0.6 U		0.48 U 0.6 U	4.8 U 6 U	
1,1,2-TRICHLOROETHANE							
1,1,2-TRICHLOROTRIFLUOROETHANE 1,1-DICHLOROETHANE	0.41 U 0.47 U	0.41 U 0.47 U	0.41 U 0.47 U		0.41 U 0.47 U	4.1 U 4.7 U	
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	0.49 U 0.36 U	0.49 U 0.36 U	0.49 U 0.36 U		0.49 U 0.36 U	4.9 U 3.6 U	
1,2,3-TRICHLOROBENZENE	0.54 U	0.54 U	0.54 U		0.54 U	5.4 U	
1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE	0.52 U 0.31 U	0.52 U 0.31 U	0.52 U 0.31 U		0.52 U 0.31 U	5.2 U 3.1 U	
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U		0.77 U 0.52 U	7.7 U 5.2 U	
1,2-DIBROMO-3-CHLOROPROPANE	0.91 U	0.91 U	0.91 U		0.91 U	9.1 U	
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	0.41 U 0.48 U	0.41 U 0.48 U	0.41 U 0.48 U		0.41 U 0.48 U	4.1 U 4.8 U	
1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE	0.21 U 0.47 U	0.21 U 0.47 U	0.21 U 0.47 U		0.21 U 0.47 U	2.1 U 4.7 U	
1,3-DICHLOROBENZENE	0.45 U	0.45 U	0.45 U		0.45 U	4.5 U	
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	0.21 U 0.41 U	0.21 U 0.41 U	0.21 U 0.41 U		0.21 U 0.41 U	2.1 U 4.1 U	
2,2-DICHLOROPROPANE 2-BUTANONE	0.78 UJ 1.2 U	0.78 U 1.2 U	0.78 U 1.2 U		0.78 U 1.2 U	7.8 UJ 12 U	
2-CHLOROETHYL VINYL ETHER	1.5 UR	1.5 UR	1.5 UR		1.5 UR	15 UR	
2-CHLOROTOLUENE 2-HEXANONE	0.57 U 1.1 U	0.57 U 1.1 U	0.57 U 1.1 U		0.57 U 1.1 U	5.7 U 11 U	
4-CHLOROTOLUENE 4-ISOPROPYLTOLUENE	0.43 U 0.56 U	0.43 U 0.56 U	0.43 U 0.56 U		0.43 U 0.56 U	4.3 U 5.6 U	
4-METHYL-2-PENTANONE	0.56 U 0.99 U	0.99 U	0.56 U 0.99 U		0.99 U	9.9 U	
ACETONE ACROLEIN	5.4 U 	5.4 U 	5.4 U 		5.4 U 	54 U 	
ACRYLONITRILE							
BENZENE BROMOBENZENE	0.42 U 0.5 U	0.42 U 0.5 U	0.42 U 0.5 U		0.42 U 0.5 U	4.2 U 5 U	
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	0.54 U 0.17 U	0.54 U 0.17 U	0.54 U 0.17 U		0.54 U 0.17 U	5.4 U 1.7 U	
BROMOFORM	0.76 U	0.76 U	0.76 U		0.76 U	7.6 U	
BROMOMETHANE CARBON DISULFIDE	0.42 UJ 0.59 U	0.42 UJ 0.59 U	0.42 UJ 0.59 U		0.42 UJ 0.59 U	4.2 UJ 5.9 UJ	
CARBON TETRACHLORIDE CHLOROBENZENE	0.26 U 0.38 U	0.26 U 0.38 U	0.26 U 0.38 U		0.26 U 0.38 U	62 3.8 U	
CHLORODIBROMOMETHANE	0.39 U	0.39 U	0.39 U		0.39 U	3.9 U	
CHLORODIFLUOROMETHANE CHLOROETHANE	1 UJ 0.83 UJ	1 UJ 0.83 U	1 UJ 0.83 U		1 UJ 0.83 U	10 UJ 8.3 UJ	
CHLOROFORM CHLOROMETHANE	0.47 U 0.63 U	0.47 U 0.63 U	0.47 U 0.63 U		0.47 U 0.63 U	5.7 U 6.3 U	
CIS-1,2-DICHLOROETHENE	7.5	0.46 U	0.46 U		0.46 U	4.6 U	
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	0.61 U 0.4 U	0.61 U 0.4 U	0.61 U 0.4 U		0.61 U 0.4 U	6.1 U 4 U	
DICHLORODIFLUOROMETHANE	0.35 U	0.35 UJ	0.35 U		0.35 U	3.5 U	
DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER	0.17 U 0.4 U	0.17 U 0.4 U	0.17 U 0.4 U		0.17 U 0.4 U	1.7 U 4 U	
ETHYLBENZENE HEXACHLOROBUTADIENE	0.42 U 0.83 U	0.42 U 0.83 U	0.42 U 0.83 U		0.42 U 0.83 U	4.2 U 8.3 U	
ISOPROPYLBENZENE	0.49 U	0.49 U	0.49 U		0.49 U	4.9 U	
M+P-XYLENES METHYL TERT-BUTYL ETHER	0.42 U 0.47 U	0.42 U 0.47 U	0.42 U 0.47 U		0.42 U 0.47 U	4.2 U 4.7 U	
METHYLENE CHLORIDE NAPHTHALENE	2.6 U 0.8 U	2.6 U 0.8 U	2.6 U 0.8 U		2.6 U 0.8 U	26 U 8 U	
N-BUTYLBENZENE	0.6 U	0.6 U	0.6 U		0.6 U	6 U	
N-PROPYLBENZENE O-XYLENE	0.57 U 0.42 U	0.57 U 0.42 U	0.57 U 0.42 U		0.57 U 0.42 U	5.7 U 4.2 U	
SEC-BUTYLBENZENE STYRENE	0.53 U 0.45 U	0.53 U 0.45 U	0.53 U 0.45 U		0.53 U 0.45 U	5.3 U 4.5 U	
TERT-AMYL METHYL ETHER	0.43 U	0.43 U	0.43 U		0.43 U	4.3 U	
TERT-BUTYLBENZENE TERTIARY-BUTYL ALCOHOL	0.48 U 7.2 UJ	0.48 U 7.2 U	0.48 U 7.2 UJ		0.48 U 7.2 UJ	4.8 U 72 U	
TETRACHLOROETHENE TOLUENE	0.44 U 0.44 U	0.44 U 0.44 U	0.44 U 0.44 U		0.44 U 0.44 U	4.4 U 4.4 U	
TOTAL XYLENES	0.42 U	0.42 U	0.42 U		0.42 U	4.2 U	
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U		0.51 U 0.67 U	5.1 U 6.7 U	
TRICHLOROETHENE	0.44 U	0.44 U	0.44 U		0.44 U	560	
TRICHLOROFLUOROMETHANE VINYL ACETATE	0.45 UJ 0.61 U	0.45 U 0.61 UJ	0.45 U 0.61 U		0.45 U 0.61 U	4.5 UJ 6.1 U	
VINYL CHLORIDE SEMIVOLATILES (UG/L)	20	0.45 U	0.45 U		0.45 U	4.5 U	
1,4-DIOXANE	0.39 U	0.39 UJ	0.37 U		0.37 U	0.39 U	
METALS (UG/L) ANTIMONY	0.57 U	0.57 U	0.57 U			0.57 U	0.57 U
ARSENIC BERYLLIUM	4.9 J 0.62 U	0.75 U 0.62 U	0.75 U 0.62 U			0.75 U 0.62 UJ	0.75 U 0.62 U
CADMIUM	0.2 U	0.2 U	0.2 U			0.35 J	0.2 U
CHROMIUM COPPER	2.8 J 2.9	2.5 U 3.9	2.5 U 1.7 U			2.5 U 5.3 J	3 J 2.3
LEAD MERCURY	1.3 0.13 U	0.45 U 0.13 U	0.45 U 0.13 U			0.45 U 0.13 U	0.54 J 0.13 U
NICKEL	15	6.5	1.7 J			17 J	1.5 U
SELENIUM SILVER	0.89 U 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U			0.89 UJ 0.053 UJ	0.89 U 0.053 U
THALLIUM ZINC	0.2 U	0.42 U	0.2 U		-	0.45 J	0.2 U
METALS FILTERED (UG/L)	15 U	29	19 J			420 J	310
ANTIMONY ARSENIC	0.57 U 4.5 J	0.57 U 0.75 U	0.57 U 0.75 U			0.57 U 0.75 U	0.57 U 0.75 U
BERYLLIUM	0.62 U	0.62 U	0.62 UJ			0.62 UJ	0.62 UJ
CADMIUM CHROMIUM	0.2 U 2.8 J	0.2 U 2.5 U	0.2 U 2.5 U			0.36 J 2.5 U	0.2 U 2.6 J
COPPER LEAD	3.1 1.4	3.3 0.45 U	1.7 U 0.45 U			5.3 J 0.45 U	1.7 U 0.45 U
MERCURY	0.13 U	0.13 U	0.13 U			0.13 U	0.13 U
NICKEL SELENIUM	15 0.89 U	6.4 0.89 U	1.7 J 0.89 U			18 J 0.89 UJ	1.5 U 0.89 U
SILVER	0.053 U	0.053 U	0.053 U		-	0.053 UJ	0.053 U
THALLIUM ZINC	0.2 U 15 U	0.58 U 20	0.2 U 32			0.5 U 410 J	0.2 U 95
MISCELLANEOUS (UG/L) HEXAVALENT CHROMIUM			0.35		0.099		0.05 U
PETROLEUM HYDROCARBONS (UG/L)		-	U.33		U.U33	-	U.U3 U
ТРН (C06-C10) ТРН (C10-C28)	49 U 240 U						
RADIONUCLIDES (PCI/L)							
RADIUM-228 TOTAL ALPHA RADIUM				0.412 U 0.254 U			

LOCATION SAMPLE ID SAMPLE DATE VOLATILES (UG/L)	MSA-MW-32I MSA-MW-32I-061022 20220610	MSA-MW-32S MSA-MW-32S-061522 20220615	MSA-MW-33I MSA-MW-33I-060822 20220608	MSA-MW-33S MSA-MW-33S-060822 20220608	MSA-MW-34I MSA-MW-34I-051622 20220516	MSA-MW-34S MSA-MW-34S-051622 20220516	MSA-MW-35S MSA-MW-35S-052322 20220523	MSA-MW-36S MSA-MW-36S-060622 20220606
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE			0.43 U 0.48 U	0.43 U 0.48 U	0.86 U 0.96 U	0.43 U 0.48 U	0.43 U 0.48 U	0.43 U 0.48 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE			0.6 U	0.6 U	1.2 U	0.6 U 	0.6 U 	0.6 U
1,1,2-TRICHLOROTRIFLUOROETHANE 1,1-DICHLOROETHANE			0.41 U 0.47 U	0.41 U 0.47 U	0.82 U 0.94 U	0.41 U 0.47 U	0.41 U 0.47 U	0.41 U 0.47 U
1,1-DICHLOROPROPENE 1,1-DICHLOROPROPENE			0.49 U 0.36 U	0.49 U 0.36 U	0.98 U 0.72 U	0.49 U 0.36 U	0.49 U 0.36 U	0.49 U 0.36 U
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE			0.54 U 0.52 U	0.54 U 0.52 U	1.1 U 1 U	0.54 U 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U
1,2,3-TRIMETHYLBENZENE			0.31 U	0.31 U	0.62 U	0.31 U	0.31 UJ	0.31 U
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE			0.77 U 0.52 U	0.77 U 0.52 U	1.5 U 1 U	0.77 U 0.52 U	0.77 U 0.52 UJ	0.77 U 0.52 U
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE			0.91 U 0.41 U	0.91 U 0.41 U	1.8 U 0.82 U	0.91 U 0.41 U	0.91 UJ 0.41 U	0.91 U 0.41 U
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE			0.48 U 0.21 U	0.48 U 0.21 U	0.96 U 5.8	0.48 U 0.35 J	0.48 U 0.25 J	0.48 U 0.21 U
1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE		 	0.47 U 0.45 U	0.47 U 0.45 U	0.94 U 0.9 U	0.47 U 0.45 U	0.47 U 0.45 U	0.47 U 0.45 U
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE			0.21 U 0.41 U	0.21 U 0.41 U	0.42 U 0.82 U	0.21 U 0.41 U	0.21 U 0.41 U	0.21 U 0.41 U
2,2-DICHLOROPROPANE 2-BUTANONE			0.78 UJ 1.2 U	0.78 UJ 1.2 U	1.6 U 2.3 U	0.78 U 1.2 U	0.78 U 1.2 U	0.78 UJ 1.2 U
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE			1.5 UR 0.57 U	1.5 UR 0.57 U	3.1 UR 1.1 U	1.5 UR 0.57 U	1.5 UR 0.57 U	1.5 UR 0.57 U
2-HEXANONE			1.1 U	1.1 U	2.2 U	1.1 U	1.1 U	1.1 U
4-ISOPROPYLTOLUENE 4-ISOPROPYLTOLUENE			0.43 U 0.56 U	0.43 U 0.56 U	0.86 U 1.1 U	0.43 U 0.56 U	0.43 U 0.56 UJ	0.43 U 0.56 U
4-METHYL-2-PENTANONE ACETONE	 	 	0.99 U 5.4 U	0.99 U 5.4 U	2 U 11 U	0.99 U 5.4 U	0.99 U 5.4 U	0.99 U 5.4 U
ACROLEIN ACRYLONITRILE	 	- -					 	
BENZENE BROMOBENZENE			0.42 U 0.5 U	0.42 U 0.5 U	1.2 J 1 U	0.42 U 0.5 U	0.42 U 0.5 U	0.42 U 0.5 U
BROMOCHLOROMETHANE BROMODICHLOROMETHANE			0.54 U 0.17 U	0.54 U 0.17 U	1.1 U 0.34 U	0.54 U 0.17 U	0.54 U 0.17 U	0.54 U 0.17 U
BROMOFORM BROMOMETHANE			0.76 U 0.42 UJ	0.76 U 0.42 UJ	1.5 U 0.84 U	0.76 U 0.42 U	0.76 UJ 0.42 UJ	0.76 U 0.42 UJ
CARBON DISULFIDE CARBON TETRACHLORIDE			0.59 UJ 0.26 U	0.59 UJ 0.26 U	1.2 U 0.52 U	0.59 U 0.26 U	0.59 U 0.26 U	0.59 U 0.26 U
CHLOROBENZENE CHLORODIBROMOMETHANE			0.38 U 0.39 U	0.38 U 0.39 U	0.76 U 0.78 U	0.38 U 0.39 U	0.38 U 0.39 U	0.38 U 0.39 U
CHLORODIFLUOROMETHANE			1 UJ	1 UJ	2 UJ	1 UJ	1 UJ	1 UJ
CHLOROETHANE CHLOROFORM			0.83 UJ 0.47 U	0.83 UJ 0.47 U	1.7 U 0.94 U	0.83 U 0.47 U	0.83 UJ 0.47 U	0.83 UJ 0.47 U
CHLOROMETHANE CIS-1,2-DICHLOROETHENE			0.63 U 0.46 U	0.63 U 9.8	1.3 U 57	0.63 U 2.6	0.63 U 8.1	0.63 U 0.46 U
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE		 	0.61 U 0.4 U	0.61 U 0.4 U	1.2 U 0.8 U	0.61 U 0.4 U	0.61 U 0.4 U	0.61 U 0.4 U
DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER			0.35 U 0.17 U	0.35 U 0.17 U	0.7 UJ 0.34 U	0.35 U 0.17 U	0.35 U 0.17 U	0.35 U 0.17 U
ETHYL TERT-BUTYL ETHER ETHYLBENZENE			0.4 U 0.42 U	0.4 U 0.42 U	0.8 U 0.84 U	0.4 U 0.42 U	0.4 U 0.42 U	0.4 U 0.42 U
HEXACHLOROBUTADIENE ISOPROPYLBENZENE			0.83 U 0.49 U	0.83 U 0.49 U	1.7 U 0.98 U	0.83 U 0.49 U	0.83 UJ 0.49 U	0.83 U 0.49 U
M+P-XYLENES METHYL TERT-BUTYL ETHER			0.42 U 0.47 U	0.42 U 0.47 U	6 0.94 U	0.42 U 0.47 U	0.42 U 0.47 U	0.42 U 0.47 U
METHYLENE CHLORIDE			2.6 U	2.6 U	5.2 U	2.6 U	2.6 U	2.6 U
NAPHTHALENE N-BUTYLBENZENE			0.8 U 0.6 U	0.8 U 0.6 U	1.6 U 1.2 U	0.8 U 0.6 U	0.8 UJ 0.6 UJ	0.8 U 0.6 U
N-PROPYLBENZENE O-XYLENE			0.57 U 0.42 U	0.57 U 0.42 U	1.1 U 1.6 J	0.57 U 0.42 U	0.57 U 0.42 U	0.57 U 0.42 U
SEC-BUTYLBENZENE STYRENE			0.53 U 0.45 U	0.53 U 0.45 U	1.1 U 0.9 U	0.53 U 0.45 U	0.53 U 0.45 U	0.53 U 0.45 U
TERT-AMYL METHYL ETHER TERT-BUTYLBENZENE			0.43 U 0.48 U	0.43 U 0.48 U	0.86 U 0.96 U	0.43 U 0.48 U	0.43 U 0.48 U	0.43 U 0.48 U
TERTIARY-BUTYL ALCOHOL TETRACHLOROETHENE			7.2 U 0.44 U	7.2 U 0.44 U	14 UJ 0.88 U	7.2 UJ 0.44 U	7.2 UJ 0.44 U	7.2 UJ 0.44 U
TOLUENE TOTAL XYLENES			0.44 U 0.42 U	0.44 U 0.42 U	0.88 U 7.6	0.44 U 0.42 U	0.44 U 0.42 U	0.44 U 0.42 U
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE			0.51 U 0.67 U	0.51 U 0.67 U	1 U 1.3 U	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U
TRICHLOROFTHENE TRICHLOROFLUOROMETHANE			0.44 U 0.45 UJ	6.3 0.45 UJ	0.88 U 0.9 U	0.44 U 0.45 U	1.6 0.45 UJ	0.44 U 0.45 UJ
VINYL ACETATE			0.61 U	0.61 U	1.2 UJ	0.61 UJ	0.45 UJ 0.61 U	0.61 U
VINYL CHLORIDE SEMIVOLATILES (UG/L)			0.45 U	1.1	97	1.7 J	1	0.45 U
1,4-DIOXANE METALS (UG/L)			0.37 U	0.39 U	0.36 UJ	0.37 UJ	0.37 UJ	0.4 U
ANTIMONY ARSENIC	0.57 U 2 J	0.57 U 0.8 J		0.57 U 6.7	0.57 U 0.75 U	0.57 U 2.7 J	0.57 U 0.75 U	0.57 U 2.8 J
BERYLLIUM CADMIUM	0.62 U 0.2 U	0.62 U 0.2 U	 	0.62 UJ 0.2 U	2.5 0.34 J	1.4 0.39 J	3.4 0.5 J	1 0.4 J
CHROMIUM COPPER	5.7 1.7 U	3.2 J 1.7 U		2.5 U 5.7 J	2.5 U 280	2.5 U 11	2.5 U 5.3	2.5 U 1.7 U
LEAD MERCURY	0.45 U 0.13 U	0.45 U 0.13 U		2.2 0.13 U	0.81 J 0.16 J	0.86 J 0.25	0.75 J 0.13 U	0.45 U 0.13 U
NICKEL SELENIUM	1.5 U 0.89 U	1.5 U 0.89 U		3.4 J 0.89 UJ	260 0.89 U	180 0.89 U	120 0.89 U	120 0.89 U
SILVER	0.053 U	0.053 U		0.096 J	0.053 U	0.053 U	0.053 U	0.053 U
THALLIUM ZINC	0.2 U 15 J	0.2 U 15 U		0.2 U 180 J	0.37 J 500	0.56 J 330	0.37 U 160	0.73 J 200
METALS FILTERED (UG/L) ANTIMONY	0.57 U	0.57 U		0.57 U				
ARSENIC BERYLLIUM	1.6 J 0.62 U	0.75 U 0.62 UJ		6.9 0.62 UJ	0.75 U 2.2	1.4 J 1.6	0.75 U 3.3	2.2 J 0.72 J
CADMIUM CHROMIUM	0.2 U 5.2	0.2 U 2.5 U	 	0.2 U 2.5 U	0.27 J 2.5 U	0.43 J 2.5 U	0.32 J 2.5 U	0.2 U 2.5 U
COPPER LEAD	1.7 U 0.45 U	1.7 U 0.45 U		3.9 J 1.3	250 0.45 U	8.5 0.51 J	3.9 0.49 J	1.7 U 0.45 U
MERCURY NICKEL	0.13 U 1.5 U	0.13 U 1.5 U		0.13 U 4 J	0.13 U 240	0.13 U 170	0.13 U 110	0.13 U 120
SELENIUM	0.89 U	0.89 U		0.89 UJ	0.89 U	0.89 U	0.89 U	0.89 U
SILVER THALLIUM	0.053 U 0.2 U	0.053 U 0.49 U		0.053 UJ 0.2 U	0.053 U 0.2 U	0.053 U 0.8 J	0.053 U 0.34 U	0.053 U 0.2 U
ZINC MISCELLANEOUS (UG/L)	21	15 U		160 J	490	320	150	180
HEXAVALENT CHROMIUM PETROLEUM HYDROCARBONS (UG/L)			0.05 U					
TPH (C06-C10) TPH (C10-C28)	 	49 U 230 U	 	49 U 230 U	77 J 220 U	49 U 230 U	49 U 650 U	
RADIONUCLIDES (PCI/L) RADIUM-228								
TOTAL ALPHA RADIUM								

LOCATION SAMPLE ID SAMPLE DATE VOLATILES (UG/L)	MSA-MW-37S MSA-MW-37S-060622 20220606	MSA-MW-38S MSA-MW-38S-060822 20220608	MSA-MW-40I MSA-MW-40I-052722 20220527	MSA-MW-40S MSA-MW-40S-052722 20220527	MSA-MW-41I MSA-MW-41I-060222 20220602	MSA-MW-41S MSA-MW-41S-060222 20220602	MSA-MW-42I MSA-MW-42I-060222 20220527
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE			8.6 U 9.6 U	17 U 19 U	17 U 19 U	17 U 19 U	17 U 19 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE			12 U	24 U	24 U	24 U	24 U
1,1,2-TRICHLOROTRIFLUOROETHANE			8.2 U	16 U	16 U	16 U	16 U
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE			9.4 U 9.8 U	19 U 20 U	19 U 20 U	19 U 20 U	19 U 20 U
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE			7.2 U 11 UJ	14 U 22 UJ	14 U 22 UJ	14 U 22 UJ	14 U 22 UJ
1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE			10 U 6.2 U	21 U 12 U	21 U 12 U	21 U 12 U	21 U 12 U
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE			15 U 10 U	31 U 21 U	31 U 21 U	31 U 21 U	31 U 21 U
1,2-DIBROMO-3-CHLOROPROPANE			18 U	36 U	36 U	36 U	36 U
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE			8.2 U 9.6 U	16 U 19 U	16 U 19 U	16 U 19 U	16 U 19 U
1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE			4.2 U 9.4 U	8.4 U 19 U	22 J 19 U	53 19 U	8.4 U 19 U
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE			9 U 4.2 U	18 U 8.4 U	18 U 8.4 U	18 U 8.4 U	18 U 8.4 U
1,4-DICHLOROBENZENE			8.2 U	16 U	26 J	16 U	16 U
2,2-DICHLOROPROPANE 2-BUTANONE			16 U 23 U	31 U 46 U	31 U 46 U	31 U 46 U	31 U 46 U
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE			31 UR 11 U	61 UR 23 U	61 UR 23 U	61 UR 23 U	61 UR 23 U
2-HEXANONE 4-CHLOROTOLUENE			22 U 8.6 U	44 U 17 U	44 U 17 U	44 U 17 U	44 U 17 U
4-ISOPROPYLTOLUENE			11 UJ	22 U	22 U	22 U	22 U
4-METHYL-2-PENTANONE ACETONE			20 U 110 U	40 U 220 U	40 U 220 U	40 U 220 U	40 U 220 U
ACROLEIN ACRYLONITRILE			 		 		
BENZENE BROMOBENZENE			8.4 U 10 U	17 U 20 U	34 J 20 U	32 J 20 U	17 U 20 U
BROMOCHLOROMETHANE			11 U	22 U	22 U	22 U	22 U
BROMODICHLOROMETHANE BROMOFORM			3.4 U 15 UJ	6.8 U 30 UJ	6.8 U 30 UJ	6.8 U 30 UJ	6.8 U 30 UJ
BROMOMETHANE CARBON DISULFIDE			8.4 UJ 12 U	17 UJ 24 U	17 UJ 24 U	17 UJ 24 U	17 UJ 24 U
CARBON TETRACHLORIDE CHLOROBENZENE			5.2 U 7.6 U	10 U 15 U	10 U 580	10 U 91	10 U 15 U
CHLORODIBROMOMETHANE CHLORODIFLUOROMETHANE			7.8 UJ 20 UJ	16 UJ 40 UJ	16 U 40 UJ	16 U 40 UJ	16 U 40 UJ
CHLOROETHANE			17 U	33 U	33 U	33 U	33 U
CHLOROFORM CHLOROMETHANE			9.4 U 13 U	19 U 25 U	19 U 25 U	19 U 25 U	19 U 25 U
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE			750 12 U	1800 24 U	1200 24 U	1500 24 U	990 24 U
DIBROMOMETHANE DICHLORODIFLUOROMETHANE			8 U 7 U	16 U 14 U	16 U 14 U	16 U 14 U	16 U 14 U
DIISOPROPYL ETHER			3.4 U	6.8 U	6.8 U	6.8 U	6.8 U
ETHYL TERT-BUTYL ETHER ETHYLBENZENE			8 U 8.4 U	16 U 17 U	16 U 17 U	16 U 17 U	16 U 17 U
HEXACHLOROBUTADIENE ISOPROPYLBENZENE			17 U 9.8 UJ	33 U 20 U	33 U 20 U	33 U 20 U	33 U 20 U
M+P-XYLENES METHYL TERT-BUTYL ETHER			8.4 U 9.4 U	17 U 19 U	24 J 19 U	17 U 19 U	66 J 19 U
METHYLENE CHLORIDE NAPHTHALENE			52 U 16 U	100 U 32 U	100 U 32 U	120 J 32 U	100 U 32 U
N-BUTYLBENZENE			12 UJ	24 U	24 U	24 U	24 U
N-PROPYLBENZENE O-XYLENE			11 U 8.4 U	23 U 17 U	23 U 17 U	23 U 17 U	23 U 17 U
SEC-BUTYLBENZENE STYRENE			11 U 9 U	21 U 18 U	21 U 18 U	21 U 18 U	21 U 18 U
TERT-AMYL METHYL ETHER TERT-BUTYLBENZENE			8.6 U 9.6 UJ	17 U 19 U	17 U 19 U	17 U 19 U	17 U 19 U
TERTIARY-BUTYL ALCOHOL			140 U	290 U	290 U	290 U	290 U
TETRACHLOROETHENE TOLUENE			8.8 U 8.8 U	18 U 18 U	18 U 18 U	18 U 18 U	18 U 18 U
TOTAL XYLENES TRANS-1,2-DICHLOROETHENE			8.4 U 27	17 U 68	24 J 20 U	17 U 20 U	66 J 20 U
TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE			13 U 93	27 U 86	27 U 460	27 U 2300	27 U 75
TRICHLOROFLUOROMETHANE			9 U	18 U	18 U	18 U	18 U
VINYL ACETATE VINYL CHLORIDE			12 U 36	24 U 52	24 U 920	24 U 1300	24 U 210
SEMIVOLATILES (UG/L) 1,4-DIOXANE			5	2.5	140	0.39 UJ	22
METALS (UG/L) ANTIMONY	0.57 U						
ARSENIC	1.1 J	11	5.1	3.1 J	3.4 J	0.75 U	2.9 J
BERYLLIUM CADMIUM	0.62 U 0.2 U	0.62 UJ 0.2 U	0.66 J 0.22 J	0.62 U 0.2 U	0.62 U 3.7	0.62 U 67	0.62 U 0.2 U
CHROMIUM COPPER	2.5 U 1.7 U	2.5 U 1.7 UJ	2.5 U 1.7 U	2.5 U 1.7 U	2.5 U 1.7 U	2.5 U 2.7	2.5 U 2.9
LEAD MERCURY	0.45 U 1.4	0.45 U 0.13 U	1.1 0.13 U				
NICKEL SELENIUM	2 0.89 U	5.9 J 0.89 UJ	1.5 J 0.98 J	1.7 J 0.89 U	6.2 0.89 U	89 1.1 J	2.7 0.89 U
SILVER	0.053 U	0.053 UJ	0.053 U	0.053 U	0.053 U	0.053 U	0.08 J
THALLIUM ZINC	0.2 U 17 J	0.23 U 19 J	0.38 J 15 U	0.74 J 15 U	0.2 U 42	0.2 U 720	0.36 J 31
METALS FILTERED (UG/L) ANTIMONY	0.57 U						
ARSENIC BERYLLIUM	0.75 U 0.62 U	10 0.62 UJ	4.5 J 0.62 U	2.8 J 0.62 U	3.9 J 0.62 U	0.75 U 0.62 U	3.1 J 0.62 U
CADMIUM	0.2 U	0.2 U	0.2 U	0.2 U	3.9	67	0.2 U
CHROMIUM COPPER	2.5 U 1.7 U	2.5 U 1.7 UJ	2.5 U 1.7 U	2.5 U 1.7 U	2.5 U 1.7 U	2.5 U 3	2.5 U 1.7 U
LEAD MERCURY	0.45 U 0.17 J	0.45 U 0.13 U					
NICKEL SELENIUM	1.9 J 0.89 U	5.8 J 0.89 UJ	1.6 J 0.89 U	1.8 J 0.89 U	6.9 0.89 U	94 1.3 J	3 0.89 U
SILVER	0.053 U	0.053 UJ	0.053 U				
THALLIUM ZINC	0.2 U 17 J	0.2 U 16 J	0.56 J 15 U	0.37 J 15 U	0.2 U 43	0.2 U 720	0.42 J 15 U
MISCELLANEOUS (UG/L) HEXAVALENT CHROMIUM							
PETROLEUM HYDROCARBONS (UG/L) TPH (C06-C10)	49 U			1000		2300	
TPH (C10-C28)	230 U			250 J		300 J	
RADIONUCLIDES (PCI/L) RADIUM-228							
TOTAL ALPHA RADIUM							

LOCATION SAMPLE ID SAMPLE DATE	MSA-MW-42S MSA-MW-42S-060222 20220602	MSA-MW-43S MSA-MW-43S-061322 20220613	MSA-MW-44S MSA-MW-44S-052022 20220520	MSA-MW-45S MSA-MW-45S-060722 20220607	MSA-MW-46D MSA-MW-46D-061322 20220613	MSA-MW-46I MSA-MW-46I-061322 20220613
VOLATILES (UG/L) 1,1,1,2-TETRACHLOROETHANE	0.43 U	0.43 U	0.43 U	43 U	0.86 U	1.7 U
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	0.48 U 0.6 U	0.48 U 0.6 U	0.48 U 0.6 U	48 U 60 U	0.96 U 1.2 U	1.9 U 2.4 U
1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROTRIFLUOROETHANE	 0.41 U	 0.41 U	 0.41 U	 41 U	 0.82 U	 1.6 U
1,1-DICHLOROETHANE	0.47 U	0.47 U	2	47 U	0.94 U	1.9 U
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	0.49 U 0.36 U	0.49 U 0.36 U	0.49 U 0.36 U	49 U 36 U	0.98 U 0.72 U	2.8 J 1.4 U
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	0.54 UJ 0.52 U	0.54 U 0.52 U	0.54 U 0.52 U	54 U 52 U	1.1 U 1 U	2.2 U 2.1 U
1,2,3-TRIMETHYLBENZENE	6.1	0.31 U	0.31 UJ	31 U	0.62 U	1.2 U
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	0.77 U 13	0.77 U 0.52 U	0.77 U 0.52 UJ	77 U 52 U	1.5 U 1 U	3.1 U 2.1 U
1,2-DIBROMO-3-CHLOROPROPANE	0.91 U 0.41 U	0.91 U	0.91 UJ 0.41 U	91 U 41 U	1.8 U 0.82 U	3.6 U 1.6 U
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	0.41 U	0.41 U 0.48 U	0.48 U	41 U	0.96 U	1.9 U
1,2-DICHLOROETHANE 1.2-DICHLOROPROPANE	0.47 U	0.21 U 0.47 U	0.21 U 0.47 U	61 J 47 U	2.8 0.94 U	6.2 1.9 U
1,3-DICHLOROBENZENE	0.45 U	0.45 U	0.45 U	45 U	0.9 U	1.8 U
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	0.21 U 0.41 U	0.21 U 0.41 U	0.21 U 8	21 U 41 U	0.42 U 0.82 U	0.84 U 1.6 U
2,2-DICHLOROPROPANE 2-BUTANONE	0.78 U 1.2 J	0.78 U 1.2 U	0.78 U 1.2 U	78 UJ 120 U	1.6 U 2.3 U	3.1 U 4.6 U
2-CHLOROETHYL VINYL ETHER	1.2 J 1.5 UR	1.5 UR	1.5 UR	150 UR	3.1 UR	6.1 UR
2-CHLOROTOLUENE 2-HEXANONE	0.57 U 1.1 U	0.57 U 1.1 U	0.57 U 1.1 U	57 U 110 U	1.1 U 2.2 U	2.3 U 4.4 U
4-CHLOROTOLUENE	0.43 U	0.43 U	0.43 U	43 U	0.86 U	1.7 U
4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE	0.57 J 0.99 U	0.56 U 0.99 U	0.56 UJ 0.99 U	56 U 99 U	1.1 U 2 U	2.2 U 4 U
ACETONE	11	5.4 U	5.4 U	540 U	11 U	22 U
ACROLEIN ACRYLONITRILE						
BENZENE BROMOBENZENE	2.9 0.5 U	0.42 U 0.5 U	0.42 U 0.5 U	49 J 50 U	0.84 U 1 U	1.7 U 2 U
BROMOCHLOROMETHANE	0.54 U	0.54 U	0.54 U	54 U	1.1 U	2.2 U
BROMODICHLOROMETHANE BROMOFORM	0.17 U 0.76 UJ	0.17 U 0.76 U	0.17 U 0.76 UJ	17 U 76 U	0.34 U 1.5 U	0.68 U 3 U
BROMOMETHANE	0.42 UJ	0.42 U	0.42 UJ	42 UJ	0.84 U	1.7 U
CARBON DISULFIDE CARBON TETRACHLORIDE	0.59 U 0.26 U	0.59 U 0.26 U	0.59 U 0.26 U	59 UJ 26 U	1.2 U 0.52 U	2.4 U 1 U
CHLOROBENZENE	1.7	0.38 U	4.1 0.39 U	210 39 U	0.76 U	13
CHLORODIBROMOMETHANE CHLORODIFLUOROMETHANE	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ	100 UJ	0.78 U 2 UJ	1.6 U 4 UJ
CHLOROETHANE	0.83 U 0.47 U	0.83 U 0.47 U	0.83 UJ 0.47 U	83 UJ 47 U	1.7 U 0.94 U	3.3 U 1.9 U
CHLOROFORM CHLOROMETHANE	0.47 U	0.63 U	0.63 U	63 U	1.3 U	2.5 U
CIS-1,2-DICHLOROETHENE CIS-1.3-DICHLOROPROPENE	0.61 U	0.46 U 0.61 U	0.63 J 0.61 U	2100 61 U	53 1.2 U	110 2.4 U
DIBROMOMETHANE	0.4 U	0.4 U	0.4 U	40 U	0.8 U	1.6 U
DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER	0.35 U 0.17 U	0.35 U 0.17 U	0.35 U 0.17 U	35 U 17 U	0.7 U 0.34 U	1.4 U 0.68 U
ETHYL TERT-BUTYL ETHER	0.4 U	0.4 U	0.4 U	40 U	0.8 U	1.6 U
ETHYLBENZENE HEXACHLOROBUTADIENE	48 0.83 U	0.42 U 0.83 U	0.42 U 0.83 UJ	42 U 83 U	0.84 U 1.7 U	1.7 U 3.3 U
ISOPROPYLBENZENE M+P-XYLENES	1.1 740	0.49 U 0.42 U	0.49 U 1.1 J	49 U 42 U	0.98 U 0.84 U	2 U 1.7 U
METHYL TERT-BUTYL ETHER	0.47 U	0.47 U	0.47 U	47 U	0.84 U	1.9 U
METHYLENE CHLORIDE NAPHTHALENE	2.6 U 0.8 U	2.6 U 0.8 U	2.6 U 120 J	260 U 80 U	5.2 U 1.6 U	10 U 3.2 U
N-BUTYLBENZENE	0.6 U	0.6 U	0.6 UJ	60 U	1.2 U	2.4 U
N-PROPYLBENZENE O-XYLENE	0.76 J 110	0.57 U 0.42 U	0.57 U 0.51 J	57 U 42 U	1.1 U 1.1 J	2.3 U 1.7 U
SEC-BUTYLBENZENE	0.53 J	0.53 U	0.53 U	53 U	1.1 U	2.1 U
STYRENE TERT-AMYL METHYL ETHER	0.45 U 0.43 U	0.45 U 0.43 U	0.45 U 0.43 U	45 U 43 U	0.9 U 0.86 U	1.8 U 1.7 U
TERT-BUTYLBENZENE TERTIARY-BUTYL ALCOHOL	0.48 U 7.2 U	0.48 U 7.2 UJ	0.48 U 7.2 UJ	48 U 720 U	0.96 U 14 UJ	1.9 U 29 UJ
TETRACHLOROETHENE	0.44 U	0.44 U	0.44 U	44 U	0.88 U	1.8 U
TOLUENE TOTAL XYLENES	22 850	0.44 U 0.42 U	0.44 U 1.6 J	44 U 42 U	0.88 U 1.1 J	1.8 U 1.7 U
TRANS-1,2-DICHLOROETHENE	0.51 U	0.51 U	0.51 U	51 U	1 U	2 U
TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE	0.67 U 0.44 U	0.67 U 0.44 U	0.67 U 0.44 U	67 U 2700	1.3 U 140	2.7 U 250
TRICHLOROFLUOROMETHANE	0.45 U	0.45 U	0.45 UJ	45 UJ	0.9 U	1.8 U
VINYL ACETATE VINYL CHLORIDE	0.61 U 1.6	0.61 U 0.45 U	0.61 U 0.54 J	61 U 1600	1.2 U 13	2.4 U 86
SEMIVOLATILES (UG/L) 1,4-DIOXANE	0.37 UJ	0.4 U	7.4 J	450	0.39 U	11
METALS (UG/L)		Ī				
ANTIMONY ARSENIC	0.65 J 2.6 J		0.57 U 0.75 U	0.83 J 0.75 U	0.57 U 2.2 J	0.57 U 0.75 U
BERYLLIUM	0.62 U		0.62 U	0.62 U	0.62 U	0.62 U
CADMIUM CHROMIUM	0.2 U 6.7		0.2 U 2.5 U	81 2.5 U	0.2 U 2.5 U	0.88 J 2.5 U
COPPER	4.1 1.6		1.7 U	3	1.7 U	1.7 U
LEAD MERCURY	0.15 J		0.45 U 0.13 U	0.45 U 0.13 U	0.83 J 0.13 U	0.45 U 0.13 U
NICKEL SELENIUM	1.5 U 0.89 U		1.5 U 0.89 U	110 2 J	22 0.89 U	60 0.89 U
SILVER	0.065 J		0.053 U	0.053 U	0.053 U	0.053 U
THALLIUM ZINC	0.36 J 42		0.2 U 28	0.77 J 830	0.25 J 41	0.2 U 190
METALS FILTERED (UG/L)						
ANTIMONY ARSENIC	0.57 U 1.9 J		0.57 U 0.75 U	0.61 J 0.75 U	0.57 U 2.7 J	0.57 U 0.75 U
BERYLLIUM	0.62 U		0.62 U	0.62 U 79	0.62 U	0.62 U
CADMIUM CHROMIUM	0.2 U 5.8		0.2 U 2.5 U	2.5 U	0.2 U 2.5 U	0.87 J 2.5 U
COPPER LEAD	1.7 U 0.45 U		1.7 U 0.45 U	3.2 0.45 U	1.7 U 0.45 U	1.7 U 0.45 U
MERCURY	0.13 U		0.13 U	0.13 U	0.13 U	0.13 U
NICKEL SELENIUM	1.5 U 0.89 U		1.5 U 0.89 U	110 1.9 J	25 0.89 U	59 0.89 U
SILVER	0.053 U		0.053 U	0.053 U	0.053 U	0.053 U
THALLIUM ZINC	0.2 U 15 U		0.2 U 15 U	0.39 J 830	0.2 U 48	0.2 U 180
MISCELLANEOUS (UG/L)						
HEXAVALENT CHROMIUM PETROLEUM HYDROCARBONS (UG/L)					0.005 U	0.03
TPH (C06-C10) TPH (C10-C28)	2500 390 J	49 U 250 J	49 U 510	2500 360 J		
RADIONUCLIDES (PCI/L)	220 1	23U J	310	200 1		-
RADIUM-228 TOTAL ALPHA RADIUM						
	<u> </u>	ı	1		1	ı

LOCATION SAMPLE ID SAMPLE DATE VOLATILES (UG/L)	MSA-MW-46S	MSA-MW-47D	MSA-MW-47I	MSA-MW-47S	MSA-MW-48D	MSA-MW-48I
	MSA-MW-46S-061422	MSA-MW-47D-061422	MSA-MW-47I-061422	MSA-MW-47S-061422	MSA-MW-48D-052422	MSA-MW-48I-052422
	20220614	20220614	20220614	20220614	20220524	20220524
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE	0.43 U	4.3 U	1.7 U	0.43 U	8.6 U	0.43 U
	0.48 U	4.8 U	1.9 U	0.48 U	10 J	0.48 U
1,1,2,7-THICHLOROETHANE 1,1,2-TRICHLOROETHANE	0.48 U	6 U 	2.4 U	0.48 U	12 U	0.48 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.41 U	4.1 U	1.6 U	0.41 U 0.47 U	8.2 U	0.41 U 0.47 U
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	0.47 U 0.49 U	4.7 U 4.9 U	1.9 U 2 U	0.49 U	9.4 U 15 J	0.49 U
1,1-DICHLOROPROPENE	0.36 U	3.6 U	1.4 U	0.36 U	7.2 U	0.36 U
1,2,3-TRICHLOROBENZENE	0.54 U	5.4 UJ	2.2 U	0.54 U	11 U	0.54 U
1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE	0.52 U	5.2 U	2.1 U	0.52 U	10 U	0.52 U
	0.31 U	3.1 U	1.2 U	0.31 U	6.2 U	0.31 U
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	0.77 U	7.7 U	3.1 U	0.77 U	15 U	2.4
	0.52 U	5.2 U	2.1 U	0.52 U	10 U	0.52 U
1,2-DIBROMO-3-CHLOROPROPANE	0.91 U	9.1 U	3.6 U	0.91 U	18 U	0.91 U
1,2-DIBROMOETHANE	0.41 U	4.1 U	1.6 U	0.41 U	8.2 U	0.41 U
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	0.48 U	4.8 U	1.9 U	0.48 U	9.6 U	2.2
	0.21 U	8.1 J	4.6	0.21 U	4.2 U	0.21 U
1,2-DICHLOROPROPANE	0.47 U	4.7 U	1.9 U	0.47 U	9.4 U	0.47 U
1,3-DICHLOROBENZENE	0.45 U	4.5 U	1.8 U	0.45 U	9 U	5.5
1,3-DICHLOROPROPANE	0.21 U	2.1 U	0.84 U	0.21 U	4.2 U 21	0.21 U 35
1,4-DICHLOROBENZENE 2,2-DICHLOROPROPANE	0.41 U 0.78 U	4.1 U 7.8 U	1.6 U 3.1 U	0.41 U 0.78 U	16 U	0.78 U
2-BUTANONE 2-CHLOROETHYL VINYL ETHER	1.2 U	12 U	4.6 U	1.2 U	23 U	1.2 U
	1.5 UR	15 UR	6.1 UR	1.5 UR	31 UR	1.5 UR
2-CHLOROTOLUENE 2-HEXANONE	0.57 U	5.7 U	2.3 U	0.57 U	11 U	0.57 U
	1.1 U	11 U	4.4 U	1.1 U	22 U	1.1 U
4-CHLOROTOLUENE 4-ISOPROPYLTOLUENE	0.43 U	4.3 U	1.7 U	0.43 U	8.6 U	0.43 U
	0.56 U	5.6 U	2.2 U	0.56 U	11 U	0.56 U
4-METHYL-2-PENTANONE	0.99 U	9.9 U	4 U	0.99 U	20 U	0.99 U
	5.4 U	54 U	22 U	5.4 U	110 U	5.4 U
ACETONE ACROLEIN						
ACRYLONITRILE BENZENE	0.42 U	4.2 U	1.7 U	0.89 J	8.4 U	1.1
BROMOBENZENE	0.5 U	5 U	2 U	0.5 U	10 U	0.5 U
BROMOCHLOROMETHANE	0.54 U	5.4 U	2.2 U	0.54 U	11 U	0.54 U
BROMODICHLOROMETHANE	0.17 U	1.7 U	0.68 U	0.17 U	3.4 U	0.17 U
BROMOFORM	0.76 U	7.6 U	3 U	0.76 U	15 U	0.76 U
BROMOMETHANE	0.42 U	4.2 U	1.7 U	0.42 U	8.4 UJ	0.42 UJ
CARBON DISULFIDE	0.59 U	5.9 U	2.4 U	0.59 U	12 U	0.59 U
CARBON TETRACHLORIDE CHLOROBENZENE	0.26 U 0.38 U	2.6 U 3.8 U	1 U 6	0.26 U 1.5	5.2 U 7.6 U	0.39 U 0.26 U 8
CHLORODIBROMOMETHANE	0.39 U	3.9 U	1.6 U	0.39 U	7.8 U	0.39 U
CHLORODIFLUOROMETHANE	1 UJ	10 UJ	4 UJ	1 UJ	20 UJ	1 UJ
CHLOROETHANE	0.83 U	8.3 U	3.3 U	0.83 U	17 UJ	0.83 UJ
CHLOROFORM	0.47 U	4.7 U	1.9 U	0.47 U	9.4 U	0.47 U
CHLOROMETHANE	0.63 U	6.3 U	2.5 U	0.63 U	13 UJ	0.63 UJ
CIS-1,2-DICHLOROETHENE	0.46 U	47	37	0.76 J	570	50
CIS-1,3-DICHLOROPROPENE	0.61 U	6.1 U	2.4 U	0.61 U	12 U	0.61 U
DIBROMOMETHANE DICHLORODIFLUOROMETHANE	0.4 U	4 U	1.6 U	0.4 U	8 U	0.4 U
	0.35 U	3.5 U	1.4 U	0.35 U	7 U	0.35 U
DIISOPROPYL ETHER	0.17 U	1.7 U	0.68 U	0.39 J	3.4 U	0.17 U
ETHYL TERT-BUTYL ETHER ETHYLBENZENE	0.4 U	4 U	1.6 U	0.4 U	8 U	0.4 U
	0.42 U	4.2 U	1.7 U	0.42 U	8.4 U	0.42 U
HEXACHLOROBUTADIENE	0.83 U	8.3 U	3.3 U	0.83 U	17 U	0.83 U
ISOPROPYLBENZENE	0.49 U	4.9 U	2 U	0.49 U	9.8 U	0.49 U
M+P-XYLENES METHYL TERT-BUTYL ETHER	0.42 U	4.2 U	1.7 U	0.42 U	8.4 U	0.42 U
	0.47 U	4.7 U	1.9 U	0.47 U	9.4 U	0.47 U
METHYLENE CHLORIDE NAPHTHALENE	2.6 U	26 U	10 U	2.6 U	52 U	2.6 U
	0.8 U	8 U	3.2 U	0.8 U	16 UJ	0.8 UJ
N-BUTYLBENZENE	0.6 U	6 U	2.4 U	0.6 U	12 U	0.6 U
N-PROPYLBENZENE	0.57 U	5.7 U	2.3 U	0.57 U	11 U	0.57 U
O-XYLENE SEC-BUTYLBENZENE	0.42 U	4.2 U	1.7 U	0.42 U	8.4 U	0.42 U
STYRENE	0.53 U	5.3 U	2.1 U	0.53 U	11 U	0.53 U
	0.45 U	4.5 U	1.8 U	0.45 U	9 U	0.45 U
TERT-AMYL METHYL ETHER TERT-BUTYLBENZENE	0.43 U	4.3 U	1.7 U	0.43 U	8.6 U	0.43 U
	0.48 U	4.8 U	1.9 U	0.48 U	9.6 U	0.48 U
TERTIARY-BUTYL ALCOHOL TETRACHLOROETHENE	7.2 U	72 UJ	29 U	24 J	140 UJ	7.2 UJ
	0.44 U	4.4 U	1.8 U	0.44 U	8.8 U	0.44 U
TOLUENE	0.44 U	4.4 U	1.8 U	0.44 U	8.8 U	0.44 U
TOTAL XYLENES	0.42 U	4.2 U	1.7 U	0.42 U	8.4 U	0.42 U
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	0.51 U	5.1 U	2 U	0.51 U	10 U	0.51 U
	0.67 U	6.7 U	2.7 U	0.67 U	13 U	0.67 U
TRICHLOROETHENE	0.44 U	360	150	0.61 J	590	4.3
TRICHLOROFLUOROMETHANE VINYL ACETATE	0.45 U	4.5 U	1.8 U	0.45 U	9 UJ	0.45 UJ
	0.61 U	6.1 U	2.4 U	0.61 U	12 U	0.61 U
VINYL CHLORIDE SEMIVOLATILES (UG/L)	0.45 U	6.4 J	37	8.2	95	9.3
1,4-DIOXANE METALS (UG/L)	1.5	14	15	44	13	1
ANTIMONY	0.57 U					
ARSENIC	5.5	0.84 J	2 J	4.4 J	2.4 J	2.4 J
BERYLLIUM	0.62 U	0.62 U	0.89 J	0.62 U	1.2	0.62 U
CADMIUM	0.2 U	0.51 J	21	0.2 U	0.74 J	0.2 U
CHROMIUM	2.9 J	2.5 U				
COPPER	2.9	1.7 U	18	1.7 U	1.7 U	1.7 U
LEAD	0.45 U					
MERCURY	0.14 J	0.13 U	0.18 J	0.13 U	0.22	0.13 U
NICKEL	2.4	85	14	1.5 U		1.5 U
SELENIUM	0.89 U	0.89 U	14	0.89 U	0.94 J	0.89 U
SILVER	0.053 U	0.16 J	1.9	0.053 U	0.053 U	0.053 U
THALLIUM	0.21 J	0.2 U				
ZINC	15 U	69	73	15 U	18 J	15 U
METALS FILTERED (UG/L) ANTIMONY	0.57 U					
ARSENIC BERYLLIUM	4.3 J	2.2 J	1.5 J	5.3	3.5 J	2.4 J
	0.62 U	0.62 U	0.62 U	0.62 U	1.2	0.62 U
CADMIUM	0.2 U	0.2 U	6.3	0.2 U	0.23 J	0.2 U
CHROMIUM	2.9 J	2.5 U				
COPPER	1.7 U	1.7 U	6	1.7 U	1.7 U	1.7 U
LEAD	0.45 U					
MERCURY	0.13 U					
NICKEL	2.3	96	15	1.5 U	24	1.5 U
SELENIUM	0.89 U	0.89 U	6.3	0.89 U	0.9 J	0.89 U
SILVER	0.053 U	0.053 U	0.62 J	0.053 U	0.053 U	0.053 U
THALLIUM	0.21 J	0.2 U				
ZINC	15 U	66	68	15 U	15 U	15 U
MISCELLANEOUS (UG/L) HEXAVALENT CHROMIUM	0.034	0.005 U	0.013 J	0.017 J	0.005 U	0.005 U
PETROLEUM HYDROCARBONS (UG/L) TPH (C06-C10)	49 U			49 U		
TPH (C10-C28) RADIONUCLIDES (PCI/L)	240 U			500		
RADIUM-228 TOTAL ALPHA RADIUM						
	1	1	I	<u> </u>	i.	

LOCATION SAMPLE ID SAMPLE DATE VOLATILES (UG/L)	MSA-MW-48S MSA-MW-48S-052422 20220524	MSA-MW-49D MSA-MW-49D-060922 20220609	MSA-MW-49I MSA-MW-49I-060922 20220609	MSA-MW-49S MSA-MW-49S-060922 20220609	MSA-MW-50D MSA-MW-50D-060722 20220607	MSA-MW-50I MSA-MW-50I-060722 20220607	MSA-MW-50S MSA-MW-50S-060722 20220607	MSA-MW-51D MSA-MW-51D-060722 20220607
1,1,1,2-TETRACHLOROETHANE	0.43 U	8.6 U	1.7 U	0.43 U	0.43 U	0.86 U	4.3 U	1.7 U
1,1,1-TRICHLOROETHANE	0.48 U	9.6 U	4.1	0.48 U	0.48 U	0.96 U	4.8 U	1.9 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	0.6 U 	12 U 	2.4 U 	0.6 U 	0.6 U 	1.2 U 	6 U 	2.4 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.41 U	8.2 U	1.6 U	0.41 U	0.41 U	0.82 U	4.1 U	1.6 U
1,1-DICHLOROETHANE	0.47 U	9.4 U	5.4	0.47 U	0.47 U	0.94 U	4.7 U	1.9 U
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	0.49 U 0.36 U	9.8 U 7.2 U	16 1.4 U	0.49 U 0.36 U	0.49 U 0.36 U	0.98 U 0.72 U	4.9 U 3.6 U	2 U 1.4 U
1,2,3-TRICHLOROBENZENE	0.54 U	11 U	2.2 U	0.54 U	0.54 U	1.1 U	5.4 U	2.2 U
1,2,3-TRICHLOROPROPANE	0.52 U	10 U	2.1 U	0.52 U	0.52 U	1 U	5.2 U	2.1 U
1,2,3-TRIMETHYLBENZENE 1,2,4-TRICHLOROBENZENE	0.31 U 0.77 U	6.2 U 15 U	1.9 J 3.1 U	0.31 U 0.77 U	0.31 U 0.77 U	0.62 U 1.5 U	3.1 U 7.7 U	1.2 U 3.1 U
1,2,4-TRIMETHYLBENZENE	0.52 U	10 U	2.1 U	0.52 U	0.52 U	1 U	5.2 U	2.1 U
1,2-DIBROMO-3-CHLOROPROPANE	0.91 U	18 U	3.6 U	0.91 U	0.91 U	1.8 U	9.1 U	3.6 U
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	0.41 U 0.48 U	8.2 U 9.6 U	1.6 U 1.9 U	0.41 U 0.48 U	0.41 U 0.48 U	0.82 U 0.96 U	4.1 U 4.8 U	1.6 U 1.9 U
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	0.46 U	4.2 U	5	0.48 U	0.48 U	0.42 U	2.1 U	0.84 U
1,2-DICHLOROPROPANE	0.47 U	9.4 U	1.9 U	0.47 U	0.47 U	0.94 U	4.7 U	1.9 U
1,3-DICHLOROBENZENE	0.45 U	9 U	1.8 U	0.45 U	0.45 U	0.9 U	4.5 U	1.8 U
1,3-DICHLOROPROPANE 1,4-DICHLOROBENZENE	0.21 U 0.41 U	4.2 U 8.2 U	0.84 U 3.9 J	0.21 U 0.41 U	0.21 U 0.41 U	0.42 U 0.82 U	2.1 U 4.1 U	0.84 U 1.6 U
2,2-DICHLOROPROPANE	0.78 U	16 U	3.1 U	0.78 U	0.78 UJ	1.6 UJ	7.8 UJ	3.1 UJ
2-BUTANONE	1.2 U	23 U	4.6 U	1.2 U	1.2 U	2.3 U	12 U	4.6 U
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE	1.5 UR 0.57 U	31 UR 11 U	6.1 UR 2.3 U	1.5 UR 0.57 U	1.5 UR 0.57 U	3.1 UR 1.1 U	15 UR 5.7 U	6.1 UR 2.3 U
2-HEXANONE	1.1 U	22 U	4.4 U	1.1 U	1.1 U	2.2 U	11 U	4.4 U
4-CHLOROTOLUENE	0.43 U	8.6 U	1.7 U	0.43 U	0.43 U	0.86 U	4.3 U	1.7 U
4-ISOPROPYLTOLUENE	0.56 U	11 U 20 U	2.2 U	0.56 U 0.99 U	0.56 U 0.99 U	1.1 U	5.6 U 9.9 U	2.2 U
4-METHYL-2-PENTANONE ACETONE	0.99 U 5.4 U	20 U 110 U	4 U 22 U	0.99 U 5.4 U	0.99 U 5.4 U	2 U 11 U	9.9 U 54 U	4 U 22 U
ACROLEIN								
ACRYLONITRILE								
BENZENE BROMOBENZENE	0.42 U 0.5 U	8.4 U 10 U	1.7 U 2 U	0.42 U 0.5 U	0.42 U 0.5 U	0.84 U 1 U	4.2 U 5 U	1.7 U 2 U
BROMOCHLOROMETHANE	0.5 U	10 U	2.2 U	0.54 U	0.54 U	1.1 U	5.4 U	2.2 U
BROMODICHLOROMETHANE	0.17 U	3.4 U	0.68 U	0.17 U	0.17 U	0.34 U	1.7 U	0.68 U
BROMOFORM BROMOMETHANE	0.76 U 0.42 UJ	15 U 8.4 U	3 U 1.7 U	0.76 U 0.42 U	0.76 U 0.42 UJ	1.5 U 0.84 UJ	7.6 U 4.2 UJ	3 U 1.7 UJ
CARBON DISULFIDE	0.42 UJ 0.59 U	8.4 U 12 U	2.4 U	0.42 U 0.59 U	0.42 UJ 0.59 UJ	1.2 U	4.2 UJ 5.9 UJ	2.4 U
CARBON TETRACHLORIDE	0.26 U	5.2 U	1 U	0.26 U	0.26 U	0.52 U	2.6 U	1 U
CHLOROBENZENE CHLORODIBROMOMETHANE	0.38 U 0.39 U	7.6 U 7.8 U	1.5 U 1.6 U	0.38 U 0.39 U	0.38 U 0.39 U	0.76 U 0.78 U	3.8 U 3.9 U	1.5 U 1.6 U
CHLORODIFLUOROMETHANE	0.39 U 1 UJ	7.8 U 20 UJ	4 UJ	0.39 U 1 UJ	0.39 U 1 UJ	0.78 U 2 UJ	3.9 U 10 UJ	4 UJ
CHLOROETHANE	0.83 UJ	17 U	3.3 U	0.83 U	0.83 UJ	1.7 UJ	8.3 UJ	3.3 UJ
CHLOROFORM	0.47 U	9.4 U	1.9 U	0.47 U	0.47 U	0.94 U	4.7 U	1.9 U
CHLOROMETHANE CIS-1,2-DICHLOROETHENE	0.63 UJ 0.46 U	13 U 180	2.5 U 700	0.63 U 1.6	0.63 U 25	1.3 U 32	6.3 U 300	2.5 U 21
CIS-1,3-DICHLOROPROPENE	0.40 U	12 U	2.4 U	0.61 U	0.61 U	1.2 U	6.1 U	2.4 U
DIBROMOMETHANE	0.4 U	8 U	1.6 U	0.4 U	0.4 U	0.8 U	4 U	1.6 U
DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER	0.35 U 0.17 U	7 U 3.4 U	1.4 U 0.68 U	0.35 U 0.17 U	0.35 U 0.17 U	0.7 U 0.34 U	3.5 U 1.7 U	1.4 U 0.68 U
ETHYL TERT-BUTYL ETHER	0.17 U	8 U	1.6 U	0.17 U	0.17 U	0.34 U	4 U	1.6 U
ETHYLBENZENE	0.42 U	8.4 U	1.7 U	0.42 U	0.42 U	0.84 U	4.2 U	1.7 U
HEXACHLOROBUTADIENE	0.83 U	17 U	3.3 U	0.83 U	0.83 U	1.7 U	8.3 U	3.3 U
ISOPROPYLBENZENE M+P-XYLENES	0.49 U 0.42 U	9.8 U 8.4 U	2 U 1.7 U	0.49 U 0.42 U	0.49 U 0.42 U	0.98 U 0.84 U	4.9 U 4.2 U	2 U 1.7 U
METHYL TERT-BUTYL ETHER	0.47 U	9.4 U	1.9 U	0.47 U	0.47 U	0.94 U	4.7 U	1.9 U
METHYLENE CHLORIDE	2.6 U	52 U	10 U	2.6 U	2.6 U	5.2 U	26 U	10 U
NAPHTHALENE N-BUTYLBENZENE	0.8 UJ 0.6 U	16 U 12 U	3.2 U 2.4 U	0.8 U 0.6 U	0.8 U 0.6 U	1.6 U 1.2 U	8 U 6 U	3.2 U 2.4 U
N-PROPYLBENZENE	0.57 U	11 U	2.3 U	0.57 U	0.57 U	1.1 U	5.7 U	2.3 U
O-XYLENE	0.42 U	8.4 U	1.7 U	0.42 U	0.42 U	0.84 U	4.2 U	1.7 U
SEC-BUTYLBENZENE STYRENE	0.53 U 0.45 U	11 U 9 U	2.1 U 1.8 U	0.53 U 0.45 U	0.53 U 0.45 U	1.1 U 0.9 U	5.3 U 4.5 U	2.1 U 1.8 U
TERT-AMYL METHYL ETHER	0.43 U	8.6 U	1.7 U	0.43 U	0.43 U	0.86 U	4.3 U	1.8 U
TERT-BUTYLBENZENE	0.48 U	9.6 U	1.9 U	0.48 U	0.48 U	0.96 U	4.8 U	1.9 U
TERTIARY-BUTYL ALCOHOL TETRACHLOROETHENE	7.2 UJ 0.44 U	140 U 8.8 U	29 U 1.8 U	7.2 U 0.44 U	7.2 U 0.44 U	14 UJ 0.88 U	72 U 4.4 U	29 UJ 1.8 U
TOLUENE	0.44 U	8.8 U	1.8 U	0.44 U	0.44 U	0.88 U	4.4 U	1.8 U
TOTAL XYLENES	0.42 U	8.4 U	1.7 U	0.42 U	0.42 U	0.84 U	4.2 U	1.7 U
TRANS-1,2-DICHLOROETHENE	0.51 U	10 U	6.3	0.51 U	0.51 U	1 U	5.1 U	2 U
TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE	0.67 U 0.44 U	13 U 760	2.7 U 1700	0.67 U 2.1	0.67 U 24	1.3 U 74	6.7 U 300	2.7 U 62
TRICHLOROFLUOROMETHANE	0.44 0 0.45 UJ	9 U	1.8 U	0.45 U	0.45 UJ	0.9 UJ	4.5 UJ	1.8 UJ
VINYL ACETATE	0.61 U	12 U	2.4 U	0.61 U	0.61 U	1.2 U	6.1 U	2.4 U
VINYL CHLORIDE SEMIVOLATILES (UG/L)	0.45 U	21	110	0.45 U	1.1	1.4 J	40	1.8 U
1,4-DIOXANE	0.4 U	4.2	10	0.37 UJ	0.37 UJ	0.37 U	2.7	1.5
METALS (UG/L)								
ANTIMONY ARSENIC	1.3 J 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U
BERYLLIUM	0.75 U	5.7	0.75 U 0.97 J	0.75 U 0.62 U	3.6	3.2	2.6	3
CADMIUM	0.39 J	12	44	1.2	2.3	1.8	2.6	2.8
CHROMIUM CORPER	2.5 U	2.5 U	2.5 U	2.5 U	3.1 J	3.2 J	3.5 J	2.5 U
COPPER LEAD	2.4 0.45 U	73 0.78 J	11 0.45 U	1.7 U 0.45 U	49 0.96 J	29 1.3	25 1.5	56 0.7 J
MERCURY	0.13 U	0.13 U	0.13 U	0.13 U	0.22	0.17 U	0.21	0.31
NICKEL	2	67	16	1.5 U	50	40	45	54
SELENIUM SILVER	0.89 U 0.053 U	2.2 J 0.053 U	0.89 U 0.053 U	0.89 U 0.053 U	1.2 J 0.053 U	1.4 J 0.053 U	1.5 J 0.053 U	1.3 J 0.1 J
THALLIUM	0.2 U	0.2 U	0.033 U	0.2 U	0.23 J	0.28 J	0.31 J	0.2 J
ZINC	15 U	250	31	15 U	120	82	160	140
METALS FILTERED (UG/L) ANTIMONY	1.3 J	0.57 U						
ARSENIC	0.75 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U	0.57 U
BERYLLIUM	0.62 U	5.4	1.1	0.62 U	3.8	3.6	2.6	2.9
CADMIUM	0.2 U	11 2.5 U	47	0.45 J	2.2	1.8	2.7	2.6
CHROMIUM COPPER	2.5 U 2.2	2.5 U 71	2.7 J 10	2.5 U 1.7 U	2.8 J 49	3.1 J 30	3.3 J 26	2.5 U 40
LEAD	0.45 U	0.77 J	0.45 U	0.45 U	0.92 J	1.2	1.5	0.67 J
MERCURY	0.13 U	0.13 U	0.13 U	0.13 U	0.26	0.17 U	0.22	0.23
NICKEL SELENIUM	1.8 J 0.89 U	65 2.1 J	18 0.89 U	1.5 U 0.89 U	50 1.1 J	40 1.3 J	45 1.4 J	53 1.2 J
SILVER	0.053 U							
THALLIUM	0.2 U	0.2 U	0.21 J	0.2 U	0.22 J	0.24 J	0.26 J	0.2 U
ZINC MISCELLANEOUS (UG/L)	15 U	260	39	15 U	120	87	160	140
, , ,								
HEXAVALENT CHROMIUM	0.24	0.005 U	0.005 U	0.01 U	0.005 U	0.005 U	0.01 U	0.005 U
PETROLEUM HYDROCARBONS (UG/L)		0.005 U	0.005 U		0.005 U	0.005 U		0.005 U
PETROLEUM HYDROCARBONS (UG/L) TPH (C06-C10)	49 U			49 U			300	
PETROLEUM HYDROCARBONS (UG/L) TPH (C06-C10) TPH (C10-C28)								
HEXAVALENT CHROMIUM PETROLEUM HYDROCARBONS (UG/L) TPH (C06-C10) TPH (C10-C28) RADIONUCLIDES (PCI/L) RADIUM-228	49 U			49 U			300	

LOCATION SAMPLE ID SAMPLE DATE	MSA-MW-51I MSA-MW-51I-060722 20220607	MSA-MW-51S MSA-MW-51S-060722 20220607	MSA-MW-52D MSA-MW-52D-061622 20220616	MSA-MW-52I MSA-MW-52I-061622 20220616	MSA-MW-52S MSA-MW-52S-061622 20220616
VOLATILES (UG/L) 1,1,1,2-TETRACHLOROETHANE	0.43 U	0.43 U	86 U	22 U	0.43 U
1,1,1-TRICHLOROETHANE	0.48 U	0.48 U	96 U	24 U	0.48 U
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	0.6 U 	0.6 U 	120 U 	30 U 	0.6 U
1,1,2-TRICHLOROTRIFLUOROETHANE	0.41 U	0.41 U	82 U	21 U	0.41 U
1,1-DICHLOROETHANE 1,1-DICHLOROETHENE	0.47 U 0.49 U	0.47 U 0.49 U	94 U 98 U	24 U 25 U	0.47 U 0.49 U
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE	0.36 U	0.36 U	72 U	18 U 27 UJ	0.36 U
1,2,3-TRICHLOROBENZENE 1,2,3-TRICHLOROPROPANE	0.54 U 0.52 U	0.54 U 0.52 U	110 UJ 100 U	27 UJ 26 U	0.54 U 0.52 U
1,2,3-TRIMETHYLBENZENE	0.31 U	0.31 U	62 U	16 U	0.31 UJ
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	0.77 U 0.52 U	0.77 U 0.52 U	150 UJ 100 U	57 26 U	0.77 UJ 0.52 U
1,2-DIBROMO-3-CHLOROPROPANE	0.91 U	0.91 U	180 U	46 U	0.91 U
1,2-DIBROMOETHANE 1,2-DICHLOROBENZENE	0.41 U 0.48 U	0.41 U 0.48 U	82 U 96 U	21 U 24 U	0.41 U 0.48 U
1,2-DICHLOROETHANE	0.21 U	0.21 U	42 U	15 J	1
1,2-DICHLOROPROPANE 1,3-DICHLOROBENZENE	0.47 U 0.45 U	0.47 U 0.45 U	94 U 90 U	24 U 23 U	0.47 U 0.45 U
1,3-DICHLOROPROPANE	0.21 U	0.21 U	42 U	11 U	0.21 U
1,4-DICHLOROBENZENE 2,2-DICHLOROPROPANE	0.41 U 0.78 UJ	0.41 U 0.78 UJ	82 U 160 U	21 U 39 U	0.41 U 0.78 U
2-BUTANONE	1.2 U	1.2 U	230 U	58 U	1.2 J
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE	1.5 UR 0.57 U	1.5 UR 0.57 U	310 UR 110 U	77 UR 29 U	1.5 UR 0.57 U
2-HEXANONE	1.1 U	1.1 U	220 U	56 U	1.1 U
4-CHLOROTOLUENE 4-ISOPROPYLTOLUENE	0.43 U 0.56 U	0.43 U 0.56 U	86 U 110 U	22 U 28 U	0.43 U 0.56 U
4-NETHYL-2-PENTANONE	0.99 U	0.99 U	200 U	50 U	0.99 U
ACETONE ACROLEIN	5.4 U 	5.4 U 	1100 UJ 	270 U 	5.4 J
ACRYLONITRILE					
BENZENE PROMODENZENE	0.42 U	0.42 U	84 U	21 U	1.9
BROMOBENZENE BROMOCHLOROMETHANE	0.5 U 0.54 U	0.5 U 0.54 U	100 U 110 U	25 U 27 U	0.5 U 0.54 U
BROMODICHLOROMETHANE	0.17 U	0.17 U	34 U	8.5 U	0.17 U
BROMOFORM BROMOMETHANE	0.76 U 0.42 UJ	0.76 U 0.42 UJ	150 U 84 U	38 U 21 U	0.76 U 0.42 U
CARBON DISULFIDE	0.59 UJ	0.59 U	120 U	30 U	0.59 U
CARBON TETRACHLORIDE CHLOROBENZENE	0.26 U 0.38 U	0.26 U 0.38 U	52 U 76 U	13 U 19 U	0.26 U 1.4
CHLORODIBROMOMETHANE	0.39 U	0.39 U	78 U	20 U	0.39 U
CHLORODIFLUOROMETHANE CHLOROETHANE	1 UJ 0.83 UJ	1 UJ 0.83 UJ	200 UJ 170 U	50 UJ 42 U	1 UJ 0.83 U
CHLOROFORM	0.47 U	0.47 U	94 U	24 U	0.47 U
CHLOROMETHANE CIS-1,2-DICHLOROETHENE	0.63 U 3.5	0.63 U 65	130 U 410	32 U 1500	0.63 U 18
CIS-1,3-DICHLOROPROPENE	0.61 U	0.61 U	120 U	31 U	0.61 U
DIBROMOMETHANE DICHLORODIFLUOROMETHANE	0.4 U 0.35 U	0.4 U 0.35 U	80 U 70 U	20 U 18 U	0.4 U 0.35 U
DIISOPROPYL ETHER	0.33 U	0.33 U 0.17 U	34 U	8.5 U	0.33 U 0.17 U
ETHYL TERT-BUTYL ETHER	0.4 U	0.4 U	80 U	20 U	0.4 U
ETHYLBENZENE HEXACHLOROBUTADIENE	0.42 U 0.83 U	0.42 U 0.83 U	84 U 170 U	21 U 42 U	0.42 U 0.83 U
ISOPROPYLBENZENE	0.49 U	0.49 U	98 U	25 U	0.49 U
M+P-XYLENES METHYL TERT-BUTYL ETHER	0.42 U 0.47 U	0.42 U 0.47 U	84 U 94 U	21 U 24 U	0.42 U 0.47 U
METHYLENE CHLORIDE	2.6 U	2.6 U	520 U	130 U	2.6 U
NAPHTHALENE N-BUTYLBENZENE	0.8 U 0.6 U	0.8 U 0.6 U	160 U 120 U	40 U 30 U	0.8 U 0.6 U
N-PROPYLBENZENE	0.57 U	0.57 U	110 U	29 U	0.57 U
O-XYLENE SEC-BUTYLBENZENE	0.42 U 0.53 U	0.42 U 0.53 U	84 U 110 U	21 U 27 U	0.42 U 0.53 U
STYRENE	0.45 U	0.45 U	90 U	23 U	0.45 U
TERT-AMYL METHYL ETHER TERT-BUTYLBENZENE	0.43 U 0.48 U	0.43 U 0.48 U	86 U 96 U	22 U 24 U	0.43 U 0.48 U
TERTIARY-BUTYL ALCOHOL	7.2 U	7.2 UJ	1400 UJ	360 U	96
TETRACHLOROETHENE TOLUENE	0.44 U 0.44 U	0.44 U 0.44 U	88 U 88 U	22 U 22 U	0.44 U 0.44 U
TOTAL XYLENES	0.42 U	0.42 U	84 U	21 U	0.42 U
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	0.51 U 0.67 U	0.51 J 0.67 U	100 U 130 U	26 U 34 U	2.4 0.67 U
TRAINS-1,3-DICHLOROPROPENE TRICHLOROETHENE	2	59	3700	930	0.78 J
TRICHLOROFLUOROMETHANE VINYL ACETATE	0.45 UJ 0.61 U	0.45 UJ 0.61 U	90 U 120 U	23 U 31 U	0.45 U
VINYL ACETATE VINYL CHLORIDE	0.61 U 0.45 U	0.61 U 1.9	120 U 110 J	31 U 410	0.61 U 21
SEMIVOLATILES (UG/L)	0.20 111	0.20 111	30	29	60
1,4-DIOXANE METALS (UG/L)	0.39 UJ	0.39 UJ	30	29	69
ANTIMONY ARSENIC	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 0.75 U	0.57 U 13
BERYLLIUM	0.75 U 3.4	0.75 U 2.5	0.75 U 4.7	0.75 0	0.62 U
CADMIUM	1.8	1.1	180	260	0.2 U
CHROMIUM COPPER	2.5 J 19	2.5 U 1.7 U	7.2 13	2.5 U 1.7 U	2.5 U 1.7 U
LEAD	0.56 J	0.45 U	1.4	2.5	0.45 U
MERCURY NICKEL	0.24 58	0.24 15	0.13 U 110	0.13 U 39	0.13 U 2.5
SELENIUM	0.89 U	0.89 U	2 Ј	0.89 U	1.3 J
SILVER THALLIUM	0.053 U 0.2 U	0.12 J 0.2 U	1.1 0.2 U	0.4 J 0.2 U	0.053 U 0.2 U
ZINC	100	21	330	140	15 U
METALS FILTERED (UG/L) ANTIMONY	0.57 U				
ARSENIC	0.75 U	0.75 U	0.75 U	0.86 J	8.4
BERYLLIUM CADMIUM	3.7 1.7	2.6	4.4 170	1.9 52	0.62 U 0.2 U
CHROMIUM	2.7 J	2.5 U	6.5	2.5 U	2.5 U
COPPER LEAD	20 0.55 J	1.7 U 0.45 U	11 1.4	1.7 U 0.46 J	1.7 U 0.45 U
MERCURY	0.26	0.29	0.13 U	0.46 J 0.13 U	0.45 U 0.13 U
NICKEL SELENILIM	59	15 0.89 H	98	38	3
SELENIUM SILVER	0.89 U 0.053 U	0.89 U 0.053 U	1.7 J 0.053 U	0.89 U 0.053 U	1.4 J 0.053 U
THALLIUM	0.2 U				
ZINC MISCELLANEOUS (UG/L)	110	15 U	300	110	17 J
HEXAVALENT CHROMIUM	0.005 U	0.005 U	0.005 U	0.02	0.005 U
PETROLEUM HYDROCARBONS (UG/L) TPH (C06-C10)		67 J			49 U
, ,					
TPH (C10-C28)		240 U			1600

LOCATION SAMPLE ID SAMPLE DATE	MSA-MW-53I MSA-MW-53I-052522 20220525	MSA-MW-53S MSA-MW-53S-052322 20220523	MSA-MW-54I MSA-MW-54I-060922 20220609	MSA-MW-54S MSA-MW-54S-060922 20220609	MT-MW01S MT-MW-01S-061022 20220610	MT-MW02S MT-MW-02S-061022 20220610	QC TB-051322 20220513
VOLATILES (UG/L) 1,1,1,2-TETRACHLOROETHANE	220 U	0.43 U	430 U	430 U			0.43 U
1,1,1-TRICHLOROETHANE 1,1,2,2-TETRACHLOROETHANE	240 U 300 UJ	0.48 U 0.6 U	480 U 600 U	480 U 600 U			0.48 U 0.6 U
1,1,2-TRICHLOROETHANE							
1,1,2-TRICHLOROTRIFLUOROETHANE 1,1-DICHLOROETHANE	210 U 240 U	0.41 U 0.47 U	410 U 470 U	410 U 470 U			0.41 U 0.47 U
1,1-DICHLOROETHENE 1,1-DICHLOROPROPENE	250 U 180 U	0.49 U 0.36 U	490 U 360 U	490 U 360 U			0.49 U 0.36 U
1,2,3-TRICHLOROBENZENE	270 U	0.54 U	540 U	540 U			0.54 U
1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE	260 U 160 U	0.52 U 0.31 UJ	520 U 310 U	520 U 310 U			0.52 U 0.31 U
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	390 U 260 U	0.77 U 0.52 UJ	770 U 520 U	770 U 520 U			0.77 U 0.52 U
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	460 UJ 210 U	0.91 UJ 0.41 U	910 U 410 U	910 U 410 U			0.91 U 0.41 U
1,2-DICHLOROBENZENE	240 U	0.48 U	480 U	480 U			0.48 U
1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE	110 U 240 U	0.82 J 0.47 U	210 U 470 U	210 U 470 U			0.21 U 0.47 U
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	230 U 110 U	0.45 U 0.21 U	450 U 210 U	450 U 210 U			0.45 U 0.21 U
1,4-DICHLOROBENZENE	210 U	0.41 U	410 U	410 U			0.41 U
2,2-DICHLOROPROPANE 2-BUTANONE	390 UJ 580 UJ	0.78 U 1.2 U	780 U 1200 U	780 U 1200 U			0.78 U 1.2 U
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE	770 UR 290 U	1.5 UR 0.57 U	1500 UR 570 U	1500 UR 570 U			1.5 UR 0.57 U
2-HEXANONE 4-CHLOROTOLUENE	560 UJ 220 U	1.1 U 0.43 U	1100 U 430 U	1100 U 430 U			1.1 U 0.43 U
4-ISOPROPYLTOLUENE	280 U	0.56 UJ	560 U	560 U			0.56 U
4-METHYL-2-PENTANONE ACETONE	500 UJ 2700 UJ	0.99 U 5.4 U	990 U 5400 U	990 U 5400 U			0.99 U 5.4 U
ACROLEIN ACRYLONITRILE							
BENZENE	210 U	0.54 J	420 U	420 U			0.42 U
BROMOBENZENE BROMOCHLOROMETHANE	250 U 270 U	0.5 U 0.54 U	500 U 540 U	500 U 540 U			0.5 U 0.54 U
BROMODICHLOROMETHANE BROMOFORM	85 U 380 U	0.17 U 0.76 UJ	170 U 760 U	170 U 760 U	 		0.17 U 0.76 U
BROMOMETHANE	210 U	0.42 UJ	420 U	420 U			0.42 U
CARBON DISULFIDE CARBON TETRACHLORIDE	300 U 130 U	0.59 U 0.26 U	590 U 7200	590 U 950 J			0.59 U 0.26 U
CHLOROBENZENE CHLORODIBROMOMETHANE	190 U 200 U	0.38 U 0.39 U	380 U 390 U	380 U 390 U			0.38 U 0.39 U
CHLORODIFLUOROMETHANE CHLOROETHANE	500 UJ 420 UJ	1 UJ 0.83 UJ	1000 UJ 830 U	1000 UJ 830 U			1 UJ 0.83 U
CHLOROFORM	240 U	0.47 U	1700	1300			0.47 U
CHLOROMETHANE CIS-1,2-DICHLOROETHENE	320 UJ 19000	0.63 U 2.9	630 U 5200	630 U 23000			0.63 U 0.46 U
CIS-1,3-DICHLOROPROPENE DIBROMOMETHANE	310 UJ 200 U	0.61 U 0.4 U	610 U 400 U	610 U 400 U			0.61 U 0.4 U
DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER	180 U 85 U	0.35 U 0.17 U	350 U 170 U	350 U 170 U			0.35 U 0.17 U
ETHYL TERT-BUTYL ETHER	200 U	0.4 U	400 U	400 U			0.4 U
ETHYLBENZENE HEXACHLOROBUTADIENE	210 U 420 U	0.42 U 0.83 UJ	420 U 830 U	420 U 830 U			0.42 U 0.83 U
ISOPROPYLBENZENE M+P-XYLENES	250 U 210 U	0.49 U 0.42 U	490 U 420 U	490 U 420 U			0.49 U 0.42 U
METHYL TERT-BUTYL ETHER METHYLENE CHLORIDE	240 U 1300 U	0.47 U 2.6 U	470 U 2600 U	470 U 2600 U			0.47 U 2.6 U
NAPHTHALENE	400 U	0.8 UJ	800 U	800 U			0.8 U
N-BUTYLBENZENE N-PROPYLBENZENE	300 UJ 290 U	0.6 UJ 0.57 U	600 U 570 U	600 U 570 U			0.6 U 0.57 U
O-XYLENE SEC-BUTYLBENZENE	210 U 270 U	0.42 U 0.53 U	420 U 530 U	420 U 530 U			0.42 U 0.53 U
STYRENE TERT-AMYL METHYL ETHER	230 U 220 U	0.45 U 0.43 U	450 U 430 U	450 U 430 U			0.45 U 0.43 U
TERT-BUTYLBENZENE	240 U	0.48 U	480 U	480 U			0.48 U
TERTIARY-BUTYL ALCOHOL TETRACHLOROETHENE	3600 UJ 220 U	9.5 J 0.44 U	7200 U 440 U	7200 U 440 U			7.2 UJ 0.44 U
TOLUENE TOTAL XYLENES	220 U 210 U	0.44 U 0.42 U	1700 420 U	6900 420 U			0.44 U 0.42 U
TRANS-1,2-DICHLOROETHENE	260 U	0.51 U	510 U	510 U			0.51 U
TRANS-1,3-DICHLOROPROPENE TRICHLOROETHENE	340 UJ 6000	0.67 U 1.8	670 U 20000	670 U 12000			0.67 U 0.44 U
TRICHLOROFLUOROMETHANE VINYL ACETATE	230 U 310 UJ	0.45 UJ 0.61 U	450 U 610 U	450 U 610 U			0.45 U 0.61 UJ
VINYL CHLORIDE SEMIVOLATILES (UG/L)	4300	6.8	450 U	6400			0.45 UJ
1,4-DIOXANE	140	75 J	95	230			
METALS (UG/L) ANTIMONY	0.57 U	0.57 U	0.57 U	0.92 J			
ARSENIC BERYLLIUM	0.75 U 2.1	4.2 J 0.62 U	6.8 0.62 U	14 0.62 U	 		
CADMIUM CHROMIUM	100 21	0.29 J 3.1 J	39 9.8	19 13			
COPPER	150	1.7 U	2.3	4.8			
LEAD MERCURY	0.96 J 0.13 U	0.45 U 0.13 U	0.86 J 0.13 U	1.8 0.13 U			
NICKEL SELENIUM	160 1.9 J	22 0.89 U	120 1.6 J	26 1.5 J			
SILVER THALLIUM	0.053 U 0.23 J	0.053 U 0.2 U	0.053 U 0.2 U	0.053 U 0.2 U			
ZINC	280	25	1000	100			
METALS FILTERED (UG/L) ANTIMONY	0.57 U	0.57 U	0.57 U	0.73 J			
ARSENIC BERYLLIUM	0.75 U 2	0.75 U 0.62 U	2.9 J 0.62 U	10 0.62 U			
CADMIUM	97 19	0.23 J	23	5.2 8.9			
CHROMIUM COPPER	140	2.5 U 1.7 U	1.7 U	1.7 U			
LEAD MERCURY	0.9 J 0.13 U	0.45 U 0.13 U	0.45 U 0.13 U	0.45 U 0.13 U	 		
NICKEL SELENIUM	160 1.6 J	21 0.89 U	110 1.4 J	23 1.1 J			
SILVER	0.053 U	0.053 U	0.053 U	0.053 U			
THALLIUM ZINC	0.23 J 270	0.2 U 23	0.2 U 920	0.2 U 33			
MISCELLANEOUS (UG/L) HEXAVALENT CHROMIUM	0.005 U	0.005 U	0.05 U	0.05 U			
PETROLEUM HYDROCARBONS (UG/L)							
TPH (C06-C10) TPH (C10-C28)		49 U 680 U		29000 320000	49 U 470 J	1700 7400	
RADIONUCLIDES (PCI/L) RADIUM-228							
TOTAL ALPHA RADIUM							

LOCATION SAMPLE ID SAMPLE DATE	QC TB-051622 20220516	QC TB-051722 20220517	QC TB 051822 20220518	QC TB-052322 20220523	QC TB-052422 20220524	QC TB-052522 20220525	QC TB-052622 20220526
VOLATILES (UG/L)	0.43 U						
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE	0.48 U						
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	0.6 U 						
1,1,2-TRICHLOROTRIFLUOROETHANE 1.1-DICHLOROETHANE	0.41 U 0.47 U	0.41 U 0.47 UJ	0.41 U 0.47 U				
1,1-DICHLOROPENE 1,1-DICHLOROPENE	0.49 U 0.36 U						
1,2,3-TRICHLOROBENZENE	0.54 U	0.54 UJ					
1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE	0.52 U 0.31 U	0.52 U 0.31 U	0.52 U 0.31 U	0.52 U 0.31 UJ	0.52 U 0.31 U	0.52 U 0.31 U	0.52 U 0.31 U
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 U	0.77 U 0.52 UJ	0.77 U 0.52 U	0.77 U 0.52 U	0.77 UJ 0.52 U
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	0.91 U 0.41 U	0.91 U 0.41 U	0.91 U 0.41 U	0.91 UJ 0.41 U	0.91 U 0.41 U	0.91 U 0.41 U	0.91 UJ 0.41 U
1,2-DICHLOROBENZENE	0.48 U						
1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE	0.21 U 0.47 U	0.21 UJ 0.47 U	0.21 U 0.47 U				
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	0.45 U 0.21 U						
1,4-DICHLOROBENZENE 2,2-DICHLOROPROPANE	0.41 U 0.78 U						
2-BUTANONE	1.2 U	1.2 U	1.2 UJ	1.2 U	1.2 U	1.2 UJ	1.2 U
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE	1.5 UR 0.57 U						
2-HEXANONE 4-CHLOROTOLUENE	1.1 U 0.43 U						
4-ISOPROPYLTOLUENE	0.56 U 0.99 U	0.56 U 0.99 U	0.56 U 0.99 U	0.56 UJ 0.99 U	0.56 U 0.99 U	0.56 U 0.99 U	0.56 U 0.99 U
4-METHYL-2-PENTANONE ACETONE	5.4 U	5.4 UJ	5.4 U				
ACROLEIN ACRYLONITRILE		 					
BENZENE BROMOBENZENE	0.42 U 0.5 U						
BROMOCHLOROMETHANE	0.54 U						
BROMODICHLOROMETHANE BROMOFORM	0.17 U 0.76 U	0.17 U 0.76 U	0.17 U 0.76 U	0.17 U 0.76 UJ	0.17 U 0.76 U	0.17 UJ 0.76 U	0.17 U 0.76 UJ
BROMOMETHANE CARBON DISULFIDE	0.42 U 0.59 U	0.42 UJ 0.59 U	0.42 UJ 0.59 U	0.42 UJ 0.59 U	0.42 UJ 0.59 U	0.42 UJ 0.59 UJ	0.42 UJ 0.59 U
CARBON TETRACHLORIDE CHLOROBENZENE	0.26 U 0.38 U						
CHLORODIBROMOMETHANE	0.39 U						
CHLORODIFLUOROMETHANE CHLOROETHANE	1 UJ 0.83 U	1 UJ 0.83 U	1 UJ 0.83 U	1 UJ 0.83 UJ	1 UJ 0.83 UJ	1 UJ 0.83 UJ	1 UJ 0.83 U
CHLOROFORM CHLOROMETHANE	0.47 U 0.63 U	0.47 U 0.63 U	0.47 U 0.63 UJ	0.47 U 0.63 U	0.59 J 0.63 UJ	0.49 J 0.63 UJ	0.68 J 0.63 U
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE	0.46 U 0.61 U	0.46 U 0.61 UJ	0.46 U 0.61 U				
DIBROMOMETHANE	0.4 U						
DICHLORODIFLUOROMETHANE DIISOPROPYL ETHER	0.35 U 0.17 U	0.35 UJ 0.17 U	0.35 U 0.17 U	0.35 U 0.17 U	0.35 U 0.17 U	0.35 U 0.17 UJ	0.35 U 0.17 U
ETHYL TERT-BUTYL ETHER ETHYLBENZENE	0.4 U 0.42 U	0.4 UJ 0.42 U	0.4 U 0.42 U				
HEXACHLOROBUTADIENE ISOPROPYLBENZENE	0.83 U 0.49 U	0.83 U 0.49 U	0.83 U 0.49 U	0.83 UJ 0.49 U	0.83 U 0.49 U	0.83 U 0.49 U	0.83 UJ 0.49 U
M+P-XYLENES	0.42 U						
METHYL TERT-BUTYL ETHER METHYLENE CHLORIDE	0.47 U 2.6 U	0.47 UJ 2.6 U	0.47 U 2.6 U				
NAPHTHALENE N-BUTYLBENZENE	0.8 U 0.6 U	0.8 U 0.6 U	0.8 U 0.6 U	0.8 UJ 0.6 UJ	0.8 UJ 0.6 U	0.8 U 0.6 U	0.8 U 0.6 U
N-PROPYLBENZENE O-XYLENE	0.57 U 0.42 U						
SEC-BUTYLBENZENE	0.53 U						
STYRENE TERT-AMYL METHYL ETHER	0.45 U 0.43 U	0.45 U 0.43 UJ	0.45 U 0.43 U				
TERT-BUTYLBENZENE TERTIARY-BUTYL ALCOHOL	0.48 U 7.2 UJ	0.48 U 7.2 U	0.48 U 7.2 UJ	0.48 U 7.2 UJ	0.48 U 7.2 UJ	0.48 U 7.2 UJ	0.48 U 7.2 U
TETRACHLOROETHENE TOLUENE	0.44 U 0.44 U						
TOTAL XYLENES	0.42 U						
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U
TRICHLOROETHENE TRICHLOROFLUOROMETHANE	0.44 U 0.45 U	0.44 U 0.45 U	0.44 U 0.45 U	0.44 U 0.45 UJ	0.44 U 0.45 UJ	0.44 U 0.45 U	0.44 U 0.45 U
VINYL ACETATE VINYL CHLORIDE	0.61 UJ 0.45 UJ	0.61 UJ 0.45 U	0.61 UJ 0.45 UJ	0.61 U 0.45 U	0.61 U 0.45 U	0.61 U 0.45 UJ	0.61 U 0.45 U
SEMIVOLATILES (UG/L)							
1,4-DIOXANE METALS (UG/L)							
ANTIMONY ARSENIC							
BERYLLIUM CADMIUM							
CHROMIUM COPPER							
LEAD							
MERCURY NICKEL							
SELENIUM SILVER							
THALLIUM ZINC							
METALS FILTERED (UG/L)							
ANTIMONY ARSENIC							
BERYLLIUM CADMIUM							
CHROMIUM COPPER							
LEAD			-		-		-
MERCURY NICKEL							
SELENIUM SILVER							
THALLIUM							
ZINC MISCELLANEOUS (UG/L)			-	-	-	-	-
HEXAVALENT CHROMIUM PETROLEUM HYDROCARBONS (UG/L)					-	-	
TPH (C06-C10) TPH (C10-C28)							
RADIONUCLIDES (PCI/L)				-			
RADIUM-228 TOTAL ALPHA RADIUM		-					

VOLATILES (UG/I) 1,1,1-TRICHLOROETHANE 0.43 U 0.43 U 0.48 U 0.49 U 0.50 U 0.50 U 0.50 U 0.50 U 0.41 U	0.43 U 0.48 U 0.6 U 0.41 U 0.47 U 0.49 U 0.36 U 0.54 U 0.52 U 0.31 U 0.77 U 0.52 U 0.91 U 0.41 U 0.48 U 0.21 U 0.47 U 0.45 U 0.21 U 0.41 U 0.45 U 0.78 UJ 1.2 U 1.5 UR
1,1,2,2-TRICHLOROETHANE	0.6 U 0.41 U 0.47 U 0.49 U 0.36 U 0.54 U 0.52 U 0.31 U 0.77 U 0.52 U 0.91 U 0.41 U 0.48 U 0.21 U 0.47 U 0.45 U 0.21 U 0.41 U 0.48 U 0.21 U 0.41 U 0.45 U 0.21 U 0.41 U 0.78 UJ 1.2 U 1.5 UR
1,1-DICHLOROETHANE	0.47 U 0.49 U 0.36 U 0.54 U 0.52 U 0.31 U 0.77 U 0.52 U 0.91 U 0.41 U 0.48 U 0.21 U 0.47 U 0.45 U 0.21 U 0.41 U 0.78 U 1.2 U 1.5 UR
1,1-DICHLOROPROPENE	0.36 U 0.54 U 0.52 U 0.31 U 0.77 U 0.52 U 0.91 U 0.41 U 0.48 U 0.21 U 0.47 U 0.45 U 0.21 U 0.41 U 0.78 UJ 1.2 U 1.5 UR
1,2,3-TRICHLOROPROPANE 0.52 U 0.52 U 0.52 U 0.52 U 0.52 U 1,2,3-TRIMETHYLBENZENE 0.31 U 0.77 U 0.71 U 0.91	0.52 U 0.31 U 0.77 U 0.52 U 0.91 U 0.41 U 0.48 U 0.21 U 0.47 U 0.45 U 0.21 U 0.41 U 0.78 UJ 1.2 U 1.5 UR
1,2,4-TRICHLOROBENZENE 0.77 U 0.52 U 0.52 U 0.52 U 0.52 U 0.52 U 0.52 U 0.52 U 0.52 U 0.52 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.91 U 0.41 U 0.41 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.48 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.45 U 0.45 U <	0.77 U 0.52 U 0.91 U 0.41 U 0.48 U 0.21 U 0.47 U 0.45 U 0.21 U 0.41 U 0.78 UJ 1.2 U 1.5 UR
1,2-DIBROMO-3-CHLOROPROPANE 0.91 U 0.41 U 0.48 U 0.41 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U 0.41 U	0.91 U 0.41 U 0.48 U 0.21 U 0.47 U 0.45 U 0.21 U 0.41 U 0.78 UJ 1.2 U 1.5 UR
1,2-DICHLOROBENZENE 0.48 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.47 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.41 U 0.78 U 0.78 U 0.78 U 0.78 U 0.78 U 0.78 U 0.78 U 0.20 U 0.22 U 0.22 U 0.22 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.23 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U 0.24 U	0.48 U 0.21 U 0.47 U 0.45 U 0.21 U 0.41 U 0.78 UJ 1.2 U 1.5 UR 0.57 U
1,2-DICHLOROPROPANE 0.47 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.21 U 0.41 U 0.78 UJ 0.78 UJ 0.78 UJ 0.78 UJ 0.78 UJ 0.78 UJ 0.20 U	0.47 U 0.45 U 0.21 U 0.41 U 0.78 UJ 1.2 U 1.5 UR 0.57 U
1,3-DICHLOROPROPANE 0.21 U	0.21 U 0.41 U 0.78 UJ 1.2 U 1.5 UR 0.57 U
2,2-DICHLOROPROPANE 0.78 U 0.78 U 0.78 U 0.78 UJ 0.78 UJ 2-BUTANONE 1.2 U	0.78 UJ 1.2 U 1.5 UR 0.57 U
	1.5 UR 0.57 U
2-CHLOROETHYL VINYL ETHER 1.5 UR 1.5 UR 1.5 UR 1.5 UR 1.5 UR	
2-CHLOROTOLUENE 0.57 U 0.57 U <t< td=""><td>1.1 U</td></t<>	1.1 U
4-CHLOROTOLUENE 0.43 U 0.56 U <t< td=""><td>0.43 U 0.56 U</td></t<>	0.43 U 0.56 U
4-METHYL-2-PENTANONE 0.99 U	0.99 U 5.4 U
ACROLEIN <	
BENZENE 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U BROMOBENZENE 0.5 U 0.5 U 0.5 U 0.5 U 0.5 U	0.42 U 0.5 U
BROMOCHLOROMETHANE 0.54 U 0.54 U 0.54 U 0.54 U 0.54 U 0.54 U BROMODICHLOROMETHANE 0.17 U 0.17 U <td>0.54 U 0.17 U</td>	0.54 U 0.17 U
BROMOFORM 0.76 UJ 0.76 UJ 0.76 U 0.76 U 0.76 U BROMOMETHANE 0.42 UJ	0.76 U 0.42 UJ
CARBON DISULFIDE 0.59 U 0.26 U <	0.59 UJ 0.26 U
CHLOROBENZENE 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U 0.38 U CHLORODIBROMOMETHANE 0.39 UJ 0.39 U 0.39 U 0.39 U 0.39 U 0.39 U 0.39 U	0.38 U 0.39 U
CHLORODIFLUOROMETHANE 1 UJ	1 UJ 0.83 UJ
CHLOROFORM 0.75 J 0.64 J 0.62 J 0.58 J 0.53 J CHLOROMETHANE 0.63 U 0.63 U 0.63 U 0.63 U 0.63 U 0.63 U	0.53 J 0.63 U
CIS-1,2-DICHLOROETHENE 0.46 U 0.61 U	0.46 U 0.61 U
DIBROMOMETHANE 0.4 U 0.4 U 0.4 U 0.4 U 0.4 U DICHLORODIFLUOROMETHANE 0.35 U 0.35 U 0.35 U 0.35 U 0.35 U	0.4 U 0.35 U
DIISOPROPYL ETHER 0.17 U	0.17 U 0.4 U
ETHYLBENZENE 0.42 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U 0.83 U	0.42 U 0.83 U
ISOPROPYLBENZENE 0.49 U 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U 0.42 U	0.49 U 0.42 U
METHYL TERT-BUTYL ETHER 0.47 U	0.47 U 2.6 U
NAPHTHALENE 0.8 U 0.8 U 0.8 U 0.8 U N-BUTYLBENZENE 0.6 U 0.6 U 0.6 U 0.6 U 0.6 U	0.8 U 0.6 U
N-PROPYLBENZENE 0.57 U	0.57 U 0.42 U
SEC-BUTYLBENZENE 0.53 U 0.53 U 0.53 U 0.53 U 0.53 U STYRENE 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U	0.53 U 0.45 U
TERT-AMYL METHYL ETHER 0.43 U 0.43 U 0.43 U 0.43 U 0.43 U 0.43 U 0.48 U	0.43 U 0.48 U
TERTIARY-BUTYL ALCOHOL 7.2 U 7.2 U 7.2 UJ 7.2 UJ TETRACHLOROETHENE 0.44 U	7.2 U 0.44 U
TOLUENE 0.44 U 0.44 U 0.44 U 0.44 U 0.44 U TOTAL XYLENES 0.42 U 0.42	0.44 U 0.42 U
TRANS-1,2-DICHLOROETHENE 0.51 U 0.51 U 0.51 U 0.51 U TRANS-1,3-DICHLOROPROPENE 0.67 U 0.67 U <td< td=""><td>0.51 U 0.67 U</td></td<>	0.51 U 0.67 U
TRICHLOROETHENE 0.44 U 0.44 U 0.44 U 0.44 U 0.44 U TRICHLOROFLUOROMETHANE 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U	0.44 U 0.45 UJ
VINYL ACETATE 0.61 U 0.61 U 0.61 U 0.61 U VINYL CHLORIDE 0.45 U 0.45 U 0.45 U 0.45 U 0.45 U	0.61 U 0.45 U
SEMIVOLATILES (UG/L)	-
METALS (UG/L) ANTIMONY	-
ARSENIC	
CADMIUM <t< td=""><td></td></t<>	
COPPER LEAD	
MERCURY NICKEL	
SELENIUM <	
THALLIUM	
METALS FILTERED (UG/L) ANTIMONY	-
ARSENIC BERYLLIUM	
CADMIUM <t< td=""><td></td></t<>	
COPPER LEAD	
MERCURY NICKEL	
SELENIUM <	
THALLIUM	
MISCELLANEOUS (UG/L) HEXAVALENT CHROMIUM	-
PETROLEUM HYDROCARBONS (UG/L) TPH (C06-C10) <td></td>	
TPH (C10-C28) RADIONUCLIDES (PCI/L)	-
RADIUM-228	

LOCATION	QC	QC	QC	QC	QC
SAMPLE ID SAMPLE DATE	TB-060922 20220609	TB-061022 20220610	TB-061322 20220613	TB-061422 20220614	TB-061522-02 20220615
VOLATILES (UG/L)					
1,1,1,2-TETRACHLOROETHANE 1,1,1-TRICHLOROETHANE	0.43 U 0.48 U				
1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE	0.6 U 0.45 U	0.6 U 0.45 U	0.6 U 0.45 U	0.6 U 0.45 U	0.6 U
1,1,2-TRICHLOROTRIFLUOROETHANE 1.1-DICHLOROETHANE	0.41 U 0.47 U				
1,1-DICHLOROETHENE	0.49 U				
1,1-DICHLOROPROPENE 1,2,3-TRICHLOROBENZENE	0.36 U 0.54 U	0.36 U 0.54 UJ	0.36 U 0.54 U	0.36 U 0.54 U	0.36 U 0.54 U
1,2,3-TRICHLOROPROPANE 1,2,3-TRIMETHYLBENZENE	0.52 U 0.31 U	0.52 U 0.31 U	0.52 U 0.31 UJ	0.52 U 0.31 U	0.52 U 0.31 U
1,2,4-TRICHLOROBENZENE 1,2,4-TRIMETHYLBENZENE	0.77 U 0.52 U				
1,2-DIBROMO-3-CHLOROPROPANE 1,2-DIBROMOETHANE	0.91 U 0.41 U				
1,2-DICHLOROBENZENE	0.48 U				
1,2-DICHLOROETHANE 1,2-DICHLOROPROPANE	0.21 U 0.47 U				
1,3-DICHLOROBENZENE 1,3-DICHLOROPROPANE	0.45 U 0.21 U				
1,4-DICHLOROBENZENE 2,2-DICHLOROPROPANE	0.41 U 0.78 U				
2-BUTANONE	1.2 U				
2-CHLOROETHYL VINYL ETHER 2-CHLOROTOLUENE	1.5 UR 0.57 U				
2-HEXANONE 4-CHLOROTOLUENE	1.1 U 0.43 U				
4-ISOPROPYLTOLUENE 4-METHYL-2-PENTANONE	0.56 U 0.99 U				
ACETONE	5.4 U				
ACROLEIN ACRYLONITRILE	3.6 UR 2.2 U	3.6 UR 2.2 U	3.6 UR 2.2 U	3.6 UR 2.2 U	
BENZENE BROMOBENZENE	0.42 U 0.5 U				
BROMOCHLOROMETHANE BROMODICHLOROMETHANE	0.54 U 0.17 U				
BROMOFORM	0.76 U	0.76 UJ	0.76 U	0.76 U	0.76 U
BROMOMETHANE CARBON DISULFIDE	0.42 U 0.59 U	0.42 UJ 0.59 U	0.42 UJ 0.59 U	0.42 U 0.59 U	0.42 UJ 0.59 U
CARBON TETRACHLORIDE CHLOROBENZENE	0.26 U 0.38 U				
CHLORODIBROMOMETHANE CHLORODIFLUOROMETHANE	0.39 U 1 UJ	0.39 UJ 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ	0.39 U 1 UJ
CHLOROETHANE CHLOROFORM	0.83 U 0.65 J	0.83 U 0.58 J	0.83 U 0.74 J+	0.83 U 0.68 J	0.83 U 0.67 J
CHLOROMETHANE	0.63 U				
CIS-1,2-DICHLOROETHENE CIS-1,3-DICHLOROPROPENE	0.46 U 0.61 U				
DIBROMOMETHANE DICHLORODIFLUOROMETHANE	0.4 U 0.35 U				
DIISOPROPYL ETHER ETHYL TERT-BUTYL ETHER	0.17 U 0.4 U				
ETHYLBENZENE HEXACHLOROBUTADIENE	0.42 U 0.83 U				
ISOPROPYLBENZENE	0.49 U	0.49 UJ	0.49 U	0.49 U	0.49 U
M+P-XYLENES METHYL TERT-BUTYL ETHER	0.42 U 0.47 U				
METHYLENE CHLORIDE NAPHTHALENE	2.6 U 0.8 U				
N-BUTYLBENZENE N-PROPYLBENZENE	0.6 U 0.57 U	0.6 UJ 0.57 U	0.6 U 0.57 U	0.6 U 0.57 U	0.6 U 0.57 U
O-XYLENE SEC-BUTYLBENZENE	0.42 U 0.53 U				
STYRENE	0.45 U				
TERT-AMYL METHYL ETHER TERT-BUTYLBENZENE	0.43 U 0.48 U				
TERTIARY-BUTYL ALCOHOL TETRACHLOROETHENE	7.2 U 0.44 U	7.2 U 0.44 U	7.2 UJ 0.44 U	7.2 U 0.44 U	7.2 UJ 0.44 U
TOLUENE TOTAL XYLENES	0.44 U 0.42 U				
TRANS-1,2-DICHLOROETHENE TRANS-1,3-DICHLOROPROPENE	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U	0.51 U 0.67 U
TRICHLOROETHENE	0.44 U				
TRICHLOROFLUOROMETHANE VINYL ACETATE	0.45 U 0.61 U	0.45 U 0.61 UJ	0.45 U 0.61 U	0.45 U 0.61 U	0.45 U 0.61 U
VINYL CHLORIDE SEMIVOLATILES (UG/L)	0.45 U				
1,4-DIOXANE METALS (UG/L)					
ANTIMONY ARSENIC					
BERYLLIUM		-			-
CADMIUM CHROMIUM			-		
COPPER LEAD					
MERCURY NICKEL					
SELENIUM SILVER					
THALLIUM		-			
ZINC METALS FILTERED (UG/L)	-	-	-		-
ANTIMONY ARSENIC				 	
BERYLLIUM CADMIUM					
CHROMIUM					
COPPER LEAD					
MERCURY NICKEL					
SELENIUM SILVER					
THALLIUM ZINC					
MISCELLANEOUS (UG/L)					
HEXAVALENT CHROMIUM PETROLEUM HYDROCARBONS (UG/L)	-	-	-		-
TPH (C06-C10) TPH (C10-C28)				 	
RADIONUCLIDES (PCI/L) RADIUM-228					-
TOTAL ALPHA RADIUM					

Appendix E is available Upon Request APPENDIX E—DATA-VALIDATION REPORTS WITH CHAIN-OF-CUSTODY FORMS

October 2022 Appendices

Appendix F is available Upon Request APPENDIX F—FULL LABORATORY ANALYTICAL REPORTS